第三章费米分布及玻耳兹曼分布
- 格式:ppt
- 大小:3.45 MB
- 文档页数:126
第三章习题和答案1. 计算能量在E=E c 到2*n 2C L 2m 100E E π+= 之间单位体积中的量子态数。
解:2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C22CL E m h E E E m V dE E E m V dE E g Vd dEE g d E E m V E g cn c C nlm h E C nlm E C nn c n c πππππ=+-=-====-=*++⎰⎰**)()(单位体积内的量子态数)()(21)(,)"(2)()(,)(,)()(2~.2'213''''''2'21'21'21'2222222C a a lt tz y x ac c z la z y t a y x t a xz ty x C C e E E m h k V m m m m k g k k k k k m h E k E k m m k k m m k k m m k ml k m k k h E k E K IC E G si -=⎪⎪⎭⎫ ⎝⎛+•=+++====+++=*****系中的态密度在等能面仍为球形等能面系中在则:令)(关系为)(半导体的、证明:[]3123221232'2123231'2'''')()2(4)()(111100)()(24)(4)()(~ltn c nc l t t z m m sm VE E hm E sg E g si V E E h m m m dE dz E g dkk k g Vk k g d k dE E E =-==∴-⎥⎥⎦⎤⎢⎢⎣⎡+••==∴•=∇•=+**πππ)方向有四个,锗在(旋转椭球,个方向,有六个对称的导带底在对于即状态数。
第三章习题和答案1. 计算能量在E=E c 到2*n 2C L 2m 100E E 之间单位体积中的量子态数。
解:2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C22CL E m h E E E m V dE E E m V dE E g Vd dEE g d E E m V E g cn c Cn lm h E C nlm E C nn c n c)()(单位体积内的量子态数)(2222222111'''2222'''''12''3'~()2(),(),()()()2,()x y z C t la a a xx y y z zt t lc c x y z at t l a Si Ge E k k k k h E k E m m m m m k k k k k k m m m h E k E k k k m k m m m k g k V m k• 证明:、半导体的(k )关系为()令则:在系中等能面仍为球形等能面在系中的态密度3. 当E-E F 为1.5k 0T ,4k 0T, 10k 0T 时,分别用费米分布函数和玻耳兹曼分布函数计算电子占据各该能级的概率。
''''2'31231'2231'2221223~().().42()()4()1001112()()4()()t t l c n c ntl E E dE k dZ g k k g k k dk m m m dZ g E E E V dE h i m g E sg E E E V hm sm m在空间的状态数等于空间所包含的状态数。
第三章作业题解答1、 计算能量在C E E =到2*2100(/8)C n E E h m L =+之间单位体积的量子态数。
解:导带底C E 附近每单位能量间隔内的量子态数为:13/223(2*)()()2n C C m V g E E E π=-则在导带底C E 附近dE 能量间隔之间的量子态数为()C g E dE 。
在导带底C E 附近dE 能量间隔之间的单位体积的量子态数为()C g E dEV。
故能量在C E E =到22*2100(/2)C n E E m L π=+ 之间单位体积的量子态数为:22*222*2100(/2)13/2100(/2)233()(2*)()21000/3C n CC n CE m L C E E m L n C E g E dEZ Vm V E E dE L ππππ++⋅==-=⎰⎰2、试证明实际硅、锗中导带底附近状态密度公式为3/23(2*)()4()n C C m g E V E E h π=-(没有布置这一题)证明:Si 、Ge 在导带底附近的等能面为沿主轴方向的旋转椭球面,设其极值为C E ,则()E k k 关系为:2222312()()2C t lk k k h E k E m m +=++与椭球的标准方程:2223122221k k k a b c++= 比较得:1/222()[]t C m E E a b h -==,1/222()[]l C m E E c h-= ,,a b c k 即空间等能面(旋转椭球)的三个半径,故椭球体积为:1/23/2344(8)()33l t C V abc m m E E hππ==-对应能量为E E dE →+范围内两椭球壳之间体积为:dVdV dE dE=即 21/21/232(8)()l t C dV m m E E dE hπ=- 设晶体体积为V ,则其量子态密度为2V (考虑自旋),故在能量空间dV 体积内的量子态数为:21/21/2322(8)()l t C dZ V m m E E dE hπ=⨯- 因为导带极值在k 空间有S 个,所以状态密度为:21/21/23(8)()4()l t C C m m dZg E S V E E dE hπ==⨯- 又2/321/3*()n dn l t m m S m m ==所以 3/21/23(2*)()4()n C C m g E V E E hπ=-3、 当F E E -为0001.5,4,10k T k T k T 时,分别用费米分布函数和玻尔兹曼分布函数计算电子占据各该能级的概率。
玻尔兹曼分布,玻色分布,和费米分布的关系
玻尔兹曼分布、玻色分布和费米分布是统计物理中描述粒子分布的三种基本分布。
玻尔兹曼分布是描述经典粒子在能量状态间的分布情况的分布函数。
根据玻尔兹曼分布,粒子在不同能级上的分布概率与能级的能量成反比。
玻色分布是描述玻色子(具有整数自旋)的分布情况的分布函数。
根据玻色分布,玻色子能够在同一能级上具有任意多个粒子,并且各个粒子之间没有排斥作用。
费米分布是描述费米子(具有半整数自旋)的分布情况的分布函数。
根据费米分布,费米子不能在同一个能级上具有多个粒子,并且各个粒子之间存在排斥作用。
三种分布函数在经典极限情况下可以相互转化。
当粒子间的相互作用很弱或忽略不计时,玻色分布和费米分布在高温极限下会趋向于玻尔兹曼分布。
而在低温极限下,玻尔兹曼分布则趋向于费米分布(保守统计中的玻尔兹曼-玻色平衡)。
综上所述,玻尔兹曼分布、玻色分布和费米分布是三种不同情况下的统计分布,它们在特定条件下可以相互转化或者趋于相似的分布模式。
费米分布函数和玻尔兹曼函数的区别费米分布函数和玻尔兹曼函数是描述粒子统计行为的两个重要数学工具。
它们在统计物理学和量子力学中扮演着不可或缺的角色。
费米分布函数描述了处于热平衡态下的费米子(如电子、中子)的能级分布情况,而玻尔兹曼函数则描述了玻色子(如光子、声子)的能级分布情况。
虽然两者都涉及能级分布,但它们有明显的区别。
首先,费米分布函数和玻尔兹曼函数的推导基于不同的统计假设。
费米-狄拉克统计假设认为费米子具有自旋1/2,并遵循泡利不相容原理,即每个量子态最多只能有一个粒子占据。
根据这一假设,可以推导出费米分布函数的表达式。
而玻色-爱因斯坦统计假设认为玻色子具有整数自旋,并允许多个粒子占据同一个量子态。
根据这一假设,可以推导出玻尔兹曼函数的表达式。
其次,费米分布函数和玻尔兹曼函数的表达式具有不同的形式。
费米分布函数表示了处于热平衡态下的费米子能级的占有概率,其表达式为:f(E) = 1 / (exp((E - μ) / kT) + 1)其中,E为能级,μ为化学势,k为玻尔兹曼常数,T为温度。
费米分布函数的特点是在低温下,占据概率逐渐趋于1,近乎于全满,并且在化学势附近有一个陡峭的跃迁区域。
而在高温下,概率逐渐趋于0,近乎于全空。
玻尔兹曼函数表示了处于热平衡态下的玻色子能级的占有概率,其表达式为:f(E) = 1 / (exp((E - μ) / kT) - 1)玻尔兹曼函数的特点是在低温下,占据概率趋近于0,近乎于全空,并且在化学势附近有一个陡峭的跃迁区域。
而在高温下,概率逐渐趋近于1,近乎于全满。
此外,费米分布函数和玻尔兹曼函数的物理意义也有所不同。
费米分布函数描述了费米子在系统中的分布情况,它决定了费米子填充能级的方式,从而影响了材料的导电性、磁性和热疏导性等性质。
费米分布函数还能够解释费米面、费米能级和众多金属、半导体、绝缘体材料的电子性质。
而玻尔兹曼函数描述了玻色子的分布情况,它决定了玻色子在系统中的占据概率,从而影响了光子的发射和吸收过程、声子的传播和散射过程。