2019版高考生物一轮复习基因突变和基因重组第一讲基因突变和基因重组精选教案
- 格式:docx
- 大小:1.34 MB
- 文档页数:19
第一讲 基因突变和基因重组 考点一 基因突变及其与性状的关系1.基因突变的实例——镰刀型细胞贫血症细胞形态变化:中央微凹的圆饼状→弯曲的镰刀状细胞特点:细胞易破裂,使人患溶血性贫血(1)图示中a 、b 、c 过程分别代表DNA 复制、转录和翻译。
突变主要发生在a (填字母)过程中。
(2)患者贫血的直接原因是血红蛋白异常(谷氨酸→缬氨酸),根本原因是发生了基因突变,碱基对由=====T A 替换成=====A T。
(3)用光学显微镜能否观察到红细胞形状的变化?能结论:镰刀型细胞贫血症是由于基因突变引起的一种遗传病,是由于基因结构改变而产生的2.明确基因突变对蛋白质影响的四种情况类型影响范围 对氨基酸序列的影响 替换小 可改变1个氨基酸或不改变【由于密码子的简并性】,也可能使翻译提前终止 增添大 对插入位置前不影响,影响插入位置后的序列 缺失大 对缺失位置前不影响,影响缺失位置后的序列 增添或缺失3小 增添或缺失位置增加或缺失一个氨基酸对应的序列个碱基分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变。
实质为:基因内部发生的碱基对的种类和数量改变。
即基因突变使基因中碱基排列顺序发生改变。
注意:①DNA中碱基对的增添、缺失和替换不一定是基因突变,基因是有遗传效应的DNA片段,不具有遗传效应的DNA片段也可发生碱基对的改变,但不属于基因突变②基因突变一定会引起基因结构的改变(分子结构,不是空间结构改变),③一条染色体上的基因数量和位置并未改变。
【基因突变无法用光学显微镜看到】结果:可产生该基因的等位基因【注意:病毒和原核细胞不存在等位基因,因此,原核生物和病毒基因突变产生的是新基因】思考1:基因突变都会遗传给后代吗?不一定,若发生在配子中,可遗传,若发生在体细胞中,一般不能遗传。
有些植物体细胞中的基因突变可通过无性繁殖(如植物组织培养、扦插、嫁接)传递。
此外人体某些体细胞基因的突变(原癌基因和抑癌基因),有可能发展为癌细胞思考2:生物性状的改变一定是由基因突变引起的吗?不一定,也可能是由环境改变引起的思考3:为什么在强烈的日光下要涂抹防晒霜?做X射线透视的医务人员要穿防护衣?易诱发基因突变,使人患癌症4.基因突变的原因和特点外因:物理因素:如X射线、γ射线、紫外线、激光等。
高一生物《生物中基因突变和基因重组》教案一、教学目标1.理解基因突变与基因重组的概念和意义;2.掌握基因突变与基因重组的分类、原因和影响;3.了解基因突变和基因重组在生物进化和遗传工程中的应用;4.培养学生分析和解决问题的能力。
二、教学重点1.基因突变的分类;2.基因重组的原因和方式;3.基因突变和基因重组的应用。
三、教学内容1. 基因突变基因突变是指在基因序列中发生的变异现象,可以分为以下几种类型:•点突变:由于核苷酸替换、插入或缺失引起的单个碱基的改变;•缺失突变:染色体片段的缺失;•插入突变:染色体上非同源DNA片段的插入;•倒位突变:染色体上片段的颠倒。
2. 基因重组基因重组是指在同一染色体上或不同染色体之间的DNA片段的重组,主要有以下几种方式:•杂交重组:同源染色体上的交换;•交换重组:非同源染色体上的交换;•倒位重组:染色体上片段的颠倒;•消失重组:染色体上非同源DNA片段的消失。
3. 基因突变和基因重组的应用基因突变和基因重组在生物进化和遗传工程中有着重要的应用:•进化:基因突变和基因重组是生物进化的重要驱动力之一,通过不断的变异和重组使得物种能够适应环境的变化;•遗传工程:基因突变和基因重组可以用于改良农作物、培育优良品种,也可以用于生产重要的药物和工业品。
四、教学方法1.探究法:通过实例引导学生发现基因突变和基因重组的规律;2.案例分析法:通过分析真实的案例,让学生理解基因突变和基因重组的应用;3.讨论法:组织学生进行小组讨论,加深对基因突变和基因重组的理解。
五、教学过程1. 导入与交流通过引入一些有趣的生物现象,激发学生对基因突变和基因重组的兴趣,并引导学生进行讨论。
2. 知识讲解与探究首先介绍基因突变和基因重组的概念,然后通过实例和图片,讲解各种基因突变和基因重组的分类、原因和影响。
引导学生探究基因突变和基因重组的规律和机制。
3. 案例分析与讨论根据具体的案例,让学生分析基因突变和基因重组在生物进化和遗传工程中的应用,并讨论其中的道理和效果。
基因突变与基因重组一、书本基础知识整理1.基因突变概念类型原因特点时间意义2.基因重组概念类型意义二、思维拓展1.DNA分子中碱基对的增添、缺失、替换与遗传密码的特点之间的联系(1)遗传密码是连续的。
两个密码子之间没有任何其他核苷酸予以隔开,正确地阅读密码必须从一个正确地起点开始,以后连续不断地一个一个往下读,直至读到终止信号。
假设在密码上插入一个或删除一个碱基,就会使从这一密码子起的以后的密码全部发生错误(移码突变)。
(2)密码子的简并性。
密码子有64个,氨基酸只有20个,因此多数氨基酸都有几个密码子,如亮氨酸有6个密码子。
密码子的简并性对遗传的稳定性有一定意义,如UUA变为UUG时,依然是亮氨酸。
(3)密码子的专一性。
氨基酸主要由前2个碱基决定,第3位碱基的改变,常不引起氨基酸的改变,也就是密码子第3位发生改变时,密码子的意义不变。
如UUA改为UUG时,其决定的氨基酸仍是亮氨酸。
(4)64个密码子中有3个密码子不编码任何氨基酸,是肽链合成的终止密码子。
AUG 既是甲硫氨酸的密码子,又是肽链合成的起始密码子。
(5)密码子的通用性。
无论是病毒,还是原核生物或真核生物,密码子都是通用的。
2.与基因突变相关的知识点3.与基因重组相关知识点跟踪训练(一)选择题1.自然界中,一种生物某一基因及其三种突变基因决定的蛋白质的部分氨基酸序列如下:正常基因精氨酸苯丙氨酸亮氨酸苏氨酸脯氨酸突变基因1 精氨酸苯丙氨酸亮氨酸苏氨酸脯氨酸突变基因2 精氨酸亮氨酸亮氨酸苏氨酸脯氨酸突变基因3 精氨酸苯丙氨酸苏氨酸酪氨酸丙氨酸根据上述氨基酸序列确定这三种突变基因DNA分子的改变是()A.突变基因1和2为一个碱基的替换,突变基因3为一个碱基的增添B.突变基因2和3为一个碱基的替换,突变基因1为一个碱基的增添C.突变基因1为一个碱基的替换,突变基因2和3为一个碱基的增添D.突变基因2为一个碱基的替换,突变基因1和3为一个碱基的增添2.将纯种小麦种于生产田,发现边际和灌水两侧的植株总体上比中间的长得好。
《基因突变和基因重组》高一生物复习教案一、教学目标1.理解基因突变和基因重组的概念、类型及其在生物进化中的作用。
2.掌握基因突变和基因重组的遗传规律及应用。
3.培养学生运用生物学知识解决实际问题的能力。
二、教学重点与难点1.重点:基因突变和基因重组的概念、类型、遗传规律及应用。
2.难点:基因突变和基因重组的遗传规律及应用。
三、教学过程1.导入(1)回顾基因的概念,引导学生思考基因在生物体中的作用。
(2)引入基因突变和基因重组的概念,激发学生兴趣。
2.基因突变(1)介绍基因突变的概念:基因突变是指基因序列发生改变,包括点突变、插入、缺失等。
(2)讲解基因突变的类型:自发突变、诱发突变。
(3)分析基因突变对生物体的影响:有利突变、有害突变、中性突变。
(4)讨论基因突变在生物进化中的作用。
3.基因重组(1)介绍基因重组的概念:基因重组是指在生物体进行有性生殖的过程中,同源染色体上的基因发生交换,产生新的基因组合。
(2)讲解基因重组的类型:同源重组、非同源重组。
(3)分析基因重组的意义:增加生物体的遗传多样性,为生物进化提供原材料。
4.基因突变和基因重组的遗传规律(1)讲解基因突变和基因重组的遗传规律:孟德尔遗传规律、连锁互换规律。
(2)通过实例分析,让学生理解基因突变和基因重组在遗传过程中的作用。
5.基因突变和基因重组的应用(1)介绍基因突变和基因重组在生物技术领域的应用:基因工程、基因治疗等。
(2)讨论基因突变和基因重组在农业生产、医药卫生等领域的实际意义。
6.课堂小结(2)强调基因突变和基因重组在生物进化中的重要作用。
7.作业布置(1)让学生整理课堂笔记,加深对基因突变和基因重组的理解。
(2)布置相关练习题,巩固所学知识。
四、教学反思1.本节课通过讲解、讨论、实例分析等方式,使学生掌握了基因突变和基因重组的基本概念、类型、遗传规律及应用。
2.通过课堂小结,帮助学生梳理知识体系,提高复习效果。
3.课后作业的布置,有助于巩固所学知识,提高学生的实际运用能力。
年高三生物一轮复习教案-.-基因突变和基因重组————————————————————————————————作者:————————————————————————————————日期:第五章基因突变及其他变异5.1 基因突变和基因重组一、基因突变的实例1、变异不可遗传的变异:环境因素引起的,自身的遗传物质没有改变生物的变异基因突变可遗传的变异:遗传物质发生改变基因重组染色体变异2、基因突变实例:镰刀型细胞贫血症(1)缬氨酸—组氨酸—亮氨酸—苏氨酸—脯氨酸—谷氨酸—谷氨酸—赖氨酸······正常缬氨酸—组氨酸—亮氨酸—苏氨酸—脯氨酸—缬氨酸—谷氨酸—赖氨酸······异常(2)镰刀型贫血症病因的图解(3)镰刀型贫血症是常染色体上的隐性遗传,但杂合子对抗疟疾有一定的疗效。
基因治疗是根本的方法。
3、基因突变的概念(1)概念:DNA分子中发生碱基对的替换、增添和缺失,引起的基因结构的改变。
基因突变光学显微镜下观察不到。
(2)突变三种情况中影响相对较小的是碱基对的替换①氨基酸的密码子有多个可能经突变后控制决定的仍是同一个氨基酸②基因突变发生在不编码氨基酸的DNA片段上如:突变在内含子或非编码区部分③也可能是基因有选择性表达而在某些细胞中没得到表达。
④显性纯合子突变成杂合子(AA→Aa)⑤性状表现是遗传基因和环境因素共同作用的结果,在某些环境条件下,改变了的基因可能并不会在性状上表现出来等。
(3)基因突变发生的时间细胞周期中的分裂间期;因为在间期DNA复制解旋使DNA成单链结构不稳定。
①真核生物(有丝分裂、减数分裂、无丝分裂);②原核生物(分裂生殖);③病毒(增殖)。
(4)基因突变是染色体的某一位点上基因的改变,使一个基因变成它的等位基因(A→a或a →A),不改变染色体上基因的数量,只改变基因的内部结构,并且通常会引起一定的表现型的变化.(5)突变后的基因遗传问题①基因突变发生在配子中可能遗传给后代。
第一讲 因突变和基因重组[基础知识·系统化]知识点一 基因突变1.基因突变的实例——镰刀型细胞贫血症2.基因突变的相关知识归纳知识点二 基因重组[基本技能·问题化]1.判断下列有关叙述的正误(1)基因R复制时,R中的碱基对T—A被碱基对C—G替换可导致基因突变(√)(2)基因突变可决定生物进化的方向(×)(3)病毒、大肠杆菌及动植物都可发生基因突变(√)(4)受精过程中可发生基因重组(×)(5)抗虫小麦与矮秆小麦杂交,通过基因重组可获得抗虫矮秆小麦(√)(6)基因重组只能产生新基因型和重组性状,不能产生新基因和新性状(√)2.下列有关基因突变的叙述,错误的是( )A.只有进行有性生殖的生物才能发生基因突变B.基因突变可发生在生物体发育的任何时期C.基因突变是生物进化的重要因素之一D.基因碱基序列改变不一定导致性状改变解析:选A 基因突变是指DNA分子碱基对的增添、缺失和替换。
进行有性生殖和无性生殖的生物都有可能发生基因突变;在生物体发育的任何时期都可发生基因突变;基因突变产生新基因,是生物进化的重要因素之一;基因碱基序列改变导致mRNA的序列改变,但由于存在多个密码子决定同一氨基酸等原因导致生物性状不一定改变。
3.(2018·揭阳一模)具有一个镰刀型细胞贫血症突变基因的个体(即杂合子)并不表现镰刀型细胞贫血症的症状,因为该个体能同时合成正常和异常血红蛋白,并对疟疾具有较强的抵抗力。
镰刀型细胞贫血症主要流行于非洲疟疾猖獗的地区。
对此现象的解释,正确的是( )A.基因突变是有利的B.基因突变是有害的C.基因突变的有害性是相对的D.镰刀型细胞贫血症突变基因编码的异常蛋白质是无活性的解析:选C 携带者的后代可能患镰刀型细胞贫血症,但其对疟疾具较强抵抗力,表明基因突变的有利和有害是相对的;由于杂合子能同时合成正常和异常血红蛋白,并对疟疾具有较强的抵抗力,所以镰刀型细胞贫血症突变基因编码的异常蛋白质是有活性的。
4.下列关于基因重组的叙述错误的是( )A.基因重组通常发生在有性生殖过程中B.基因重组产生的变异能为生物进化提供原材料C.同源染色体上的基因可以发生重组D.非同源染色体上的非等位基因不可以发生重组解析:选D 同源染色体上的基因可以通过交叉互换发生重组,非同源染色体上的非等位基因通过非同源染色体自由组合发生重组。
5.以下各项属于基因重组的是( )A.基因型为Aa的个体自交,后代发生性状分离B.雌、雄配子随机结合,产生不同类型的子代个体C.YyRr个体自交后代出现不同于亲本的新类型D.同卵双生姐妹间性状出现差异解析:选C 基因重组的来源有减数第一次分裂后期非同源染色体上非等位基因的自由组合、减数分裂四分体时期同源染色体上非姐妹染色单体的交叉互换和基因工程中的DNA 重组,YyRr个体自交后代出现不同于亲本的新类型是基因自由组合的结果,属于基因重组。
考点一基因突变及其与性状的关系1.图示基因突变的机理、类型及特点2.明确基因突变的原因及与进化的关系[对点落实]1.(2018·衡水模拟)如图为某植物细胞一个DNA分子中a、b、c三个基因的分布状况,图中Ⅰ、Ⅱ为无遗传效应的序列。
有关叙述正确的是( )B.Ⅰ、Ⅱ也可能发生碱基对的增添、缺失和替换,但不属于基因突变C.一个细胞周期中,间期基因突变频率较高,主要是由于间期时间相对较长D.在减数分裂的四分体时期,b、c之间可发生交叉互换解析:选B 对a、b、c等不同基因而言,基因突变均可能发生,这体现了基因突变的随机性;Ⅰ、Ⅱ也可能发生碱基对的增添、缺失和替换,但没有改变基因的结构,因而不属于基因突变;一个细胞周期中,间期基因突变频率较高,主要是由于间期在进行DNA复制,此时DNA的双螺旋结构已经打开,很容易发生突变;在减数分裂的四分体时期,只有同源染色体的非姐妹染色单体间才可发生交叉互换。
2.(2018·济南一模)脆性X染色体是由于染色体上的FMR1基因出现过量的CGG//GCC重复序列,导致DNA与蛋白质结合异常,从而出现“溢沟”,染色体易从“溢沟”处断裂。
下列分析错误的是( )A.脆性X染色体出现的根本原因是基因突变B.脆性X染色体更易发生染色体的结构变异C.男性与女性体细胞中出现X染色体“溢沟”的概率不同D.由于存在较多的GC重复序列,脆性X染色体结构更稳定解析:选D 由题意可推知导致出现脆性X染色体的变异类型是基因突变;脆性X染色体易从“溢沟”处断裂,故更易发生染色体的结构变异;该遗传病位于X染色体上,所以男性与女性体细胞中出现X染色体“溢沟”的概率不同;脆性X染色体易从“溢沟”处断裂,结构不稳定。
3.(2018·烟台模拟)如图为人WNK4基因部分碱基序列及其编码蛋白质的部分氨基酸序列示意图。
已知WNK4基因发生一种突变,导致1 169位赖氨酸变为谷氨酸。
该基因发生的突变是( )A.①处插入碱基对G—CB.②处碱基对A—T替换为G—CC.③处缺失碱基对A—TD.④处碱基对G—C替换为A—T解析:选B 首先由赖氨酸的密码子分析转录模板基因碱基为TTC,确定赖氨酸的密码子为AAG,①③处插入、缺失碱基对会使其后编码的氨基酸序列发生改变,④处碱基对替换后密码子为AAA还是赖氨酸,②处碱基对替换后密码子为GAG,对应谷氨酸。
[类题通法] 基因突变类型的“二确定”(1)确定突变的形式:若只是一个氨基酸发生改变,则一般为碱基对的替换;若氨基酸序列发生大的变化,则一般为碱基对的增添或缺失。
(2)确定替换的碱基对:一般根据突变前后转录成mRNA的碱基序列判断,若只有一个碱基不同,则该碱基所对应的基因中的碱基即为替换碱基。
1.基因结构中碱基对的替换、增添、缺失对氨基酸序列的影响大小(1)基因突变可能引发肽链不能合成。
(2)肽链延长(终止密码子推后出现)。
(3)肽链缩短(终止密码子提前出现)。
(4)肽链中氨基酸种类改变。
3.基因突变未引起生物性状改变的四大原因(1)突变部位:基因突变发生在基因的非编码区。
(2)密码子简并性:若基因突变发生后,引起了mRNA上的密码子改变,但由于一种氨基酸可对应多种密码子,若新产生的密码子与原密码子对应的是同一种氨基酸,此时突变基因控制的性状不改变。
(3)隐性突变:若基因突变为隐性突变,如AA中其中一个A→a,此时性状也不改变。
(4)有些突变改变了蛋白质中个别氨基酸的位置,但该蛋白质的功能不变。
[对点落实]4.用人工诱变方法使黄色短杆菌的某基因模板链的部分脱氧核苷酸序列发生如下变化:CCGCTAACG→CCGCGAACG,那么黄色短杆菌将发生的变化和结果是(可能用到的密码子:天冬氨酸—GAU、GAC;丙氨酸—GCA、GCU、GCC、GCG)( )A.基因突变,性状改变B.基因突变,性状没有改变C.染色体结构缺失,性状没有改变D.染色体数目改变,性状改变解析:选A 对比题中该基因的部分序列可知,基因中CTA转变成CGA,mRNA中相应的密码子由GAU转变成GCU,多肽中相应的氨基酸由天冬氨酸转变成丙氨酸。
因此,黄色短杆菌发生了基因突变,性状也发生了改变。
由于只是部分碱基的改变,而且细菌无染色体结构所以不会导致染色体结构缺失和数目的变化。
5.嗜热土壤芽孢杆菌产生的β葡萄糖苷酶(bglB)是一种耐热纤维素酶,在PCR扩增bglB基因的过程中,加入诱变剂可提高bglB基因的突变率。
经过筛选,可获得能表达出热稳定性高的bglB酶的基因。
上述育种技术与用诱变剂直接处理嗜热土壤芽孢杆菌相比,获取热稳定性高的bglB酶基因的效率更高,其原因不是在PCR过程中( ) A.仅针对bglB基因进行诱变B.bglB基因产生了定向突变C.bglB基因可快速累积突变D.bglB基因突变可能会导致酶的氨基酸种类、数目等改变解析:选B PCR过程中仅针对bglB基因进行诱变,而用诱变剂直接处理对嗜热土壤芽孢杆菌所有DNA均起作用;基因突变具有不定向性;突变后的bglB基因可以进行PCR技术扩增,因此可快速累积突变;bglB基因突变可能会导致酶的氨基酸种类、数目等改变。
6.水稻核基因hw(t)表达的蛋白参与光合作用,该基因发生了单碱基替换,导致表达的蛋白减少了251个氨基酸。
已知突变使mRNA发生改变的碱基在如图所示区域内(终止密码:UAA、UAG或UGA)。
下列说法正确的是( )注:图中数字表示mRNA中从起始密码开始算起的碱基序号。
A.hw(t)基因编码的蛋白通过被动运输进入叶绿体B.碱基替换只可能发生在第257号核苷酸位置C.突变后参与基因转录的嘌呤核苷酸比例降低D.突变前基因表达的蛋白共含有336 个氨基酸解析:选D hw(t)基因编码的蛋白(大分子物质)通过胞吞的方式进入叶绿体;根据题意可知,单碱基替换导致表达的蛋白减少了251个氨基酸,则替换导致终止密码提前,则所在图示区域可得到此结果的碱基包括第257、258号核苷酸位置,替换后分别使对应密码子变为UAG、UGA;突变后只影响蛋白质的翻译,不会影响参与基因转录的嘌呤核苷酸比例;突变前基因表达的蛋白共含有255÷3+251=336个氨基酸。
[归纳拓展] 有关基因突变的“一定”和“不一定”(1)基因突变一定会引起基因结构的改变,即基因中碱基排列顺序的改变。
(2)基因突变不一定会引起生物性状的改变。
(3)基因突变不一定都产生等位基因:真核生物染色体上的基因突变可产生它的等位基因,而原核生物和病毒基因突变产生的是一个新基因。
(4)基因突变不一定都能遗传给后代:①基因突变如果发生在体细胞的有丝分裂过程中,一般不遗传给后代,但有些植物可能通过无性生殖传递给后代。
②如果发生在减数分裂过程中,可以通过配子传递给后代。
考点二基因重组[典型图示] 图示解读基因重组的类型[问题设计](1)上述类型1~3依次代表哪类基因重组?提示:类型1为交叉互换型,类型2为自由组合型,类型3为基因工程。
(2)请指出三类基因重组发生的时期。
提示:类型1发生于MⅠ前期,类型2发生于MⅠ后期,类型3发生于基因工程操作过程中。
[对点落实]1.(2018·普陀区一模)下列关于基因重组的说法,错误的是( )A .生物体进行有性生殖过程中控制不同性状的基因的重新组合属于基因重组B .减数分裂四分体时期,同源染色体的姐妹染色单体之间的局部交换可导致基因重组C .减数分裂过程中,非同源染色体上的非等位基因自由组合可导致基因重组D .一般情况下,水稻花药内可发生基因重组,而根尖则不能解析:选B 基因重组是指在生物体进行有性生殖的过程中,控制不同性状的非同源染色体上的非等位基因重新组合;减数分裂四分体时期,同源染色体的非姐妹染色单体之间的局部交换可导致基因重组;减数第一次分裂后期,非同源染色体上的非等位基因自由组合可导致基因重组;一般情况下,基因重组只发生在减数分裂形成配子的过程中,水稻花药内精原细胞减数分裂形成配子的过程中可发生基因重组,但根尖细胞只能进行有丝分裂,不会发生基因重组。