七年级数学等腰三角形的判定2
- 格式:pdf
- 大小:1.10 MB
- 文档页数:8
新人教版初中数学——等腰三角形与直角三角形知识点归纳与典型题解析一、等腰三角形1.等腰三角形的性质定理:等腰三角形的两个底角相等(简称:等边对等角).推论1:等腰三角形顶角平分线平分底边并且垂直于底边,即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.2.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.推论1:三个角都相等的三角形是等边三角形.推论2:有一个角是60°的等腰三角形是等边三角形.推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.二、等边三角形1.定义:三条边都相等的三角形是等边三角形.2.性质:等边三角形的各角都相等,并且每一个角都等于60°.3.判定:三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.三、直角三角形与勾股定理1.直角三角形定义:有一个角是直角的三角形叫做直角三角形.性质:(1)直角三角形两锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.判定:(1)两个内角互余的三角形是直角三角形;(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.2.勾股定理及逆定理(1)勾股定理:直角三角形的两条直角边a 、b 的平方和等于斜边c 的平方,即:a 2+b 2=c 2. (2)勾股定理的逆定理:如果三角形的三条边a 、b 、c 有关系:a 2+b 2=c 2,那么这个三角形是直角三角形.考向一 等腰三角形的性质1.等腰三角形是轴对称图形,它有1条或3条对称轴. 2.等腰直角三角形的两个底角相等且等于45°.3.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角). 4.等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a . 5.等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A =180°-2∠B ,∠B =∠C =2180A∠-︒.典例1 等腰三角形的一个内角为40°,则其余两个内角的度数分别为( ) A .40°,100° B .70°,70°C .60°,80°D .40°,100°或70°,70°【答案】D【解析】①若等腰三角形的顶角为40°时,另外两个内角=(180°–40°)÷2=70°; ②若等腰三角形的底角为40°时,它的另外一个底角为40°,顶角为180°–40°–40°=100°. 所以另外两个内角的度数分别为:40°、100°或70°、70°.故选D .【名师点睛】考查了等腰三角形的性质和三角形的内角和为180o ,解题关键是分情况进行讨论①已知角为顶角时;②已知角为底角时.典例2 如图,在ABC ∆中,AB =AC ,D 是BC 的中点,下列结论不正确的是( )A.AD BC B.∠B=∠CC.AB=2BD D.AD平分∠BAC【答案】C【解析】因为△ABC中,AB=AC,D是BC中点,根据等腰三角形的三线合一性质可得,A.AD⊥BC,故A选项正确;B.∠B=∠C,故B选项正确;C.无法得到AB=2BD,故C选项错误;D.AD平分∠BAC,故D选项正确.故选C.【名师点睛】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质.1.等腰三角形的周长为13cm,其中一边长为4cm,则该等腰三角形的底边为__________cm.考向二等腰三角形的判定1.等腰三角形的判定定理是证明两条线段相等的重要依据,是把三角形中的角的相等关系转化为边的相等关系的重要依据.2.底角为顶角的2倍的等腰三角形非常特殊,其底角平分线将原等腰三角形分成两个等腰三角形.典例3 如图,在△ABC中,AB=AC,AD⊥BC于D,E是AB上的一点,EF∥AD交CA的延长线于F.求证:△AEF是等腰三角形.【解析】∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.又∵AD∥EF,∴∠F=∠CAD,∠FEA=∠BAD,∴∠FEA=∠F,∴△AEF是等腰三角形.2.已知在△ABC中,AB=5,BC=2,且AC的长为奇数.(1)求△ABC的周长;(2)判断△ABC的形状.考向三等边三角形的性质1.等边三角形具有等腰三角形的一切性质.2.等边三角形是轴对称图形,它有三条对称轴.3.等边三角形的内心、外心、重心和垂心重合.典例4 如图,在△ABC中,∠B=∠C=60°,点D为AB边的中点,DE⊥BC于E,若BE=1,则AC 的长为__________.【答案】4【解析】∵DE ⊥BC ,∠B =∠C =60°, ∴∠BDE =30°,∴BD =2BE =2,∵点D 为AB 边的中点,∴AB =2BD =4, ∵∠B =∠C =60°,∴△ABC 为等边三角形, ∴AC =AB =4,故答案为:4.【名师点睛】本题主要考查直角三角形的性质、等边三角形的判定和性质,利用直角三角形的性质求得AB =2BD 是解题的关键.3.如图,ABC ∆是等边三角形,点D 在AC 上,以BD 为一边作等边BDE ∆,连接CE . (1)说明ABD CBE ∆≅∆的理由; (2)若080BEC ∠=,求DBC ∠的度数.考向四 等边三角形的判定在等腰三角形中,只要有一个角是60°,无论这个角是顶角还是底角,这个三角形就是等边三角形.典例5 下列推理中,错误的是A .∵∠A =∠B =∠C ,∴△ABC 是等边三角形 B .∵AB =AC ,且∠B =∠C ,∴△ABC 是等边三角形 C .∵∠A =60°,∠B =60°,∴△ABC 是等边三角形D .∵AB =AC ,∠B =60°,∴△ABC 是等边三角形 【答案】B【解析】A,∵∠A=∠B=∠C,∴△ABC是等边三角形,故正确;B,条件重复且条件不足,故不正确;C,∵∠A=60°,∠B=60°,∴∠C=60°,∴△ABC是等边三角形60°,故正确;D,根据有一个角是60°的等腰三角形是等边三角形可以得到,故正确.故选B.4.如图,已知OA=5,P是射线ON上的一个动点,∠AON=60°.当OP=__________时,△AOP为等边三角形.考向五直角三角形在直角三角形中,30°的角所对的直角边等于斜边的一半,这个性质常常用于计算三角形的边长,也是证明一边(30°角所对的直角边)等于另一边(斜边)的一半的重要依据.当题目中已知的条件或结论倾向于该性质时,我们可运用转化思想,将线段或角转化,构造直角三角形,从而将陌生的问题转化为熟悉的问题.典例6 如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若∠B=30°,BD=6,则CD 的长为__________.【答案】3【解析】∵在Rt△ABC中,∠C=90°,∠B=30°,∴∠BAC=60°.又AD平分∠BAC,∴∠BAD=∠CAD=30°,∴∠BAD=∠B=30°,∴AD=BD=6,∴CD=12AD=3,故答案为:3.5.已知直角三角形的两条边分别是5和12,则斜边上的中线的长度为__________.考向六 勾股定理1.应用勾股定理时,要分清直角边和斜边,尤其在记忆a 2+b 2=c 2时,斜边只能是c .若b 为斜边,则关系式是a 2+c 2=b 2;若a 为斜边,则关系式是b 2+c 2=a 2.2.如果已知的两边没有明确边的类型,那么它们可能都是直角边,也可能是一条直角边、一条斜边,求解时必须进行分类讨论,以免漏解.典例7 cm cm ,则这个直角三角形的周长为__________.【答案】【解析】∵直角边长为cm cm ,∴斜边(cm ),∴周长cm ).故答案为:【名师点睛】本题考查了二次根式与三角形边长,面积的综合运用.熟练掌握勾股定理的计算解出斜边是关键6.如图所示,在ABC ∆中,90B ∠=︒,3AB =,5AC =,D 为BC 边上的中点.(1)求BD 、AD 的长度;(2)将ABC ∆折叠,使A 与D 重合,得折痕EF ;求AE 、BE 的长度.1.直角三角形两直角边长分别为6和8,则此直角三角形斜边上的中线长是 A .3B .4C .7D .52.如图,ABC △是等边三角形,0,20BC BD BAD =∠=,则BCD ∠的度数为A .50°B .55°C .60°D .65°3.如图是“人字形”钢架,其中斜梁AB =AC ,顶角∠BAC =120°,跨度BC =10m ,AD 为支柱(即底边BC 的中线),两根支撑架DE ⊥AB ,DF ⊥AC ,则DE +DF 等于A .10mB .5mC .2.5mD .9.5m4.如图,ABC ∆是边长为1的等边三角形,BDC ∆为顶角120BDC ∠=︒的等腰三角形,点M 、N 分别在AB 、AC 上,且60MDN ∠=︒,则AMN ∆的周长为A.2 B.3 C.1.5 D.2.55.如图,△ABC中,D、E两点分别在AC、BC上,AB=AC,CD=DE.若∠A=40°,∠ABD:∠DBC=3:4,则∠BDE=A.24°B.25°C.30°D.35°6.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为A.22 B.17C.17或22 D.267.如图,△ABC中,AB=AC=5,BC=6,点D在BC上,且AD平分∠BAC,则AD的长为A.6 B.5C.4 D.38.如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC是等腰三角形,则符合条件是点C共有A .8个B .9个C .10个D .11个9.如图,Rt △ABC 中,∠B =90〬,AB =9,BC =6,,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段AN 的长等于A .5B .6C .4D .310.将一个有45°角的三角尺的直角顶点C 放在一张宽为3 cm 的纸带边沿上,另一个顶点A 在纸带的另一边沿上,测得三角尺的一边AC 与纸带的一边所在的直线成30°角,如图,则三角尺的最长边的长为A .6B .C .D .11.三角形的三边a ,b ,c (b ﹣c )2=0;则三角形是_____三角形. 12.如图,等腰△ABC 中,AB =AC =13cm ,BC =10cm ,△ABC 的面积=________.13.已知等腰三角形一腰上的高与另一腰的夹角为35°,则这个等腰三角形顶角的度数为__________. 14.若一个等腰三角形的周长为26,一边长为6,则它的腰长为__________.15.如图,在ABC △中,AB AC =,D 、E 分别是BC 、AC 上一点,且AD AE =,12EDC ∠=︒,则BAD ∠=__________.16.如图,已知△ABC是等边三角形,点B,C,D,E在同一直线上,且CG=CD,DF=DE,则∠EFD=__________°.17.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上的一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,CA1的长为__________.18.如图,在Rt△ABC中,点E在AB上,把△ABC沿CE折叠后,点B恰好与斜边AC的中点D 重合.(1)求证:△ACE为等腰三角形;(2)若AB=6,求AE的长.19.如图,一架2.5 m 长的梯子斜立在竖直的墙上,此时梯足B 距底端O 为0.7 m .(1)求OA 的长度;(2)如果梯子顶端下滑0.4米,则梯子将滑出多少米?20.ABC ∆与DCE ∆有公共顶点C (顶点均按逆时针排列),AB AC =,DC DE =,180BAC CDE ∠+∠=︒,//DE BC ,点G 是BE 的中点,连接DG 并延长交直线BC 于点F ,连接,AF AD .(1)如图,当90BAC ∠=︒时, 求证:①BF CD =; ②AFD ∆是等腰直角三角形.(2)当60BAC ∠=︒时,画出相应的图形(画一个即可),并直接指出AFD ∆是何种特殊三角形.21.已知:如图,有人在岸上点C 的地方,用绳子拉船靠岸,开始时,绳长CB =10米,CA ⊥AB ,且CA =6米,拉动绳子将船从点B 沿BA 方向行驶到点D 后,绳长CD (1)试判定△ACD 的形状,并说明理由; (2)求船体移动距离BD 的长度.1.如图,在OAB △和OCD △中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为A .4B .3C .2D .12.在△ABC 中,AB =AC ,∠A =40°,则∠B =__________.3.如图,在△ABC 中,AB =AC ,点D ,E 都在边BC 上,∠BAD =∠CAE ,若BD =9,则CE 的长为__________.4.如图,在四边形ABCD 中,AB CD ∥,连接AC ,BD .若90ACB ∠=︒,AC BC =,AB BD =,则ADC ∠=__________︒.5.腰长为5,高为4的等腰三角形的底边长为__________.6.若等腰三角形的一个底角为72︒,则这个等腰三角形的顶角为__________.7.如图,△ABC 中,AB =BC ,∠ABC =90°,F 为AB 延长线上一点,点E 在BC 上,且AE =CF ,若∠BAE =25°,则∠ACF =__________度.8.如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G .(1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.9.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D .(1)若∠C =42°,求∠BAD 的度数;(2)若点E 在边AB 上,EF ∥AC 交AD 的延长线于点F .求证:AE =FE .10.如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O .求证:(1)DBC ECB △≌△; (2)OB OC =.11.如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,连结AD ,BE 平分∠ABC 交AC 于点E ,过点E 作EF ∥BC 交AB 于点F . (1)若∠C =36°,求∠BAD 的度数.(2)若点E 在边AB 上,EF ∥AC 叫AD 的延长线于点F .求证:FB =FE .12.在ABC △中,90BAC ∠=︒,AB AC =,AD BC ⊥于点D .(1)如图1,点M ,N 分别在AD ,AB 上,且90BMN ∠=︒,当30AMN =︒∠,2AB =时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =; (3)如图3,点M 在AD 的延长线上,点N 在AC 上,且90BMN ∠=︒,求证:AB AN +=.1.【答案】4cm 或5cm【解析】当长是4cm 的边是底边时,腰长是12(13–4)=4.5, 三边长为4cm ,4.5cm ,4.5cm ,等腰三角形成立;当长是4cm 的边是腰时,底边长是:13–4–4=5cm ,等腰三角形成立. 故底边长是:4cm 或5cm .故答案是:4cm 或5cm【名师点睛】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论,不要漏解. 2.【解析】(1)由题意得:5−2<AB <5+2,即:3<AB <7,∵AB 为奇数,∴AB =5, ∴△ABC 的周长为5+5+2=12. (2)∵AB =AC =5, ∴△ABC 是等腰三角形. 3.【答案】(1)见解析;(2)20°.【解析】(1)由060ABC DBE ∠=∠=,得ABD CBE ∠=∠,由,AB BC BD BE ==, 得ABD CBE ∆≅∆(SAS );(2)由ABD CBE ∆≅∆,得060BCE A ∠=∠=,所以00000180180806040CBE BEC BCE ∠=-∠-∠=--=, 所以000060604020DBC CBE ∠=-∠=-=.【名师点睛】本题主要考查全等三角形的判定和性质以及三角形内角和定理,先证明三角形全等是解决本题的突破口. 4.【答案】5【解析】已知∠AON =60°,当OP =OA =5时,根据有一个角为60°的等腰三角形为等边三角形,可得△AOP 为等边三角形.故答案为:5. 5.【答案】6或6.5【解析】分两种情况:①5和12是两条直角边,根据勾股定理求得斜边为13,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6.5;②5是直角边,12为斜边,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6,故答案为:6或6.5.6.【答案】(1)BD =2,AD =2)136AE =,56BE = 【解析】(1)∵在ABC ∆中,90B ∠=︒,3AB =,5AC =, ∴在Rt ABC ∆中,222225316BC AC AB =-=-=, ∴4BC =,又∵D 为BC 边上的中点, ∴122BD DC BC ===, ∴在Rt ABD ∆中,222222133AD AB BD =+=+=,∴AD =(2)ABC ∆折叠后如图所示,EF 为折痕,连接DE ,设AE x =,则DE x =,3BE x =-,在Rt BDE ∆中,222BE BD DE +=,即()22232x x -+=,解得:136x =, ∴136AE =, ∴135366BE =-=. 【名师点睛】本题主要考查了勾股定理的应用,也考查了折叠的性质.是常见中考题型.1.【答案】D【解析】∵两直角边分别为6和8,∴斜边10=, ∴斜边上的中线=12×10=5,故选D . 【名师点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理的应用,熟记性质是解题的关键. 2.【答案】A 【解析】ABC △是等边三角形,AC AB BC ∴==,又BC BD =,AB BD ∴=,∴20BAD BDA ∠=∠=︒0180CBD BAD BDA ABC ∴∠=-∠-∠-∠0000018020206080=---=,BC BD =,∴11(180)(18080)5022BCD CBD ∠=⨯︒-∠=⨯︒-︒=︒,故选A .【名师点睛】本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌握性质和定理是正确解答本题的关键. 3.【答案】B【解析】∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°, ∵DE ⊥AB ,DF ⊥AC ,垂足为E ,F ,∴DE =12BD ,DF =12DC , ∴DE +DF =12BD +12DC =12(BD +DC )=12B C .∴DE +DF =12BC =12×10=5m .故选B . 【名师点睛】本题考查等腰三角形和直角三角形的性质,熟练掌握相关知识点是解题关键. 4.【答案】A【解析】如图所示,延长AC 到E ,使CE =BM ,连接DE ,∵BD =DC ,∠BDC =120°,∴∠CBD =∠BCD =30°, ∵∠ABC =∠ACB =60°,∴∠ABD =∠ACD =∠DCE =90°,在△BMD 和△CED 中,90BD CDDBM DCE BM CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△BMD ≌△CED (SAS ),∴∠BDM =∠CDE ,DM =DE , 又∵∠MDN =60°,∴∠BDM +∠NDC =60°, ∴∠EDC +∠NDC =∠NDE =60°=∠NDM , 在△MDN 和△EDN 中,DM DEMDN NDE DN DN =⎧⎪∠=∠⎨⎪=⎩,∴△MDN ≌△EDN (SAS ), ∴MN =NE =NC +CE =NC +BM ,所以△AMN 周长=AM +AN +MN =AM +AN +NC +BM =AB +AC =2. 故选A.【名师点睛】本题考查全等三角形的判定和性质,做辅助线构造全等三角形,利用等边三角形的性质得到全等条件是解决本题的关键.5.【答案】C【解析】∵AB=AC,CD=DE,∴∠C=∠DEC=∠ABC,∴AB∥DE,∵∠A=40°,∴∠C=∠DEC=∠ABC=18040702,∵∠ABD:∠DBC=3:4,∴设∠ABD为3x,∠DBC为4x,∴3x+4x=70°,∴x=10°,∴∠ABD=30°,∵AB∥DE,∴∠BDE=∠ABD=30°,故答案为C.【名师点睛】本题主要考查了等腰三角形的性质:等边对等角和三角形内角和定理求解,难度适中.6.【答案】A【解析】分两种情况:①当腰为4时,4+4<9,所以不能构成三角形;②当腰为9时,9+9>4,9-9<4,所以能构成三角形,周长是:9+9+4=22.故选A.7.【答案】C【解析】∵AB=AC=5,AD平分∠BAC,BC=6,∴BD=CD=3,∠ADB=90°,∴AD=4.故选C.8.【答案】B【解析】如图,①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.故选B.9.【答案】A【解析】设AN=x,由翻折的性质可知DN=AN=x,则BN=9-x.∵D是BC的中点,∴BD=1632⨯=.在Rt△BDN中,由勾股定理得:ND2=NB2+BD2,即x2=(9-x)2+32,解得x=5,AN=5,故选A.10.【答案】D【解析】如图,作AH⊥CH,在Rt △ACH 中,∵AH =3,∠AHC =90°,∠ACH =30°,∴AC =2AH =6,在Rt △ABC 中,AB ==D .11.【答案】等边【解析】三角形的三边a ,b ,c 2()0b c -=,20,()0b c =-=,0,0a b b c ∴-=-=,解得:,a b b c ==,即a b c ==,则该三角形是等边三角形.故答案为:等边.【名师点睛】本题是一道比较好的综合题,考查了算术平方根的非负性、平方数的非负性、等边三角形的定义. 12.【答案】60cm 2.【解析】过点A 作AD ⊥BC 交BC 于点D , ∵AB =AC =13cm ,BC =10cm , ∴BD =CD =5cm ,AD ⊥BC ,由勾股定理得:AD (cm ), ∴△ABC 的面积=12×BC ×AD =12×10×12=60(cm 2).【名师点睛】本题考查的是等腰三角形的性质及勾股定理,能根据等腰三角形的“三线合一”正确的添加辅助线是关键. 13.【答案】55°或125°【解析】如图,分两种情况进行讨论:如图1,当高在三角形内部时,则∠ABD =35°,∴∠BAD =90°–35°=55°; 如图2,当高在三角形外部时,则∠ABD =35°,∴∠BAD =90°–35°=55°; ∴∠CAB =180°–55°=125°, 故答案为55°或125°.【名师点睛】本题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键. 14.【答案】10【解析】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形; ②当6为底边时,则腰长=(26-6)÷2=10,因为6-6<10<6+6,所以能构成三角形,故腰长为10.故答案为:10. 15.【答案】24︒【解析】∵ADC ∠是三角形ABD 的外角,AED ∠是三角形DEC 的一个外角,CDE x ∠=︒, ∴ADC BAD B ADE EDC ∠=∠+∠=∠+∠,AED EDC C ∠=∠+∠,B BAD ADE x ∠+∠=∠+︒,AEDC x ∠=∠+︒,∵AB AC =,D 、E 分别在BC 、AC 上,AD AE =,CDE x ∠=︒,∴B C ∠=∠,20ADE AED C ∠=∠=∠+︒,∴C BAD C x x ∠+∠=∠︒++︒,∵12EDC ∠=︒,∴24BAD ∠=︒,故答案为:24︒.16.【答案】15【解析】∵△ABC 是等边三角形,∴∠ACB =60°,∠ACD =120°, ∵CG =CD ,∴∠CDG =30°,∠FDE =150°, ∵DF =DE ,∴∠E =15°.故答案为:15.17.【答案】【解析】如图,过点A 1作A 1M ⊥BC 于点M .∵点A 的对应点A 1恰落在∠BCD 的平分线上,∠BCD =90°,∴∠A 1CM =45°,即△AMC 是等腰直角三角形,∴设CM =A 1M =x ,则BM =7-x .又由折叠的性质知AB =A 1B =5,∴在直角△A 1MB 中,由勾股定理得A 1M 2=A 1B 2-BM 2=25-(7-x )2,∴25-(7-x )2=x 2,解得x 1=3,x 2=4,∵在等腰Rt △A 1CM 中,CA 1A 1M ,∴CA 1.故答案为:18.【答案】(1)见解析;(2)4.【解析】(1)∵把△ABC 沿CE 折叠后,点B 恰好与斜边AC 的中点D 重合, ∴CD =CB ,∠CDE =∠B =90°,AD =CD ,在△ADE 和△CDE 中,90AD CDADE CDE ED ED =⎧⎪∠=∠=⎨⎪=⎩,∴△ADE ≌△CDE (SAS ), ∴EA=EC ,∴△ACE 为等腰三角形; (2)由折叠的性质知:∠BEC =∠DEC , ∵△ADE ≌△CDE ,∴∠AED =∠DEC , ∴∠AED =∠DEC =∠BEC =60°,∴∠BCE =30°,∴12BE CE =, 又∵EA=EC ,∴11223BE AE AB ===,∴AE=4.【名师点睛】本题考查了折叠的性质、全等三角形的判定和性质、等腰三角形的定义和30°角的直角三角形的性质,属于常考题型,熟练掌握上述图形的性质是解题关键. 19.【解析】在直角△ABO 中,已知AB =2.5 m ,BO =0.7 m ,则AO , ∵AO =AA ′+OA ′,∴OA ′=2 m ,∵在直角△A ′B ′O 中,AB =A ′B ′,且A ′B ′为斜边, ∴OB ′=1.5 m ,∴BB ′=OB ′-OB =1.5 m -0.7 m=0.8 m . 答:梯足向外移动了0.8 m .20.【答案】(1)①详见解析;②详见解析;(2)详见解析;【解析】(1)证明:①∵//DE BC ,∴GBF GED ∠=∠. 又,BG EG FGB DGE =∠=∠, ∴(ASA)GBF GED ∆∆≌,∴BF ED =. 又CD ED =,∴BF CD =;②当90BAC ∠=︒时,45ABC ACB ∠=∠=︒, ∵180BAC CDE ︒∠+∠=,∴90CDE ︒∠=.∵//DE BC ,∴90,45BCD CDE ACD ︒︒∠=∠=∠=,∴ABF ACD ∠=∠;又,AB AC BF CD ==,∴()ABF ACD SAS ∆∆≌, ∴,AF AD BAF CAD =∠=∠, ∴BAF FAC CAD FAC ∠+∠=∠+∠ 即90BAC FAD ∠=∠=︒,∴AFD ∆是等腰直角三角形.(2)所画图形如图1或图②,此时AFD ∆是等边三角形.图1 图2 与(1)同理,可证ABF ACD ∆∆≌, ∴AF =AD ,60BAC FAD ∠=∠=︒, ∴△AFD 是等边三角形.【名师点睛】本题考查了等边三角形的判定,等腰三角形的判定和性质,以及全等三角形的判定和性质,平行线的性质,解题的关键是正确找到证明三角形全等的条件,利用全等三角形的性质得到边的关系,角的关系.21.【解析】(1)由题意可得:AC =6 m ,DCm ,∠CAD =90°,可得AD(m ), 故△ACD 是等腰直角三角形.(2)∵AC =6 m ,BC =10 m ,∠CAD =90°, ∴AB(m ), 则BD =AB -AD =8-6=2(m ). 答:船体移动距离BD 的长度为2 m .1.【答案】B【解析】∵40AOB COD ∠=∠=︒,∴AOB AOD COD AOD ∠+∠=∠+∠,即AOC BOD ∠=∠,在AOC △和BOD △中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴AOC BOD △≌△,∴OCA ODB AC BD ∠=∠=,,①正确;∴OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠, ∴40AMB AOB ∠=∠=°,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=°,在OCG △和ODH △中,OCA ODBOGC OHD OC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴OCG ODH △≌△,∴OG OH =,∴MO平分BMC ∠,④正确,正确的个数有3个,故选B . 2.【答案】70°【解析】∵AB =AC ,∴∠B =∠C , ∵∠A +∠B +∠C =180°,∴∠B =12(180°-40°)=70°.故答案为:70°. 3.【答案】9【解析】∵AB =AC ,∴∠B =∠C ,在△BAD 和△CAE 中,BAD CAE AB ACB C ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BAD ≌△CAE , ∴BD =CE =9,故答案为:9. 4.【答案】105【解析】作DE AB ⊥于E ,CF AB ⊥于F ,如图所示,则DE CF =,∵CF AB ⊥,90ACB ∠=︒,AC BC =,∴12CF AF BF AB ===, ∵AB BD =,∴1122DE CF AB BD ===,BAD BDA ∠=∠, ∴30ABD ∠=︒,∴75BAD BDA ∠=∠=︒,∵AB CD ∥,∴180ADC BAD ∠+∠=︒,∴105ADC ∠=︒,故答案为:105.5.【答案】6或【解析】①如图1,当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6; ②如图2,当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴BC == ③如图3,当5AB AC ==,4CD =时,则3AD ==,∴8BD =,∴BC =∴此时底边长为6或【名师点睛】本题考查了勾股定理,等腰三角形的性质,解题的关键是分三种情况分类讨论. 6.【答案】36°【解析】∵等腰三角形的一个底角为72︒,∴等腰三角形的顶角180727236=︒-︒-︒=︒, 故答案为:36︒.【名师点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键. 7.【答案】70【解析】∵∠ABC =90°,AB =AC ,∴∠CBF =180°–∠ABC =90°,∠ACB =45°, 在Rt △ABE 和Rt △CBF 中,AB CBAE CF=⎧⎨=⎩,∴Rt △ABE ≌Rt △CBF ,∴∠BCF =∠BAE =25°,∴∠ACF =∠ACB +∠BCF =45°+25°=70°,故答案为:70.【名师点睛】本题考查了等腰直角三角形的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键. 8.【解析】(1)∵CAF BAE ∠=∠,∴BAC EAF ∠=∠,∵AE AB AC AF ==,, ∴BAC EAF △≌△, ∴EF BC =.(2)∵65AB AE ABC =∠=︒,, ∴18065250BAE ∠=︒-︒⨯=︒, ∴50FAG ∠=︒, ∵BAC EAF △≌△, ∴28F C ∠=∠=︒, ∴502878FGC ∠=︒+︒=︒.【名师点睛】本题主要考查全等三角形证明与性质,等腰三角形性质,旋转性质等知识点,比较简单,基础知识扎实是解题关键. 9.【解析】(1)∵AB =AC ,AD ⊥BC 于点D ,∴∠BAD =∠CAD ,∠ADC =90°,又∠C =42°,∴∠BAD =∠CAD =90°-42°=48°. (2)∵AB =AC ,AD ⊥BC 于点D , ∴∠BAD =∠CAD , ∵EF ∥AC , ∴∠F =∠CAD , ∴∠BAD =∠F ,∴AE =FE .10.【解析】(1)∵AB =AC ,∴∠ECB =∠DBC ,在DBC △与ECB △中,BD CE DBC ECB BC CB =⎧⎪∠=∠⎨⎪=⎩,∴DBC △≌ECB △.(2)由(1)DBC △≌ECB △, ∴∠DCB =∠EBC , ∴OB =OC .11.【解析】(1)∵AB AC =,∴C ABC ∠=∠,∵36C ∠=︒, ∴36ABC ∠=︒,∵D 为BC 的中点,∴AD BC ⊥,∴90903654BAD ABC ∠=-∠=-︒=︒︒︒. (2)∵BE 平分ABC ∠,∴ABE EBC ∠=∠, 又∵EF BC ∥,∴EBC BEF ∠=∠, ∴EBF FEB ∠=∠, ∴BF EF =.【名师点睛】本题考查等腰三角形的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.【解析】(1)∵90BAC ∠=︒,AB AC =,AD BC ⊥,∴AD BD DC ==,45ABC ACB ∠=∠=︒,45BAD CAD ∠=∠=︒, ∵2AB =,∴AD BD DC ===,∵30AMN ∠=︒,∴180903060BMD ∠=︒-︒-︒=︒, ∴30BMD ∠=︒,∴2BM DM =,由勾股定理得,222BM DM BD -=,即222(2)DM DM -=,解得DM =∴AM AD DM =-=(2)∵AD BC ⊥,90EDF ∠=︒,∴BDE ADF ∠=∠,在BDE △和ADF △中,B DAF DB DA BDE ADF ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴BDE ADF △≌△, ∴BE AF =.(3)如图,过点M 作//ME BC 交AB 的延长线于E ,∴90AME ∠=︒,则AE =,45E ∠=︒,∴ME MA =,∵90AME ∠=︒,90BMN ∠=︒, ∴BME AMN ∠=∠,在BME △和AMN △中,E MAN ME MA BME AMN ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴BME AMN △≌△,∴BE AN =,∴AB AN AB BE AE +=+==.【名师点睛】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、直角三角形 的性质,掌握全等三角形的判定定理和性质定理是解题的关键.。
第2课时等腰三角形的判定要点感知1 有个角相等的三角形是等腰三角形(简称“等角对等边”).预习练习1-1 △ABC中,∠A=65°,∠B=50°,则△ABC的形状是.要点感知2 三个角都是的三角形是等边三角形.预习练习2-1 有一个外角是120°,另两个外角相等的三角形是( )A.不等边三角形B.等腰三角形C.等边三角形D.不能确定要点感知3 有一个角是的等腰三角形是等边三角形.预习练习3-1 在△ABC中,∠A=60°,AB=AC=3,则△ABC的周长为.知识点1 等腰三角形的判定1.如图,PQ为Rt△MPN斜边上的高,∠M=45°,则图中等腰三角形的个数有( )A.1个B.2个C.3个D.4个2.如图,在△ABC中,AB=AC=3,∠ABC,∠ACB的平分线相交于点D,过点D作直线EF∥BC,交AB于E,交AC 于F,则△AEF的周长为.3.如图,∠A=36°,∠DBC=36°,∠C=72°,找出图中的一个等腰三角形,并给予证明.我找的等腰三角形是:.知识点2 等边三角形的判定4.已知△ABC,AB=AC,请添加一个条件,使△ABC成为等边三角形.5.如图,在△ABC中,点D是AB上的一点,且AD=DC=DB,∠B=30°.求证:△A DC是等边三角形.6.如图所示,在△A BC中,AB=AC,∠B=30°,D,E在BC上,且AD=BD,AE=EC.求证:△ADE是等边三角形.7.已知等腰三角形的一个外角是120°,则它是( )A.等腰直角三角形B.一般的等腰三角形C.等边三角形D.等腰钝角三角形8.在△ABC中,∠B=∠C=40°,D,E是BC上的两点,且∠ADE=∠AED=80°,则图中共有等腰三角形( )A.6个B.5个C.4个D.3个9.在下列命题中:①有一个角是60°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③一边上的高也是这边上的中线的等腰三角形是等边三角形;④三个外角都相等的三角形是等边三角形.其中正确的是.(只需填写序号)10.聪明的亮亮,用含有30°的两个完全相同的三角板拼成如图的图案,并发现图中有等腰三角形,请你帮他找出所有的等腰三角形:.11.已知,如图所示,在△ABC中,AB=AC,D是AB上一点,过D作DE⊥BC于E,并与CA的延长线相交于F,试判断△ADF的形状,并说明理由.12.已知:等边三角形ABC中,点P,Q,R分别在AB,BC,AC上,且PQ⊥BC于点Q,QR⊥AC于点R,RP⊥AB于点P.求证:△PQR是等边三角形.挑战自我13.如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD,DE,EC三者有什么关系?写出你的判断过程.。
12.3.1等腰三角形(二)一、教学目标知识技能:1、理解掌握等腰三角形的判定定理。
2、运用等腰三角形的判定定理进行证明和计算。
数学思考:通过实践、观察,证明从直观问题归纳等腰三角形的判定定理,发展学生的推理能力和空间观念。
解决问题:1、通过归纳等腰三角形的判定定理,培养学生观察、分析、归纳问题的能力。
2、通过运用等腰三角形的判定定理解决有关问题,提高运用知识和技能解决问题的能力。
二、教学重点与难点教学重点等腰三角形的判定定理及其运用。
教学难点等腰三角形的判定定理的证明。
三、教学过程教学环节教师活动学生活动设计意图提出问题,创设情境提出问题:上节课我们学习了等腰三角形的性质,现在大家一起回忆一下,等腰三角形有哪些性质?我们已经学习了等腰三角形的性质,那么满足什么条件我们就能说一个三角形是等腰三角形呢?这就是我们这节课要研究的问题。
问题:如图,位于海上A、B两处的两艘救生艇接到O处遇险船只的报警,当时测得∠A=∠B。
如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素)?OA B由学生的讨论结果,提出问题,将问题一般化,在一般的三角形中,如果两个角相等,那么它们所对的边有什么关系?给学生作出猜想,用数学语言怎么表达?(并板书)同学们回忆并回答:1、等腰三角形的两底角相等;2、等腰三角形的顶角的角平分线、底边上的中线、底边上的高相互重合。
认真听讲并思考小组讨论,有学生认为若OA与OB的长相等,两艘救生船会同时赶到。
学生听到提到边的问题,易猜想到:在三角形中,如果两个角相等,那么它们所对的边相等。
通过回忆上节课已学习的内容,复习与巩固旧知识,为引出课题作铺垫。
引出这节课要学习的方向具体实例引出问题,激起学生的兴趣由学生猜想,并用数学语言表达,有利于培养学生的数学思想与逻辑推理能力。
应用举例,解决问题练练写要求学生小组讨论五分钟,并给出证明过程。
抽取两位同学,展示两种不同的证明方法(1、作平分线AD;2、作BC边上的高)。
本节主要针对等腰三角形的综合性问题进行讲解,对于条件不足的问题,通过添加平行线或截长补短或倍长中线等构造全等的三角形,综合性较强.根据等腰三角形的性质进行角度和边长的相关计算.【例1】如图,△ABC中,AB=AC,∠A=36°,BD、CE分别为∠ABC与∠ACB的角平分线,且相交于点F,则图中的等腰三角形有()A.6个B.7个C.8个D.9个【答案】C【解析】经分析可知,等腰三角形有:ABC ABD ACE BCE BDC,,,,,BEF CDF BCF,,,共8个.【总结】考查等腰三角形定义及三角形内角和的综合运用.等腰三角形二内容分析知识结构模块一:计算知识精讲例题解析ABCDEF2 / 22【例2】 如图,△ABC 中,AB =AC ,BC =BD ,AD =DE =EB ,求∠A 的度数. 【答案】45A ∠=︒.【解析】BE ED EBD EDB =∴∠=∠,2233180818022.5245AED EBD EDB AED EBD AD ED A AED EBD BD BC C CDB AB AC C ABC C CDB ABCCDB A EBD CDB EBDC ABC CDB EBD A ABC C EBD EBD A EBD ∠=∠+∠∴∠=∠=∴∠=∠=∠=∴∠=∠=∴∠=∠∴∠=∠=∠∠=∠+∠∴∠=∠∴∠=∠=∠=∠∠+∠+∠=︒∴∠=︒∴∠=︒∴∠=∠=︒,,,,,,, 【总结】考查等腰三角形的性质及三角形外角性质、内角和性质的综合运用.【例3】 如图,AC =BC ,DF =DB ,AE =AD ,求∠A 的度数. 【答案】36A ∠=︒【解析】AC BC A B =∴∠=∠,2180518036DB DF F BA B F EDA B F EDA A AD AE ADE AEDA ADE AED A A =∴∠=∠∴∠=∠=∠∠=∠+∠∴∠=∠=∴∠=∠∠+∠+∠=︒∴∠=︒∴∠=︒,,,,, 【总结】考查等腰三角形的性质及三角形外角性质、内角和性质的综合运用.【例4】 如图,△ABC 中,AB =AC ,D 在BC 上,DE ⊥AB 于E ,DF ⊥BC 交AC 于点F ,若∠EDF =70°,求∠AFD 的度数. 【答案】160AFD ∠=︒.【解析】AB AC B C =∴∠=∠, 90702018070707090160DE AB DF BC DEB FDC FDB FDE EDB B DEB EDB B C AFD C FDC AFD ⊥⊥∴∠=∠=∠=︒∠=︒∴∠=︒∠+∠+∠=︒∴∠=︒∠=︒∠=∠+∠∴∠=︒+︒=︒,,,,【总结】考查等腰三角形的性质及三角形外角性质、内角和性质的综合运用.A BC DE FAB C DE FABCDE【例5】 如图,△ABC 中,AB =AC ,D 在BC 上,∠BAD =30°,在AC 上取点E ,使AE =AD ,求∠EDC 的度数.【答案】15EDC ∠=︒. 【解析】AB AC B C AD AE ADE AED =∴∠=∠=∴∠=∠,,,23015ADC B BAD AED C EDCADC ADE EDC B BADC EDC EDC B BAD EDC BAD BAD EDC ∠=∠+∠∠=∠+∠∴∠=∠+∠=∠+∠∴∠+∠+∠=∠+∠∴∠=∠∠=︒∴∠=︒,,,【总结】考查等腰三角形的性质及三角形外角性质的综合运用, 注意观察角度间的关系.【例6】 如图,△ABC 中,∠C =90°,D 为AB 上一点,作DE ⊥BC 于E ,若BE =AC ,BD =12, DE +BC =1,求∠ABC 的度数. 【答案】30ABC ∠=︒.【解析】解:延长BC 至点F ,使CF DE =,联结AF ()1190..111222909030DE BC BF BC CF BC DE BE AC DEB ACF DE CFBDE AFC S A S BD AF BD B FAC AF BF B BAC FAC BAC ABC +=∴=+=+==∠=∠=︒=∴≅=∴==∠=∠∴=∠+∠=︒∴∠+∠=︒∴∠=︒,,,,,,,,,【总结】考查全等三角形的判定及性质,注意辅助线的添加.【例7】 如图,△ABC 中,AD 平分∠BAC ,若AC =BD +AB ,求∠B :∠C 的值. 【答案】:2:1B C ∠∠=.【解析】在AC 上取点E ,使AE AB =,联结DEAD 平分BAC ∠,()..ABD AED S A S ∴≅B AED BD DE ∴∠=∠=,,AC BD AB =+EC DE C EDC ∴=∴∠=∠,2:2:1AED C B B C ∴∠=∠=∠∴∠∠=,【总结】考查截长补短构造全等三角形及等腰三角形的性质及外角性质.AB CDEABC DEF EABCD4 / 22【例8】 在△ABC 中,已知AB =AC ,且过△ABC 某一顶点的直线可将△ABC 分成两个等腰三角形,试求△ABC 各内角的度数.【答案】454590︒︒︒,,或3636108︒︒︒,,或367272︒︒︒,,或180540540777,,. 【解析】解:如图(1),当BD AD CD ==时, AB AC B C BD AD DC B BAD CAD C=∴∠=∠==∴∠=∠=∠=∠,,,41804590B B C BAC ∴∠=︒∴∠=∠=︒∴∠=︒,,;如图(2)当BD AD CD AC ==,时, AB AC B C =∴∠=∠,,BD AD CD AC B BAD CDA DAC ==∴∠=∠∠=∠,,, 23CDA B BAD CDA B BAC B ∠=∠+∠∴∠=∠∴∠=∠,, 180518036108B C BAC B B C BAC ∠+∠+∠=︒∴∠=︒∴∠=∠=︒∠=︒,,,如图(3)当AD BD BC ==时,同理可得:51803672A A ABC C ∠=︒∴∠=︒∠=∠=︒,,; 如图(4)当AD BD BC CD ==,时 同理可得180540718077A A ABC C ︒︒∠=︒∴∠=∠=∠=,,. 【总结】考查等腰三角形的性质及三角形内角和定理及分类讨论的思想的运用.1. 添加平行线构造全等三角形; 2. 截长补短构造全等三角形; 3. 倍长中线构造全等三角形.【例9】 如图,已知:在△ABC 中,AB =AC ,BE=CF ,EF 交BC 于点G ,求证:EG =FG . 【答案】详见解析【解析】证明:过点E 作//EM AF ,交BC 于点M 则GCF GME EMB ACB ∠=∠∠=∠,,AB AC ABC ACB =∴∠=∠,ABC EMB EM EB BE CF EM CF ∴∠=∠∴==∴=,,, ()..EMG FCG A A S EG FG ∴≅∴=,. 【总结】考查通过辅助线构造全等三角形及结合等腰三角形的性质的应用.【例10】 如图,已知AD 是ABC 的中线,BE 交AC 于点E ,交AD 于点F ,且AE =EF ,试说明AC =BF 的理由. 【答案】详见解析.【解析】延长AD 至点M ,使MD FD =,联结MC()..BD CD BDF CDM DF DM BDF CDM S A S MC BF M BFM EA EF EAF EFA AFE BFM M MAC AC MC BF AC=∠=∠=∴≅∴=∠=∠=∴∠=∠∠=∠∴∠=∠∴=∴=,,,,,,,,,,,【总结】考查通过辅助线构造全等三角形及结合等腰三角形的性质应用.模块二:构造全等形知识精讲例题解析ABC E FGM AD FBCEM6 / 22【例11】 如图,△ABC 中,∠B =60°,角平分线AD 、CE 交于点O ,试说明AE +CD =AC . 【答案】详见解析.【解析】证明:在AC 上取AF AE =,联结OF易证()..AEO AFO S A S AOE AOF ≅∴∠=∠,.AD CE 、分别平分BAC ACB ∠∠、,()1180602ECA DAC B ∴∠+∠=︒-∠=︒则180120AOC ECA DAC ∠=︒-∠-∠=︒ 120AOC DOE ∴∠=∠=︒, 60AOE COD AOF ∴∠=∠=∠=︒则60COF COD COF ∠=︒∴∠=∠,, 又FCO DCO CO CO ∠=∠=, ()..FOC DOC A S A DC FC ∴≅∴=,AC AF FC AC AE CD =+∴=+,.【总结】考查通过辅助线构造全等三角形的性质应用,注意找寻角度间的关系.【例12】 已知:如图,在等边三角形ABC 中,D 、E 分别是AB 、AC 边上的点,且BD =AE ,EB 与CD 相交于点O .EF 与CD 垂直于点F .求OEF ∠的度数. 【答案】30OEF ∠=︒. 【解析】解:ABC 是等边三角形,60,A ABC AB BC ∴∠=∠=︒=,BD =AE易证()..ABE BCD S A S ≅,ABE DCB ∴∠=∠ADO ABC DCB ABE BOD ∠=∠+∠=∠+∠6060BOD ABC EOF ∴∠=∠=︒∴∠=︒, 30EF CD OEF ⊥∴∠=︒,【总结】考查全等的性质及等腰三角形的性质应用.ADFB CEOABCD EOF【例13】 如图,在△ABC 中,AB =AC ,∠A =108°,BD 平分∠ABC ,试说明BC =AB +CD .【答案】详见解析.【解析】在BC 上截取BE BA =,联结DEBD 平分ABC ∠,BE BA =,()..ABD EBD S A S ∴≅10818010872DEB A DEC ∴∠=∠=︒∴∠=︒-︒=︒, ()1180108362AB AC C B =∴∠=∠=︒-︒=︒,, 72EDC CE CD BE CE AB CD ∴∠=︒∴=∴+=+,,,BC AB CD ∴=+.【总结】考查全等的性质及等腰三角形的性质应用,注意添加合适的辅助线构造全等.【例14】 如图,在△ABC 中,AB =AC ,∠A =100°,BD 平分∠ABC ,试说明BC =BD +AD .【答案】详见解析.【解析】在BC 上截取BF BA =,联结DF ,在BC 上截取BE BD =,联结DEBD 平分ABC ∠,BF BA =()..ABD FBD S A S ∴≅,100DFB A ∴∠=∠=︒,18010080DFC ∴∠=︒-︒=︒.()1180101040200AB AC C A ABC =∴∠=∠∠==︒-︒︒=︒,,, 20DBC ∴∠=︒20BE BD DBC =∠=︒,,80BED BDE ∴∠=∠=︒, DFE FED DF DE ∴∠=∠∴=,804040FED C EDC EDC C ∠=︒∠=︒∴∠=︒∴∠=∠,,, DE EC AD EC ∴=∴=,,BC AD BD ∴=+.【总结】考查全等的性质及等腰三角形的性质应用,注意辅助线的合理添加.ABCDE ABCDF E8 / 22【例15】 在△ABC 中,已知AB =AC ,D 为△ABC 外一点,∠ABD =60°,1902ADB BDC ∠=︒-∠,试说明AB =BD +DC .【答案】详见解析【解析】证明:以AD 为轴作ABD 的对称'AB D''1'60'902B D BD AB AB AC B ABD ADB ADB BDC∴===∠=∠=︒∠=∠=︒-∠,,, '180ADB ADB BDC ∴∠+∠+∠=︒, 'C D B ∴、、共线, 'ACB ∴是等边三角形, AB BD DC ∴=+.【总结】考查全等的性质及等腰三角形的性质应用,注意辅助线的正确添加.【例16】 已知:如图,AB =AC =BE ,CD 为△ABC 中AB 边上的中线,试说明CD =12CE .【答案】详见解析.【解析】证明:延长CD 到F ,使DF =CD ,连接BF , ∵CD 为△ABC 中AB 边上的中线, ∴BD =AD ∵DF =CD ,ADC BDF ∠=∠,∴ADC BDF ≅∴BF AC BE ==,180ABF A ABC CBE ∠=∠=-∠=∠,∴180CBF ABF ABC ABC CBE ∠=∠+∠=-∠=∠, 又∵BC BC =,∴CBF CBE ≅, ∴CE CF =,∵12CD CF =,∴CD =12CE . 【总结】考查全等的性质及等腰三角形的性质应用,注意倍长中线辅助线的运用.A BCDB ’ABCDEF【例17】 如图,AM 为△ABC 的中线,AE ⊥AB ,AF ⊥AC ,且AE =AB ,AF =AC ,MA 的延长线交EF 于点P ,试说明AP ⊥EF . 【答案】详见解析【解析】证明:延长AM 至N ,使MN AM =,联结CNAM 是BC 边上的中线,()..ABM NCM S A S ∴≅AB NC BAM N ABM NCM ∴=∠=∠∠=∠,, //180CN AB NCA BAC ∴∴∠+∠=︒,180AE AB AF AC EAF BAC ⊥⊥∴∠+∠=︒,,,180NCA BAC ∴∠+∠=︒,EAF NCA ∴∠=∠AE AB AF AC EAF NCA EFA NAC ==∴≅∴∠=∠,,,9090AF AC PAF NAC EAF NAC PAF EFA ⊥∴∠+∠=︒∠=∠∴∠+∠=︒,,, 90APF AP EF ∴∠=︒∴⊥,【总结】本题一方面考查中线倍长辅助线的添加,另一方面考查全等三角形的性质应用.【例18】 如图,在△ABC 中,已知∠BAC =900,AB =AC ,D 为AC 中点,AE ⊥BD 于E ,延长AE 交BC 于F ,求证:∠ADB =∠CDF . 【答案】详见解析.【解析】证明:过A 作AG 平分BAC ∠交BD 于G190452BAC GAB CAG A ∠=︒∴∠=∠=∠=︒,()1180452AB AC C B C A =∴∠=∠∴∠=︒-∠=︒,,,C BAG ∴∠=∠ 9090AE BD ABE BAE CAF BAE ABE CAF ⊥∴∠+∠=︒∠+∠=︒∴∠=∠,,, ()..ABG CAF A S A AG CF ∴≅∴=,,D 为AC 中点,AD CD ∴=又45C DAG ∠=∠=,()..AGD CFD S A S ADB CDF ∴≅∴∠=∠,. 【总结】考查等腰直角三角形的性质应用,注意辅助线的添加.ABCMEFPNA BCD E FG10 / 22【例19】 如图,△ABC 中,AB =AC ,D 为△ABC 外一点,且∠ABD =∠ACD =60°.试说明CD =AB -BD . 【答案】详见解析.【解析】证明:延长BD 到E ,使BE BA =,连接AE CE 、60ABD ∠=︒,ABE ∴为等边三角形6060AE AB AC BE ACE AEC AEB ACD AEB ACD DEC DCE DC DEBD DC BD DE BE AB DC AB BD∴===∠=∠∠=︒∠=︒∴∠=∠∴∠=∠=∴+=+==∴=-,,,,,【总结】考查全等的性质及等腰三角形的性质的综合应用.利用等腰三角形的“三线合一”的性质构造等腰三角形【例20】 如图,△ABC 中,∠ABC 、∠CAB 的平分线交于点P ,过点P 作DE ∥AB ,分别交BC 、AC 于点D 、E ,求证:DE =BD +AE . 【答案】详见解析.【解析】证明:BP AP 、平分ABC CAB ∠∠、//CBP ABP CAP BAP DE AB DPB PBA EPA PABCBP DPB CAP EPA BD PD PE AE DE DP PE DE BD AE∴∠=∠∠=∠∴∠=∠∠=∠∴∠=∠∠=∠∴===+∴=+,,,,,,,,, 【总结】考查“平行线与角平分线得到等腰三角形”的基本模型的运用.模块三:构造等腰三角形知识精讲例题解析ABCD EPABCDE【例21】 如图,△DEF 中,∠EDF =2∠E ,F A ⊥DE 于点A ,问:DF 、AD 、AE 间有什么样的大小关系? 【答案】DF AD AE +=【解析】证明:在AE 上取一点B ,使AB AD =,连接BF2,FA DE FD FB FBD D E FBD E BFE E BFE BE BF BE DF AE AB BE AD DF⊥∴=∴∠=∠=∠∠=∠+∠∴∠=∠∴=∴=∴=+=+,,,,,, 【总结】考查等腰三角形的性质的应用.【例22】 如图,△ABC 中,∠ABC =2∠C ,AD 是BC 边上的高,延长AB 到点E ,使BE =BD ,试说明AF =FC . 【答案】详见解析【解析】证明:BE BD E BDE =∴∠=∠,22ABC E BDE BDE ABC C C BDE BDE CDF C CDF DF FC∠=∠+∠=∠∠=∠∴∠=∠∠=∠∴∠=∠∴=,,,AD 为BC 边上的高9090CDF ADF ADC C CAD CAD ADF DF AF AF FC∴∠+∠=∠=︒∠+∠=︒∴∠=∠∴=∴=,,,【总结】考查等腰三角形的性质的应用.【例23】 如图,△ABC 中,AB =AC ,AD 和BE 两条高交于点H ,且AE =BE .试说明AH =2BD . 【答案】详见解析. 【解析】AD BE 、为高,90AEH BEC BDH ∴∠=∠=∠=︒BHD AHE EAH EBC ∠=∠∴∠=∠,,AE =BE ,()..AEH BEC A S A AH BC ∴≅∴=, 2AB AC AD BC BC BD =⊥∴=,,,2AH BD ∴=.【总结】考查等腰三角形的性质的应用.ABCDEFABCDE HAEFDB12 / 22【例24】 如图,已知∠ABC =3∠C ,∠1=∠2,BE ⊥AE ,试说明AC -AB =2BE .【答案】详见解析【解析】证明:延长BE 交AC 于点M90BE AE AEB AEM ⊥∴∠=∠=︒,,12ABE AME ∠=∠∴∠=∠,,2AB AM BE AE BM BE AC AB AC AM CM ∴=⊥∴=∴-=-=,,,,3322AMB C MBC ABC C ABC ABM MBC AMB MBC C AMB MBC MBC C MBC C CM BM AC AB BM BE∠=∠+∠∠=∠∴∠=∠+∠=∠+∠∴∠=∠+∠=∠+∠∴∠=∠∴=∴-==,,【总结】考查等腰三角形的性质的应用,注意根据题目条件构造等腰三角形.【例25】 如图,等边△ABC 中,分别延长BA 至点E ,延长BC 至点D ,使AE =BD .试说明EC =ED . 【答案】详见解析【解析】证明:延长BD 至F ,使DF AB =,连接EFABC 是等边三角形,60AB BC AC B ∴==∠=︒,.AE BD DF AB AE AB BD DF BE BF ==∴+=+=,,,即 60B ∠=︒,BEF ∴为等边三角形,60B F BE FE DF AB BC DF ∴∠=∠=︒==∴=,,, ()..BCE FDE S A S EC ED ∴≅∴=,【总结】考查等腰三角形的判定及性质的综合应用.【例26】 如图,△ABC 中,AB =AC ,∠BAC =90°,BD =AB ,∠ABD =30°,试说明AD =DC .【答案】详见解析.A BC2 E1 MABCDEFABCD E【解析】在BC 上截取BE AD =,连接DE9045AB AC BAC ABC ACB =∠=︒∴∠=∠=︒,, 3075BD AB ABD BAD BDA =∠=︒∴∠=∠=︒,,1515DAC BAC BAD DBC ABC ABD ∠=∠-∠=︒∠=∠-∠=︒, ()..1545154515DAC DBC BDE ACD S A S BDE ACD DE DC DCE DECDEC EBD BDE ACD DCE ACB ACD ACD ACD ACD ACD ∴∠=∠∴≅∴∠=∠=∴∠=∠∠=∠+∠=︒+∠∠=∠-∠=︒-∠∴︒+∠=︒-∠∴∠=︒,,,,,,,ACD DAC AD DC ∴∠=∠∴=,.【总结】考查等腰三角形的性质及全等三角形判定的综合应用.【例27】 如图,四边形ABCD 中,∠BAD +∠BCD =180°,AD 、BC 的延长线交于点F ,DC 、AB 的延长线交于点E ,∠E 、∠F 的平分线交于点H ,试说明EH ⊥FH . 【答案】详见解析【解析】连接EF ,则180CFE CEF FCE ∠+∠+∠=︒180180BAD BCD FCE BCDBAD FCE ∠+∠=︒∠=∠∴∠+∠=︒,E F ∠∠、的平分线交于点H11221809018090CFH CFA HEC BEDA CFA CFE CEF BED CFH BEH CEF FCE CFH BEH CEF FCE H H EH FH∴∠=∠∠=∠∠+∠+∠+∠+∠=︒∴∠+∠+∠+∠=︒∠+∠+∠+∠+∠=︒∴∠=︒∴⊥,,【总结】考查角平分线的性质及三角形内角和定理的综合应用,综合性较强,注意认真分析 角度间的关系.【例28】 已知:如图,在∆ABC 中,∠ACB =90°,AC =BC ,CD ⊥AB ,垂足是D ,CE 平分∠ACD ,BF ⊥CE ,垂足是G ,交AC 于F ,交CD 于H ,试说明DH =12AF .【答案】详见解析.ABC D EFM H14 / 22ACBEF【解析】证明:延长CD 到M ,使CM CB =,连接BM ,则M CBM ∠=∠90ACB AB BC ∠=︒=,,ABC ∴是等腰直角三角形. 4567.5CD AB BCM ACD M ⊥∴∠=∠=︒∴∠=︒,,, CE 平分ACD ∠,122.52GCH ACD ∴∠=∠=︒,67.5CE BF GHC ⊥∴∠=︒,, MHB GHC BM BH ∴∠=∠∴=,. ()90..2BD HM DH DMFCG HCG CGF CGH CG CG CGF CGH A S A CF CH AC BC CM AC CF CM CH AF HM AF DH⊥∴=∠=∠∠=∠=︒=∴≅∴===∴-=-∴=∴=,,,,,,即12DH AF =. 【总结】考查等腰三角形的性质应用,综合性较强,注意添加相应的辅助线,将问题进行转 化.【习题1】 如图,在△ABC 中,∠ACB =900,AC =AE ,BC =BF ,则∠ECF =( )A .600B .450C .300D .不确定【答案】B【解析】90,90ACB A B ∠=︒∴∠+∠=︒29045AC AE ACE AEC BC BF BCF BFC AEC B ECB BFC A FCAFCA ECF ECB B ECF ECB FCA A ECF A B ECF =∴∠=∠=∴∠=∠∠=∠+∠∠=∠+∠∴∠+∠=∠+∠∠+∠=∠+∠∴∠=∠+∠=︒∴∠=︒,,,,,,故选B .【总结】考查等腰三角形的性质的运用,注意角度间的关系.随堂检测AF GBH DEC M【习题2】 如图,在△ABC 中,D 是BC 边上一点AD =BD ,AB =AC =CD ,求∠BAC 的度数. 【答案】108BAC ∠=︒. 【解析】AD BD B BAD =∴∠=∠,,AB AC DC B C CDA CAD ==∴∠=∠∠=∠,,22180518036108CDA B BAD CDA B CAD B B C BAC B B BAC ∠=∠+∠∴∠=∠∴∠=∠∠+∠+∠=︒∴∠=︒∴∠=︒∴∠=︒,,,, 【总结】考查等腰三角形的性质.【习题3】 如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE =AC ,延长BE 交AC 于F ,试说明AF =EF .【答案】详见解析【解析】证明:延长AD 至G ,使DG AD =,联结BGAD 是BC 边上的中线,BD CD ∴=()..ADC GDB S A S G CAD AC BG BE AC BG BE G BED BED AEF AEF G CAD AF EF∴≅∴∠=∠==∴=∴∠=∠∠=∠∴∠=∠=∠∴=,,,,,, 【总结】考查等腰三角形的性质,注意倍长中线辅助线的添加.【习题4】 如图,在△ABC 中,AC =BC ,∠ACB =900,D 是AC 上一点,且AE 垂直BD 的延长线于E ,又AE =12BD ,试说明BD 是∠ABC 的角平分线.【答案】详见解析【解析】证明:延长AE BC 、交于点F9090ACB DBC BDC ∠=︒∴∠+∠=︒,,同理:90FAD EDA ∠+∠=︒ ()..1122EDA BDC FAD DBC AC BC AFC BDC A S A AF BD AE BD AE AF∠=∠∴∠=∠=∴≅∴==∴=,,,,,, ()..AE FE BAE BFE S A S ABE FBE ∴=∴≅∴∠=∠,,BD ∴是ABC ∠的角平分线.【总结】考查全等三角形及等腰三角形性质的应用,注意对模型的总结.【习题5】 如图,在Rt △ABC 中,∠ABC =100o ,D 、E 在AC 上,且AB =AD ,CB =CE .求∠EBD 的度数. 【答案】40EBD ∠=︒ABCDACDEEABDCF GAE BC DF16 / 22【解析】10080ABC A C ∠=︒∴∠+∠=︒,28040AB AD ABD ADB BC EC CBE CEB ADB C DBC CEB A ABEABE EBD DBC C EBD DBC ABE A EBD A B EBD =∴∠=∠=∴∠=∠∠=∠+∠∠=∠+∠∴∠+∠=∠+∠∠+∠=∠+∠∴∠=∠+∠=︒∴∠=︒,,,,,,【总结】考查等腰三角形的性质及三角形内角和定理的综合运用..【习题6】 已知:如图在∆ABC 中,AD 是∠BAC 的平分线,DE ∥AC 交AB 于点E ,EF ⊥AD ,垂足是G ,且交BC 的延长线于点F .试说明∠CAF =∠B .【答案】详见解析【解析】证明://DE AC CAD EDA ∴∠=∠,AD 是BAC ∠的平分线,BAD CAD ∴∠=∠, ()..EAD EDA EA EDEF AD AFG DFG S A S AF DF ADF DAF B BAD CAF CAD BAD CAD CAF B∴∠=∠∴=⊥∴≅∴=∴∠=∠∴∠+∠=∠+∠∠=∠∴∠=∠,,,,,【总结】考查等腰三角形的性质及外角性质的综合运用.【习题7】 如图,△ABC 中,AD ⊥BC 于D ,∠B =2∠C ,试说明AB +BD =CD . 【答案】详见解析【解析】证明:在CD 上取一点E 使DE BD =,联结AE()..22AD BC ABD AED S A S AB AE B AEB B C AEB C AEB C EAC C EAC AE EC CD DE EC AB BD⊥∴≅∴=∴∠=∠∠=∠∴∠=∠∠=∠+∠∴∠=∠∴=∴=+=+,,,,,,, 【总结】考查等腰三角形的性质及全等三角形的判定.ACDFB HGEBACDE【习题8】 如图在等腰Rt △ABC 中,∠ACB =900,D 为BC 中点,DE ⊥AB ,垂足为E ,过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF 交AD 于G . (1) 求证:AD ⊥CF ;(2)连结AF ,试判断△ACF 的形状,并说明理由. 【答案】(1)详见解析;(2)等腰三角形. 【解析】(1)在等腰Rt ABC 中,9045ACB CBA CAB ∠=︒∴∠=∠=︒, ()9045//9045..9090DE AB DEB BDE BF AC CBF BFD BDEBF DB CD DB BF CD CBF ACD S A S BCF CAD BCF GCA CAD GCA AD CF⊥∴∠=︒∴∠=︒∴∠=︒∴∠=︒=∠∴==∴=∴≅∴∠=∠∠+∠=︒∴∠+∠=︒∴⊥,,,,,,,,, (2)联结AF ,CF AD =,DBF 是等腰直角三角形,∵BE 是DBF ∠的平分线,BE ∴垂直平分DFAF AD CF AD CF AF ∴==∴=,,,∴ACF 为等腰三角形.【总结】考查等腰三角形的性质与判定的综合运用.【习题9】 在△ABC 中,AD 是∠BAC 的平分线,M 是BC 的中点,过M 作ME ∥AD 交BA延长线于E ,交AC 于F ,试说明BE =CF =12(AB +AC ). 【答案】详见解析【解析】证明:过点B 作//BN AC 交EM 延长线于点N()////12BN AC BM CM CFM BNM CF BNAD ME AD BAC CFM DAC E E N BEN BE BN CFEFA CFM E EFA AE AF AB AC AB AF FC AB AE FC BE FC BE CF AB AC =∴≅∴=∠∴∠=∠=∠∴∠=∠∴∴==∠=∠∴∠=∠∴=∴+=++=++=+∴==+,,,,平分,,是等腰三角形,,,【总结】考查等腰三角形的性质与判定的综合运用.GFED C BAABDMCF E N18 / 22BDCA【习题10】 如图,在△ABC 中,AB =AC ,∠BAC =800,O 为△ABC 内一点,且∠OBC =100,∠OCA =200,求∠BAO 的度数. 【答案】70BAO ∠=︒.【解析】作BAC ∠的角平分线与CO 的延长线交于点D ,联结BD()..805020202040BAD DAC AB AC AD ADABD ACD S A S BD CD ABD ACD DBC DCB BAC ABC ACB OCA ABD ACD OBD ABC ABD OBC ABD DOB OBC OCB BAD OBD ABD DOB DAB BD BD ABD ∠=∠==∴≅∴=∠=∠∴∠=∠∠=︒∴∠=∠=︒∠=︒∴∠=∠=︒∴∠=∠-∠-∠=︒=∠∠=∠+∠=︒=∠∠=∠∠=∠=∴≅,,,,,,,,,,,()()()()..1111801801804070222OBD A A S AB OB BAO AOB BAO ABO ABC OBC ∴=∴∠=∠∴∠=︒-∠=︒-∠-∠=︒-︒=︒⎡⎤⎣⎦,,【总结】考查等腰三角形的性质与全等相结合的综合应用,综合性较强,注意辅助线的添加.【作业1】 如图,△ABC 中,∠ABC =460,D 是BC 边上一点,DC =AC ,∠DAB =210,试确定∠CAD 的度数. 【答案】67CAD ∠=︒.【解析】DC AC CAD CDA =∴∠=∠,CDA B DAB ∠=∠+∠,又4621ABC DAB ∠=︒∠=︒, 67CDA ∴∠=︒,67CAD ∴∠=︒.【总结】考查等腰三角形性质及外角的性质的综合运用,比较基础.课后作业OABCD【作业2】 如图所示,12AB AD BC DE ==∠=∠,,,试说明:(1)(2)2AC AE CAE =∠=∠;. 【答案】详见解析.【解析】(1)2112ADC ADE B ∠=∠+∠=∠+∠∠=∠,又ADE B AB AD BC DE ∴∠=∠==,, ()..ABC ADE S A S AC AE ∴≅∴=,;(2)ABC ADE BAC DAE ≅∴∠=∠,,BAC DAC DAE DAC ∴∠-∠=∠-∠1122CAE CAE ∴∠=∠∠=∠∴∠=∠,,【总结】考查三角形全等的判定及性质的应用,比较基础.【作业3】 如图,在△ABC 中,AB =AC ,∠BAD =30°,AD =AE .求∠CDE 的度数.若∠BAD =40呢?【答案】15CDE ∠=︒,20CDE ∠=︒. 【解析】AD AE AC AB ADE AED B C ==∴∠=∠=∠,,,23023015ADE CDE B BAD AED C CDE C CDE CDE B BAD CDE BAD BAD CDE CDE ∠+∠=∠+∠∠=∠+∠∴∠+∠+∠=∠+∠∴∠=∠∠=︒∴∠=︒∴∠=︒,,,, 同理:当40BAD ∠=︒时,20CDE ∠=︒.【总结】考查等腰三角形性质及外角的性质,注意角度间的转换.【作业4】 如图,△ABC 中,AB =AC ,BC =BD =ED =EA ,求∠A 的度数.【答案】1807A ︒∠=.【解析】AE ED ADE A =∴∠=∠,,2DEB ADE A A ∴∠=∠+∠=∠.233318018071807BD ED ABD DEB A BDC ABD A ABD BC C BDC A AB AC ABC C A ABC C A A A =∴∠=∠=∠∴∠=∠+∠=∠=∴∠=∠=∠=∴∠=∠=∠︒∠+∠+∠=︒∴∠=︒∴∠=,,,,,,, 【总结】考查等腰三角形性质及外角的性质,注意角度间的转化.ABCDE21ABCDEABCDE20 / 22【作业5】 已知∆ABC 中,BD =CE ,DF =EF .试说明AB =AC . 【答案】详见解析【解析】证明:过点D 作//DG AC 交BC 于G()//..DG AC DGB ACB DGF ECF DF EF DFG EFC DFG EFC A A S CE DG BD CE BD DG B DGB B ACB AB AC∴∠=∠∠=∠=∠=∠∴≅∴==∴=∴∠=∠∴∠=∠∴=,,,,,,,,, 【总结】考查等腰三角形结合全等三角形的性质及判定的应用.【作业6】 如图,在△ABC 中,∠B =2∠C ,则AC 与2AB 之间的关系是( )A .AC >2AB B .AC =2ABC .AC ≤2ABD .AC <2AB【答案】D【解析】解:延长CB 到D ,使DB AB =,联结AD222AB BD BAD D ABC D BAD ABC DABC C C D AD AC AB BD AD AB BD AC AB AC=∴∠=∠∠=∠+∠∴∠=∠∠=∠∴∠=∠∴=+>∴+>∴>,,,,,,,故选D .【总结】考查三角形外角性质,等腰三角形性质以及三角形三边之间的关系.【作业7】 如图,已知:AC ∥BD ,EA 、EB 平分∠BAC 、∠DBA ,交CD 于点E ,试说明:AB =AC +BD . 【答案】详见解析【解析】证明:在AB 上取一点F ,使AF AC =,联结EF .EA EB 、平分BAC DBA ∠∠、,CAE FAE EBF EBD ∴∠=∠∠=∠,()..ACE AFE S A S ∴≅,C AFE ∴∠=∠,//180AC BD C D ∴∠+∠=︒,,180AFE EFB ∠+∠=︒,EFB D ∴∠=∠,()..BEF BED A A S BF BD ∴≅∴=,. AB AF BF AB AC BD =+∴=+,.【总结】考查全等三角形的判定与性质的综合运用,注意认真分析题目中的条件.BDCEAFGABCDA BCDEF【作业8】 如图,在△ABC 中,∠BAC =∠BCA =440,M 为△ABC 内一点,使∠MCA =300,∠MAC =160,求∠BMC 的度数. 【答案】150BMC ∠=︒.【解析】过B 作BD AC ⊥于D ,交CM 延长线于O ,联结OA4492BAC BCA AB BC ABC ∠=∠=︒∴=∠=︒,,BD AC ⊥, ABO CBO ∴∠=∠,ABO CBO ∴≅30OA OC OAC MCA ∴=∴∠=∠=︒,443014301614906012012030BAO BAC OAC OAM OAC MAC BAO MAO AOD OAD COD AOM AOB AO AO ABO AMO OB OM BOM OMB OBM ∴∠=∠-∠=︒-︒=︒∠=∠-∠=︒-︒=︒∴∠=∠∠=︒-∠=︒=∠∴∠=︒=∠=∴≅∴=∠=︒∴∠=∠=︒,,,,,, 180150BMC OMB ∴∠=︒-∠=︒.【总结】考查等腰三角形性质、及全等三角形判定、三角形外角、内角和性质等.【作业9】 如图,△ABC 中,∠BAC =600,∠ACB =400,P 、Q 分别在BC 、AC 上,并且AP 、BQ 分别是∠BAC 、∠ABC 的角平分线,试说明:BQ +AQ =AB +BP .【答案】详见解析.【解析】延长AB 到D ,使BD BP =,联结PD ,则D BPD ∠=∠.AP BQ 、分别是BAC ABC ∠∠、的角平分线,且6040BAC ACB ∠=︒∠=︒,()3080408040..BAP CAP ABC ABQ QBC C QB QC ABC D BPD D BPD APD APC A A S AD ACAB BD AQ QC AB BP BQ AQ∴∠=∠=︒∠=︒∴∠=∠=︒=∠∴=∠=∠+∠=︒∴∠=∠=︒∴≅∴=∴+=+∴+=+,,,,,,, 【总结】考查全等三角形的判定与性质及等腰三角形性质相结合的综合运用,综合性较强, 注意分析题目中的条件,添加合适的辅助线.B CMADOABPQCD22 / 22【作业10】 如图,已知:在△ABC 中,AD 是∠BAC 的平分线,∠ABC =2∠C ,M 为BC的中点,ME ⊥AF ,交AB 的延长线于点E ,交AD 的延长线于F ,试说明:BD =2BE .【答案】详见解析【解析】证明:延长BE 到G ,使EG BE =,联结CG GD 、, 延长AF 交GC 于H .//BE EG BM MCEM CG ME AF AH CG==∴⊥∴⊥,,,AH 平分BAC ∠,AG AC ∴=,GAD CAD ∠=∠()..AGD ACD S A S DGA ACD ∴≅∴∠=∠,22CBA ACB CBA DGA BDG BDG DGB BD BG BE EG BD BE∠=∠∠=∠+∠∴∠=∠∴==∴=,,, 【总结】本题综合性较强,难度较大,考查三角形的相关性质及全等三角形的判定以及等腰 三角形的性质的综合运用,也可以用其它方法进行求解,建议教师选择性讲解.ABCDEF MGH。
2019届中考数学一轮复习讲义考点二十七:等腰三角形聚焦考点☆温习理解一、等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。
即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45 °②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a,底边长为b,则b<a2④等腰三角形的三角关系:设顶角为顶角为∠ A ,底角为∠ B、/ C,则∠ A=180—2 ∠ B,/ B= ∠180 AC=—22、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
这个判定定理常用于证明同一个三角形中的边相等。
学!科网推论1:三个角都相等的三角形是等边三角形推论2 :有一个角是60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。
二•等边三角形1•定义三条边都相等的三角形是等边三角形• 2.性质:3•判定三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.三.线段垂直平分线1•定义垂直一条线段,并且平分这条线段的直线叫作这条线段的垂直平分线2•性质线段垂直平分线上的一点到这条线段的两端距离相等3•判定到一条线段两端点距离相等的点,在这条线段的垂直平分线上名师点睛☆典例分类考点典例一、等腰三角形的性质【例1】(2018黑龙江齐齐哈尔中考模拟)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的和谐分割线”.如图,线段CD是ABC的和谐分割线”,ACD为等腰三角形,CBD和ABC相【解析】试题分析:T △比CDS AEA∙G∕∙Z⅛CD=Z44h ,'∕Δ⅛CD是等腰三角形,,∕Z ADC>Z BCD J.'.Z AD OZA J即AC≠CD,①⅛AC?=AJ)时’ ZACD=ZADC=^ =67, .∖ZACE=670+4S C=113° *■②当DADC 时,ZCD=ZjL= 46 Q R √.ZACB=46" +46' =93Q J 故答案为M时或财-考点:1∙相似三角形的性质;2.等腰三角形的性质.【点睛】本题考查的是等腰三角形的性质和相似三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.【举一反三】如图,AD , CE分别是△ABC的中线和角平分线.若AB=AC , ∠ CAD=20 ,则∠ ACE的度数是( )A. 20 °B. 35 °C. 40 °D. 70 °【来源】浙江省湖州市2018年中考数学试题【答案】B【解析】分析;先⅛据等腰三角形的⅛m及三角形内角和定S⅛⅛ZCAfr=2ZCADM0% ZB=ZACH £( IS^ZCAB) =70°.再禾U用角平分线定义即可得出ZX*E W√ACB=3實.徉解::AD 是∆ABC 的中线』AB-AC J. ZaAD=20%/.ZCAB=2ZQAD=40S ZB=ZACB=I (IS^-ZCAB) =70t.ICE是AABC的甬平分线,∕÷ ZACE=i ZACB=JS ci.Z故选:B.点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70是解题的关键.考点典例二、等腰三角形的多解问题1【例2】(2018黑龙江绥化中考模拟)在等腰ABC中,AD BC交直线BC于点D ,若AD -BC ,2则ABC的顶角的度数为 ____________ .【答案】30°或150°或90°. 【解析】 试题分析:①BC 为腰,1∙∙∙ AD 丄 BC 于点 D , AD= BC ,/∙∠2②BC 为底,如图3,CAD= - ×80 °90 °2腰时,应在符合三角形三边关系的前提下分类讨论. 【举一反三】(湖南省衡阳市船山实验中学 2017-2018学年八年级上期末模拟)等腰三角形的一个内角为 70°它的一腰上的高与底边所夹的角的度数是()ACD=30° ,如图1 , AD 在△ABC 内部时, 顶角∠ C=30 ,如图2,AD 在△ABC 外部时,顶角∠ ACB=180 - 30o=150°,∙∙∙ AD 丄 BC 于点 D , AD= I BC,∙∙∙ AD=BD=CD , ∙∙∙ ∠ B= ∠ BAD , ∠ C= ∠ CAD , /. ∠ BAD+ ∠【点睛】题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边∙顶角∠ BAC=90 ,来源学科网ZXXMA. 35 °B. 20 °C. 35 °或20 °D. 无法确定【答案】C【解析】70°是顶角,它的一腰上的高与底边所夹的角的度数是35° 70°是底角,顶角是40°它的一腰上的高与底边所夹的角的度数是20°.故选C.考点典例三、等边三角形的性质与判定【例3】已知:在附鳥中,悴F T&I,为的中点V-銅,:■,垂足分别为点,且册•罔•求证:1是等边三角形.【来源】浙江省嘉兴市2018年中考数学试题【答案】证明见解析MMfi】分析;由等腥三角形的性质得SUZR=NG再用HL证明I∆CTF,得到厶IYG从而得到ZAQNG即可得到结论,徉解:「密FU /.Z5=ZC.∖'DElAB f DFLBC J ,\ZD£^=ZDFO90&.丁D为的卫匚中⅛jλΣfA=DC.又YDE=D F, -IR L AAE实RlACDF (HL),--ZJi=N方-ΞZ^C?:-AA^C是等边三角形- 点睛:本题考查了等边三角形的判定、等腰三角形的性质以及直角三角形全等的判定与性质•解题的关键是证明∠ A=∠ C.【举一反三】(重庆市江津区2017-2018学年八年级上学期期末模拟 )如图所示,AABC为等边三角形,P为BC上一点,Q为AC上一点,AQ=PQ , PR=PS, PR⊥ AB于R, PS⊥ AC于S, ?则对下面四个结论判断正确的是()①点P在∠ BAC的平分线上,②AS=AR , ③QP// AR , ④厶BRP^Δ QSP.A.全部正确;B.仅①和②正确;C.仅②③正确;D.仅①和③正确【答案】A【解析】试题解析:∙∙∙PR⊥ AB于R, PS⊥ AC于S.∙∙∙∠ARP= ∠ ASP=90 .∙∙∙ PR=PS, AP=AP..∙. Rt △A RP也Rt AASP.∙∙∙ AR=AS ,故(2)正确,∠ BAP= ∠ CAP..AP是等边三角形的顶角的平分线,故(1)正确.∙AP是BC边上的高和中线,即点P是BC的中点.∙∙∙ AQ=PQ.∙点Q是AC的中点.∙PQ是边AB对的中位线.∙PQ // AB ,故(3)正确.∙.∙∠ B= ∠ C=60 ,∠ BRP= ∠ CSP=90 , BP=CP.•••△ BRPQSP,故(4)正确.•全部正确.•故选A.考点典例四、线段垂直平分线的性质运用【例3】.如图,MM中,川,小聪同学利用直尺和圆规完成了如下操作:①作的平分线交•于点;②作边的垂直平分线,'与!相交于点;③连接•,'.请你观察图形解答下列问题:(1) __________________________________________ 线段PA^B^C之间的数量关系是(2)若曲吭-潜,求的度数.【来源】湖北省孝感市2018年中考数学试题【答案】(1)•:'「二-b 二V; (2)80°【解析】分析:(1)根据线段的垂直平分线的性质可得:PA=PB=PC;(2)根据等腰三角形的性质得:∠ ABC= ∠ ACB=70 ,由三角形的内角和得:∠BAC=180 -2 ×0°=40°,由角平分线定义得:∠ BAD= ∠ CAD=20 ,最后利用三角形外角的性质可得结论.详解:(1)如图,PA=PB=PC ,理由是:∙∙∙ AB=AC , AM 平分∠ BAC ,∙∙∙ AD是BC的垂直平分线,∙∙∙ PB=PC ,∙∙∙ EP是AB的垂直平分线,∙PA=PB,∙PA=PB=PC ;故答案为:PA=PB=PC ;⑵ 丁AE=AG/.Z ABC-Z ACE-VO O J.∖ ZBAC=I 80o-2^70c=40e,TANl 平分ZBAC,.,.ZBAD=ZCAD=2fl D,TPA=PB=PG・∖ ZABP= Z BAP=ZACP»20C,/. ZBPc=ZABP-Z BAC+Z ACP=20 i→0fr-2 =So S.点睛:本题考查了角平分线和线段垂直平分线的基本作图、等腰三角形的三线合一的性质、三角形的外角性质、线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是关键.【举一反三】(2018广西钦州市中考模拟)如图,在△ABC中,∠ ACB=90 ,分别以点A和点B为圆心,以相同的长(大于AB )为半径作弧,两弧相交于点M和点N ,作直线MN 交AB于点D ,交BC于点巳若AC=3 , AB=5 ,则DE等于()A. B. C.D.【答案】C【解析】根据勾股定理求出BC ,根据线段垂直平分线性质求出AE=BE ,根据勾股定理求出AE ,再根据勾股定理求出DE 即可.解:在RtABC 中,由勾股定理得:BC==4,连接AE,从作法可知:DE 是AB 的垂直评分线,根据性质AE=BE ,在Rt △ACE 中,由勾股定理得AC +CE =AE+ (4-AE )即3=AE解得:AE=在Rt △ADEAD= AB=勾股定理得) DE +(=(解得:DE=故选C.课时作业☆能力提升一、选择题1. (2018年湖北省松滋市初级中学数学中考模拟试题(一))如图,在△ABC中,AB=AC , AB的垂直平分线交边AB于D点,交边AC于E点,若ΔABC与ΔEBC的周长分别是40,24,则AB为()S CA. 8B. 12C. 16D. 20【答案】C【解析】试题解析:∙∙∙DE是AB的垂直平分线,ME = RE :的周长任「Δ EHC的周长I = EE + EC + IiC =AE^ Ec [ IiC = AC + 甘:.∙. I总盒强:的周长—M 泪的周长=AB ,∣ΛZP=40-24=16.故选C.点睛:线段的垂直平分线上的点到线段两个端点的距离相等.2. (2017黑龙江大庆)如图,ΔABD是以BD3. 已知 汀 口耽:,用尺规作图的方法在 冋上确定一点冈,使Un ,则符合要求的作图痕迹是ΔBCD 中,∠ DBC=90° ∠ BCD=60° DC 中点为E , AD 与BE 的延长线交于点 F ,则∠ AF B 的度数为()A. 30 °B.15 °C.45 °D.25 °【答案】B【解析】解:τ∠ DBC=90° E 为 DC 中点,∙∙∙ BE=CE=CD ,τ∠ BCD=60° Λ∠ CBE=60° ∕∙∠ DBF=30°∙∠ ABF=75° ∙∠ AFB=180° - 90° - 75°=15° 故选B .为斜边的等腰直角三角形, •••△ ABD 是等腰直角三角形,∙∠ ABD=45° , A.【答案】D【解折】分析:夷使PZPC=BC,必有PA=PB,所以选项中只有作AB 的中垂线才能满足遗个条件,故D 正确. 详解:D 选项中作的是AB 的中垂线,.∖PA=PB.'.PB-PC-BC J∕r PA+PC=BC故选D*点睛:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出 PA=PB .4.(河北省故城县运河中学 2017-2018学年八年级(上)期末)等边三角形的边长为 2,则该三角形的面积为()A. D. 3 【答案】CB.C.【解析】如图,作CD丄AB ,贝U CD是等边△ABC底边AB上的高,根据等腰三角形的三线合一,可得AD=I ,所以,在直角ΔADC中,利用勾股定理,可求出CD= =面积计算公式,解答,代入出S AABC = ×2×故选:C.5. (2017-2018 学年苏州市工业园区金鸡湖学校期末复习)如图,在于占4八、、于占4八、、边的中点,连接则下列结论①②为等边三角形.下面判断正确是( )A. ①正确B. ②正确C. ①②都正确D. ①②都不正确【答案】C【解析】试题解析:①∙∙∙BM丄AC于点M, CN丄AB于点N , P为BC边的中点,PN= ∙∙∙ PM=PN ,正确;②∙∙∙∠ A=60 , BM 丄AC 于点M , CN 丄AB 于点N ,∙∠ ABM= ∠ ACN=30 ,在 AABC 中,∠ BCN+ ∠ CBlvF 180° -60 °-30 °×2=60° , •••点P 是BC 的中点,BM 丄AC , CN 丄AB , ∙ PM=PN=PB=PC ,∙∠ BPN=2 ∠ BCN , ∠ CPM=2 ∠ CBM ,∙∠ BPN+ ∠ CPM=2 (∠ BCN+ ∠ CBM ) =2×60°=120° , ∙∠ MPN=60 ,•••△ PMN 是等边三角形,正确; 所以①②都正确.PM= BCBC ,故选C .6.在平面直角坐标系中,点 A ( J2 ,迈),B ( 3J2 , 3丿2 ),动点C 在X 轴上,若以A 、B 、C 三点为 顶点的三角形是等腰三 角形,则点C 的个数为()A . 2B . 3C . 4D . 5【答案】B . 【解析】试爾分析:SC≡√∕AB 所在的M ⅛⅛Sy = X ,Λ⅛ AB 的中垂线所在的直线野二 V 丁点BZCgZ 的中点坐 ⅛⅛(2∙d, 2 如 把 x=2√∑,产 2√Σ 代AF = -K+占,解得 b=4√2, …朋的中垂线所在的S÷⅞≡y = -χ+4√2 , .'.C 1 ¢4^, O )J決点启为圆^以期的长为半^画弧P 与-轴的交点为点55 ^B √(3√2 -√2)z + (3√2 -√2)z =4, V3√2>4,圆心,以朋的长九半径画弧 与耳轴沒有交点.综上,可得若以久趴€三点为顶点的三角形是等腰三角形P 则点f 的个数为取故选亠考点:1.等腰三角形的判定;2•坐标与图形性质;3•分类讨论;4 •综合题;5•压轴题.7(浙江省上杭县西南片区 2017-2018学年八年级上册期末模拟 )如图,在 MBC 中,∠ B= ∠ C, AD 为AABC 的中线,那么下列结论错误的是()A. AABD ACDB. AD为ΔABC的高线C. ADD. ΔABC是等边三角形为ΔABC的角平分线【答案】D【解析】试题解析:τ∠ B= ∠ C, ∙∙∙ AB=AC ,∙∙∙ AD是△ABC的中线,∙AD丄BC ,∠ BAD= ∠ CAD ,即AD是ΔABC的高,AD为△ABC的角平分线,∙∠ADB= ∠ ADC=9°0 ,在ΔABD和ΔACD中•••△ ABD BΔ ACD ,即选项A、B、C 都正确,根据已知只能推出AC=AB ,不能推出AC、AB 和BC 的关系,即不能得出△ABC 是等边三角形,选项D 错误,故选D .二、填空题8. (2018广州市黄埔区中考数学一模)如图,已知ΔABC和ΔAED均为等边三角形,点D在BC边上,DE 与AB相交于点F,如果AC=12 , CD=4 ,那么BF的长度为__.答案】解析】试题分析:△ABC 和△AED 均为等边三角形,~ ?ACD, 又2017-2018 学年八年级上期末模拟 )已知:点 P 、Q 是 △ABC 的边 BC 上的两个 ,∠BAC 的度数是( ) 9. ( 山西省汾西县双语学校点,且 BP=PQ=QC=AP=AQA. 100 °B. 120 °C.130 °D. 150【答案】B【解析】VPctAP=AQ l l.∖ ZAP Q= ZPAQ= ZAQP=605,ZAP=BP,.∖Z B-Z TAB J Z,∖PQ-Z B÷ZPAB-SO C),∖ZB=ZTAB=SO fi,同理ZQAC=ZC=30%.∖ZBAoZPAQ十ZPAB十ZQAOl2'O HS.故选B. I10.(浙江省宁波市东方中学2017-2018学年八年级上册期末模拟)等腰△ABC ,其中AB=AC=17cm , BC=16cm ,则三角形的面积为___________ cm2.【答案】120 【解析】利用等腰三角形的顶角的平分线、底边上的中线、底边上的高的重合的性质,勾股定理求出三角形的高AD= =15cm ,再利用三角形面积公式求S AABC = BC?AD=×16×15=120cm2故答案为:120.11.(浙江省宁波市李兴贵中学2017-2018学年八年级上册期末模拟)等腰三角形一腰上的高与另一腰的夹角为40°则等腰三角形顶角的度数是________[来]【答案】50或130【解析】首先根据题意画出图形,一种情况等腰三角形为锐角三角形,①如图 1 ,∙∙∙ BD 丄AC , ∠ ABD=40 ,∙∙∙∠A=50 ,即顶角的度数为50°.另一种情况等腰三角形为钝角三角形,②如图2,∙∙∙ BD 丄AC , ∠ DBA=40∙∙∙∠ BAD=50 ,∙∙∙∠ BAC=130 .故答案为:50或130.12.(浙师大附属秀洲实验学校 2017-2018学年九年级下学期第三次模拟 )已知□ ABCD 中,AB=4, ABC 与 EDC 的角平分线交AD 边于点E , F ,且EF=3,则边AD 的长为 ___________________ .【答案】5或11;【解析】∙∙∙ BE 平分∠ ABC,∙∠ ABE= ∠ CBE ,•••四边形ABCD 是平行四边形,∙ AD // CB , CD=AB=4 ,∙∠ AEB= ∠ CBE∙∠ ABE= ∠ AEB ,∙ AE=AB=4 ,同理:DF=CD=4 ,分两种情况:∙ AD=AE+EF+DF=4+3+4=11∙ AF=1 , ∙ AD=AF+DF=1+4=5; ①如图1所示:∙∙∙ EF=3②如图2所示:■/ EF=4 ,AE=DF=4综上所述: AD的长为11或5;故答案为:5或11.13. (2017新疆建设兵团第15题)如图,在四边形 ABCD 中,AB=AD , CB=CD ,对角线AC , BD 相交于 点0,下列结论中:① ∠ ABC= ∠ ADC ;② AC 与BD 相互平分;③ AC ,BD 分别平分四边形 ABCD 的两组对角;1④ 四边形ABCD 的面积S= AC?BD .2试题解析:①在 △ABC 和ΔADC 中,AB AD∙∙∙ BC CD ,AC AC•••△ ABC ADC ( SSS),∙∙∙∠ ABC= ∠ ADC ,故①结论正确;②•••△ ABC BΔ ADC ,∙∠ BAC= ∠ DAC ,∙∙∙ AB=AD ,• OB=OD , AC 丄 BD ,而AB 与BC 不一定相等,所以 AO 与OC 不一定相等,故②结论不正确; ③由②可知:AC 平分四边形 ABCD 的∠ BAD 、/ BCD,1 而AB 与BC 不一定相等,所以 BD 不一定平分四边形 ABCD 的对角; 故③结论不正确;④∙∙∙ AC 丄 BD ,[来源学科网]•••四边形ABCD 1 1 1的面积 S=SSS 3 2 BD ?A O + 2 BD ?CO = 2 BD ?(AO+CO )=AC?BD . 2故④结论正确;所以正确的有:①④考点:全等三角形的判定与性质;线段垂直平分线的性质.14.等腰三角形 中,顶角为 ,点在以为圆心,'长为半径的圆上,且为 _________ .【来源】2018年浙江省绍兴市中考数学试卷解析【答案】 或【解析】【分析】画出示意图,分两种情况进行讨论即【解答】如图:分两种情况进行讨论■■■ ^PBC = ^ABP + ^ABC= Ilo Dl 同理:^AffP r ^^BAC )J-ABP a■ 2.BAC = 40\ LABC = tβo"-+t>*1 Λ ^P I ffC = ^AeC-= 30°.故答案为:3^或】1孑【点评】考查全等三角形的判定与性质,等腰三角形的性质等,注意分类讨论思想在数学中的应用15. (2017广西贵港第16题)如图,点P 在等边 ABC 的内部,且PC 6,PA 8,PB 10 ,将线段PC绕点C 顺时针旋转60o得到P'C ,连接AP',则Sin PAP'的值为 ___________________ . 【答案】35∙∙∙ CP=CP =6,∠ PCP =60°•••△ CPP 为等边三角形,• PP =PC=6•••△ ABC 为等边三角形,• CB=CA , ∠ ACB=60 ,∙∠ PCB= ∠ P' CA在△PCB 和 ΔP ,CA 中 PC PCPCB PCACB CAτ 62+82=102,• PP 2+AP 2=P'A,∙ PB=P A=10,[来源学。
专题 第13讲等腰三角形知识点1 等腰三角形的相关概念---分类讨论求边角的值1.等腰三角形的两个腰相等,两个底角也相等.2.直角三角形30°的角所对的直角边等于斜边的一半.【典例】1.若等腰三角形一腰上的高等于腰长的一半,求此三角形的底角.【解析】解:①如下图,当高在三角形内部时,12BD AB =,∴∠A=30°,∴∠ABC=∠ACB=75°,②如下图,当高在三角形外部时,12BD AB =,则∠BAD=30°,∴∠BAC=150°,∴∠ABC=∠ACB=15°,所以此三角形的底角等于75°或15°.【方法总结】本题考查了等腰三角形的性质,以及含特殊角的直角三角形,熟记三角形的高相对于三角形的三种位置关系(三角形内部,三角形的外部,三角形的边上),解题时注意需要分类讨论.2.如果一等腰三角形的周长为27,且两边的差为12,求这个等腰三角形的腰长.【解析】解:设等腰三角形的腰长为x,则底边长为x﹣12或x+12,当底边长为x﹣12时,根据题意,得2x+x﹣12=27,解得x=13,∴腰长为13,此时底边长为13-12=1,满足三角形的两边之和大于第三边,两边之差小于第三边,当底边长为x+12时,根据题意,得2x+x+12=27,解得x=5,此时底边长为5+12=17,因为5+5<17,所以构不成三角形,故这个等腰三角形的腰的长为13.【方法总结】已知等腰三角形的周长和两边之差来求等腰三角形的底或腰时,我们需要分类讨论,分为两种情况:一种是“腰-底=某个值”,第二种是“底-腰=某个值”,可将底或腰设为未知数,再根据等腰三角形的周长列出方程,求出三边以后根据三角形的三边关系进行验证,选择合理的数值.【随堂练习】1.(2017秋•洛阳期末)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为_____.【解答】解:在△ABC中,设∠A=x,∠B=x+30°,分情况讨论:当∠A=∠C为底角时,2x+(x+30°)=180°,解得x=50°,顶角∠B=80°;当∠B=∠C为底角时,2(x+30)+x=180°,解得x=40°,顶角∠A=40°.故这个等腰三角形的顶角的度数为80°或40°.故答案为:80°或40°.2.(2017秋•襄州区期末)在等腰△ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15和12两个部分,则该等腰三角形的底边长为______.【解答】解:根据题意,①当15是腰长与腰长一半时,AC+AC=15,解得AC=10,所以底边长=12﹣×10=7;②当12是腰长与腰长一半时,AC+AC=12,解得AC=8,所以底边长=15﹣×8=11.所以底边长等于7或11.故答案为:7或11.3.(2017秋•枣阳市期末)一个等腰三角形的周长为20,一条边的长为6,则其两腰之和为______.【解答】解:①底边长为6,则腰长为:(20﹣6)÷2=7,所以另两边的长为7,7,能构成三角形,7+7=14;②腰长为6,则底边长为:20﹣6×2=8,能构成三角形,6+6=12.故答案为:12或144.(2017秋•诸暨市期末)已知等腰三角形的周长为8,其中一边长为2,则该等腰三角形的腰长为_____.【解答】解:①2是腰长时,底边为:8﹣2×2=4,三角形的三边长分别为2、2、4,∵2+2=4,∴不能组成三角形,②2是底边长时,腰长为:×(8﹣2)=3,三角形的三边长分别3、3、2,能组成三角形,综上所述,该等腰三角形的腰长是3.故答案为:3.5.(2018春•李沧区期中)若等腰三角形一腰上的高与另一腰的夹角为48°,则其顶角度数为_______°.【解答】解:①如图1,当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+48°=138°;②如图1,当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣48°=42°.故答案为:42或138.6.(2018春•邗江区期中)已知等腰三角形的一条边等于4,另一条边等于9,那么这个三角形的第三边是_____.【解答】解:当4为底时,其它两边都为9,4、9、9可以构成三角形;当4为腰时,其它两边为4和9,因为4+4=8<9,所以不能构成三角形.故答案为:9.知识点2 等腰三角形的性质---边角关系等腰三角形的两底角相等(简称“等边对等角”),即在△ABC,AB=AC,可得∠B=∠C.【典例】1.如图,在△ABC中,∠ACB=90°,AD=AC,BE=BC,求∠DCE的大小.【解析】解:设∠ACE=x,∠ECD=y,∠DCB=z,∵BC=BE,+,∴∠CED=∠ECB=y z∵AC=AD,+,∴∠ADC=∠ACD=x y+-,在△CDB中,∠B=x y z+-,在△ACE中,∠A=y z x在△ABC中,∠ACB=90°,+-++-=90°,∴∠A+∠B=90°,即x y z y z x∴2y=90°,解得y=45°.于是∠DCE=45°.【方法总结】本题考查了等腰三角形的性质,解答此题的关键是建立起各角之间的关系,结合图形列出方程进行解答.2.如图,在△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若△ABC 与△EBC的周长分别是40,24,求AB的长.【解析】解:∵DE是AB的垂直平分线,∴AE=BE,∵△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,∴△ABC的周长﹣△EBC的周长=(AB+AC+BC)-(AC+BC)=AB,∴AB=40﹣24=16.【方法总结】本题考查了等腰三角形的性质和垂直平分线上的性质,根据垂直平分线上的点到线段两端点的距离相等,得出相等的线段,把三角形的周长表示出来,再利用相等的线段进行转化求解. 【随堂练习】1.(2017春•成华区期末)如图△ABC中,AB=AC,点E、D、F分别是边AB、BC、AC边上的点,且BE=CD,CF=BD.若∠EDF=50°,则∠A的度数为_____.【解答】解:∵AB=AC,∴∠B=∠C,在△BDE与△CEF中,∴△BDE≌△CFE.∴∠BDE=∠CFD,∵∠EDF=50°,∴∠BDE+∠CDF=∠CDF+∠CFD=130°,∴∠C=50°∵AB=AC,∴∠C=∠B=50°,∴∠A=180°﹣50°﹣50°=80°,故答案为:80°.2.(2017秋•浦东新区校级期末)如图所示,已知△ABC中,AB=AC,∠BAD=30°,AD=AE,求∠EDC的度数.【解答】解:设∠EDC=x,∠B=∠C=y,∠AED=∠EDC+∠C=x+y,又因为AD=AE,所以∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又因为∠ADC=∠B+∠BAD,所以2x+y=y+30,解得x=15.所以∠EDC的度数是15°.知识点3等腰三角形的性质---三线合一等腰三角形底边上的高线、中线及顶角平分线重合.例:已知△ABC是等腰三角形,AB=AC,①AD⊥BC ②BD=CD ③AD平分∠BAC,上述三个条件,任意满足一个,可得到另外两个.即①⇒②,③;②⇒①,③;③⇒①,②.【典例】1.如图,在△ABC中,AB=AC,AD是BC边上的中线,E是AC 边上的一点,且∠CBE=∠CAD.求证:BE⊥AC.【解析】证明:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴∠CAD+∠C=90°,又∵∠CBE=∠CAD,∴∠CBE+∠C=90°,∴∠BEC=90°,即BE⊥AC.【方法总结】本题主要是利用等腰三角形的三线合一,根据三线合一的性质可知,等腰三角形底边上的中线也是底边的高线.注:等腰三角形常作的辅助线是,过顶角的顶点向底边作垂线,再利用三线合一得到一些相等的关系式,当题目中给出等腰三角形底边上的中点时,常常将等腰三角形的顶角顶点和它直接相连.【随堂练习】1.(2017秋•莘县期末)如图,在等腰三角形△ABC中,AB=AC,BD平分∠ABC,在BC的延长线上取一点E,使CE=CD,连接DE,求证:BD=DE.【解答】证明:∵AB=AC∴∠ABC=∠ACB,∵BD平分∠ABC,∵CD=CE,∴∠E=∠CDE,∵∠ACB=∠E+∠CDE,∴∠E=∠ACB,∴∠E=∠DBE,∴BD=DE.2.(2017秋•东城区期末)如图,在△ABC中,AB=AC,AD⊥于点D,AM是△ABC的外角∠CAE的平分线.(1)求证:AM∥BC;(2)若DN平分∠ADC交AM于点N,判断△ADN的形状并说明理由.【解答】证明:(1)∵AB=AC,AD⊥BC,∴∠BAD=∠CAD=.∵AM平分∠EAC,∴∠EAM=∠MAC=.∴∠MAD=∠MAC+∠DAC==.∵AD⊥BC∴∠ADC=90°∴AM∥BC.(2)△ADN是等腰直角三角形,理由是:∵AM∥AD,∴∠AND=∠NDC,∵DN平分∠ADC,∴∠ADN=∠NDC=∠AND.∴AD=AN,∴△ADN是等腰直角三角形.知识点4等腰三角形的判定与性质1.等腰三角形的判定定理:有两个角相等的三角形是等腰三角形(简称“等角对等边”).2.等腰三角形的两个底角相等(简称“等边对等角”).3. 等腰三角形底边上的高线、中线及顶角平分线重合.【典例】1.如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC是等腰三角形,则符合条件是点C共有_______ 个.【答案】9【解析】解:①以AB作为等腰三角形的底边,则符合条件的C一定在线段AB的垂直平分线上,且处于格点上,图中红线上的点,共5个;②以AB作为等腰三角形的一个腰,当点A是等腰三角形的顶角顶点时,符合条件的点在紫色线上,共有2个,当点B是等腰三角形的顶角顶点时,符合条件的点在蓝色线上,共有2个,综合①②可知,符合条件的点C共有9个.故答案是:9.【方法总结】本题考查的等腰三角形的判定,利用的是数形结合思想,当已知两个格点找寻第三个格点时,需要分类讨论,将这条边作为底和作为腰时可以构建的等腰三角形的个数之和,即为所求的点的个数.2.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB 以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____________s时,△POQ是等腰三角形.【答案】10或103【解析】解:当PO=QO时,△POQ是等腰三角形;如图1所示:当P点在O的左侧时,∵PO=AO﹣AP=10﹣2t,OQ=1t∴当PO=QO时,10﹣2t=t;解得t=103时,△POQ是等腰三角形;即当t=103如图2所示:当P点在O的右侧,△POQ是等腰三角形,∵∠BOC=60°,∴△POQ是等边三角形,∴PO=QO=PQ∵PO=AP﹣AO=2t﹣10,OQ=1t;∴2t﹣10=t;解得t=10;故答案为:10或10.3【方法总结】本题主要考查了等腰三角形的性质,由等腰三角形的两个腰相等得出方程是解决问题的关键,注意本题分类讨论时,由于∠POQ=60°,可得出△POQ是等边三角形,再根据PO=QO进行求解.3.如图,在△ABC中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.(1)求证:DE=CE.(2)若∠CDE=35°,求∠A的度数.【解析】证明:(1)∵CD是∠ACB的平分线,∴∠BCD=∠ECD.∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)解:∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.【方法总结】本题主要考查的是“平行+角分线” 模型,在之后学习菱形证明题时也会用到,需记牢.模型如下:如图所示,①∠1=∠2;②AC∥BD;③AB=AC(△ABC是等腰三角形)上述条件任意两个成立则第三个也成立.即①②⇒③;①③⇒②;②③⇒①.【随堂练习】1.(2018•安徽模拟)如图,在△ABC中,BC=4,BD平分∠ABC,过点A作AD⊥BD于点D,过点D作DE∥CB,分別交AB、AC于点E、F,若EF=2DF,则AB的长为()A.4 B.6 C.8 D.10【解答】解:如图,延长AD,BC交于点G,∵BD平分∠ABC,AD⊥BD于点D,∴∠BAD=∠G,∴AB=BG,∴D是AG的中点,又∵DE∥BG,∴E是AB的中点,F是AC的中点,∴DE是△ABG的中位线,EF是△ABC的中位线,∴EF=BC=2,又∵EF=2DF,∴DF=1,∴DE=3,∴BG=2DE=6,∴AB=6,故选:B.2.(2018•河东区二模)如图,在△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为_____.【解答】解:过E作EG∥AB,交AC于G,则∠BAE=∠AEG,∵AE平分∠BAC,∴∠BAE=∠CAE,∴∠CAE=∠AEG,∴AG=EG,同理可得,EF=CF,∵AB∥GE,BC∥EF,∴∠BAC=∠EGF,∠BCA=∠EFG,∴△ABC∽△GEF,∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=AB:BC:AC=3:4:5,设EG=3k=AG,则EF=4k=CF,FG=5k,∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=4k=.故答案为:.3.(2017春•平南县期中)如图,在Rt△ABC中,∠C=90°,D为AB上的点,BD=CD=5,则AD=______.【解答】解:在Rt△ABC中,∠C=90°,∵BD=DC,∴∠B=∠DCB,∵∠B+∠A=90°,∠DCB+∠DCA=90°,∴∠A=∠DCA,∴AD=DC=5,故答案为5.综合运用1. 如图,正方形网格中的每个小正方形边长都是1.已知A、B是两格点,若△ABC为等腰三角形,且S△ABC=1.5,则满足条件的格点C有________个.【答案】2【解析】解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合△ABC为等腰三角形的C点有4个;②AB为等腰△ABC其中的一条腰时,符合△ABC为等腰三角形的C点有4个.因为S△ABC=1.5,所以满足条件的格点C只有两个,如图中蓝色的点.故答案为:2.2.如图,C是△ABE的BE边上一点,F在AE上,D是BC的中点,且AB=AC=CE,下列结论:①AD⊥BC;②CF⊥AE;③∠1=∠2;④AB+BD=DE其中正确的结论有_________.【答案】①④【解析】解:①∵D是BC的中点,AB=AC,∴AD⊥BC,故①正确;②∵虽然AC=CE,F在AE上,但F点不一定是AE的中点,∴无法证明CF⊥AE,故②错误;③由②可知,CF不一定垂直于AE,则无法证明∠1=∠2,故③错误;21④∵D 是BC 的中点,∴BD=DC ,∵AB=CE ,∴AB+BD=CE+DC=DE ,故④正确.故其中正确的结论有①④.故答案为:①④.3.如图,△ABC 中,AB=AC ,D 是BC 的中点,E 、F 分别是AB 、AC 上的点,且AE=AF ,求证:DE=DF .【解析】证明:连接AD ,∵AB=AC ,D 是BC 的中点,∴∠EAD=∠FAD ,在△AED 和△AFD 中,AE AF EAD FAD AD AD =⎧⎪=⎨⎪=⎩∠∠,∴△AED ≌△AFD (SAS ),∴DE=DF .4.如图,AD∥BC,∠BAC=70°,DE⊥AC于点E,∠D=20°.(1)求∠B的度数,并判断△ABC的形状;(2)若延长线段DE恰好过点B,试说明DB是∠ABC的平分线.【解析】解:(1)∵DE⊥AC于点E,∴∠AED=90°,∵∠D=20°,∴∠CAD=90°-∠D =90°-20°=70°,∵AD∥BC,∴∠C=∠CAD=70°,∵∠BAC=70°,∴∠BAC=∠C,∠B=180°-∠BAC- ∠C =40°,∴AB=AC,∴△ABC是等腰三角形.(2)∵延长线段DE恰好过点B,DE⊥AC,∴BD⊥AC,23∵△ABC 是等腰三角形,∴DB 是∠ABC 的平分线.5.已知等腰三角形△ABC ,AB=AC ,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.【解析】解:如图,在△ABC 中,AB=AC ,且AD=BD .设AB=AC=x ,BC=y ,(1)当AC+AD=15,BD+BC=12时, 根据题意得,152x x +=,122x y +=, 解得x=10,y=7.(2)当AC+AD=12,BC+BD=15时, 根据题意得,122x x +=,152x y +=, 解得x=8,y=11,故得这个三角形的三边长分别为10,10,7或8,8,11.6.如图,O 是△ABC 的∠ABC ,∠ACB 的角平分线的交点,OD ∥AB 交BC 于D ,OE ∥AC 交BC 于E ,若BC=16,求△ODE 的周长.【解析】解:∵BO平分∠ABC,∴∠ABO=∠DBO,又OD∥AB,∴∠ABO=∠DOB,∴∠DBO=∠DOB,∴OD=BD,同理OE=CE,∵BC=16,则△ODE的周长为:OD+DE+OE=BD+DE+EC=BC=16.。