4克莱姆法则
- 格式:pptx
- 大小:231.00 KB
- 文档页数:17
第三节 克莱姆法则教学目的及要求: 1.克莱姆法则2.利用克莱姆法则求解线性方程组教学重点、难点: 克莱姆法则的应用教学过程:一、复习利用行列式求解二元线性方程组 二、新课讲授1.n 元线性方程组的概念 从二元线性方程组的解的讨论出发,对更一般的线性方程组进行探讨。
在引入克莱姆法则之前,我们先介绍有关 n 元线性方程组的概念。
含有 n 个未知数 x 1,x 2, , x n 的线性方程组a 11x 1 a 12x 2 a 1n x nb 1,a 21x 1a 22x 2a 2n x nb 2,(1)a n1x 1 a n2x 2 a nn x nb n ,a 11 a 12 a 1n Da 21a 22a 2na n1 a n2 a nn2. 克莱姆法则定理 1 ( 克莱姆法则 ) 若线性方程组 解,其解为性方程组 ,当 b 1,b 2 , ,b n 全为零时 , 线性方程组 (1)称为齐次线性方程组,即a 11x 1 a 12x 2 a 1n x n0,a 21x 1a 22x 2 a 2n x n0,(2)a n1x 1 a n2x 2 a nn x n0.称为 n 元线性方程组 .当其右端的常数项 b 1,b 2, 线性方程组 (1)的系数 a ij 构成的行列式称为该方程组的系数行列式 D ,即,b n 不全为零时 ,线性方程组 (1) 称为非齐次线 (1)的系数行列式 D 0, 则线性方程组 (1)有唯一2 2 5 20,20,8545D jx j D(j 1,2, ,n) (3)其中D j(j 1,2, ,n)是把D中第j列元素a1j,a2j, ,a nj对应地换成常数项b1,b2, ,b n,而其余各列保持不变所得到的行列式.一般来说,用克莱姆法则求线性方程组的解时,计算量是比较大的. 对具体的数字线性方程组,当未知数较多时往往可用计算机来求解. 用计算机求解线性方程组目前已经有了一整套成熟的方法.克莱姆法则在一定条件下给出了线性方程组解的存在性、唯一性,与其在计算方面的作用相比,克莱姆法则更具有重大的理论价值. 撇开求解公式(3), 克莱姆法则可叙述为下面的定理.定理 2 如果线性方程组(1)的系数行列式 D 0, 则(1)一定有解,且解是唯一的.在解题或证明中,常用到定理 2 的逆否定理:定理 2 如果线性方程组(1) 无解或有两个不同的解, 则它的系数行列式必为零.对齐次线性方程组(2), 易见x1 x2 x n 0 一定该方程组的解, 称其为齐次线性方程组(2)的零解. 把定理2应用于齐次线性方程组(2),可得到下列结论.定理 3 如果齐次线性方程组(2)的系数行列式 D 0, 则齐次线性方程组(2)只有零解. 定理3 如果齐次方程组(2) 有非零解,则它的系数行列式D 0.注: 在第三章中还将进一步证明,如果齐次线性方程组的系数行列式 D 0, 则齐次线性方程组(2)有非零解.三、例题选讲例 1 用克莱姆法则求解线性方程组:2x1 3x2 5x3 2x1 2x2 53x 2 5x3 4解D20235D1( 2) 2 5D260,1820.D 1D 2 D 3x 11, x 23, x 311D2D 3D例 3( E02) 大学生在饮食方面存在很多问题 ,很多人不重视吃早饭,多数大学生日常饮食 没有规律, 为了身体的健康就要制订营养改善行动计划, 大学生一日食谱配餐: 需要摄入一 定的蛋白质、脂肪和碳水化合物,下边是三种食物,它们的质量用适当的单位计量。
克莱姆法则及其应用前 言克莱姆法则是瑞士数学家克莱姆经过证明的出的,克莱姆 (Cramer,Gabriel,1704-1752),瑞士数学家。
生于瑞士,卒于法国。
在巴塞尔时与与约翰·伯努利、欧拉多人学习交流,并成为挚友,,曾任教学和哲学教授,克莱姆对数学的贡献主要指在高等代数和解析几何方面。
克莱姆法则是高等代数的重点内容之一,以及克莱姆法则在理论上和应用上都有着十分重要的意义。
例如计算行列式,在生活中也有很多地方用到了克莱姆法则。
1. 预备知识若想学习克莱姆法则,必须知道什么是系数行列式。
现在就给介绍一下系数行列式。
设含有n 个未知量n 个方程的111122112212222212n n n n nn n a x a x a b a x a x a b a a a b +++=+++=+++=(1-1)其系数构成的行列式111212122212n nn n nna a a a a a D a a a =称为方程组(1-1)的系数行列式。
1. 克莱姆法则的定义克莱姆法则(Cramer Rule ):一个含有n 个未知量n 个方程的线性方程组(1-1)当它的系数行列式0D ≠时,有且仅有一个解:1212,,,.n n D D D x x x D D D === (1-2)期中JD 是将D 的第j 列换成常数项21,,,nb b b 而其余列不变的行列式。
即111,111,11212,122,121,1,1j j n j j n j n n j n n j nna ab a a a a b a a D a a b a a −+−+−+=1122,(1,2,).j j n nj b A b A b A j n =+++=2. 克莱姆法则的证明方法克莱姆法则有多种证明方法,在此我中立出三种证明方法,分别是2.1克莱姆法则的一般证明方法2.1.1 克莱姆法则的一般证明方法在给 在第一节中已经给出克莱姆法则的定义,再次就不在家赘述。
,当时,方程组的解为:
,
因为,.
时,方程组
(1其中:,.
当系数行列式时,方程组
(1
,,.
类似二元、三元线性方程组,我们给出用行列式求解元线性方程组的克莱姆法则:设含有个未知数的线性方程组为
记行列式为线性方程组
如果,那么,方程组
???
其中()是把系数行列式中第列的元素用方程组右端的常数项代替后所得到的阶行列式,即
, (1,…,).
明该方程组有唯一解,其次求分别用常数项去替代系数行列式中第列()后的行列式的
行乘以和,在列乘以分别加到第列,再在处展开,即
=.
由于系数行列式,所给方程组存在唯一解计算()
,??为所求方程组的解
?
因为,该方程组存在唯一解计算()
?
?
?
?
,, , , 为所求方程组的解
若,
显然是
的系数行列式,那么它只有零解.
有非零解的必要条件是系数行列式.
19 为什么值时,下列方程组有非零解
,齐次线性方程组有非零解的必要条件是系数行列式,即:
若要,即要或,即当或时,所给齐次线性方程组有非。
用克莱姆法则求解方程概述及解释说明1. 引言1.1 概述本文将介绍克莱姆法则在解方程中的应用。
克莱姆法则是一种求解线性方程组的方法,通过使用矩阵和行列式的概念,能够简洁地求得方程组的解。
本文将详细说明该方法的原理、适用条件、算法步骤以及其在不同领域中的应用。
1.2 文章结构文章分为以下几个部分:引言、克莱姆法则概述、克莱姆法则的应用领域、克莱姆法则局限性与优缺点分析以及结论和总结。
下面将对每个部分进行详细说明。
1.3 目的本文旨在全面介绍克莱姆法则,并通过实例和案例分析展示其在实际问题中的应用。
同时,对于该方法所具有的局限性和优缺点进行客观评述,以便读者深入理解和掌握克莱姆法则并对其进行合适的应用选择。
请根据以上内容撰写“1. 引言”部分内容,确保信息传达清晰连贯,并避免包含网址或其他特殊格式。
2. 克莱姆法则概述:2.1 原理说明:克莱姆法则(Cramer's Rule)是一种用于求解线性方程组的方法。
它基于矩阵论和行列式的相关知识,通过分别计算系数矩阵和增广矩阵的行列式来求解未知量。
克莱姆法则适用于含有n个方程、n个未知量的线性方程组,并且假设该方程组有唯一解。
在克莱姆法则中,我们首先需要构建一个系数矩阵A,然后将其与一个列向量B 进行合并形成增广矩阵。
接下来,我们可以通过计算A和B的行列式来求得每个未知量对应的结果。
具体而言,若方程组为Ax=B,则克莱姆法则给出了如下公式:x_i = det(A_i) / det(A)其中,x_i表示第i个未知量的值,det(A_i)表示将第i列替换为B所形成的新矩阵A_i的行列式,det(A)表示原始系数矩阵A的行列式。
2.2 适用条件:克莱姆法则适用于以下条件:- 方程组必须是线性方程组;- 方程组中包含的未知量个数和方程个数相同;- 系数矩阵A必须是一个非奇异矩阵,即其行列式不为零。
2.3 算法步骤:克莱姆法则的求解步骤如下:1. 根据给定的线性方程组,构建系数矩阵A和列向量B。