新版新人教版2022年八年级数学上册第十四章整式的乘法与因式分解141整式的乘法1412幂的乘方导学
- 格式:doc
- 大小:1.91 MB
- 文档页数:2
第十四章整式的乘法与因式分解14.3 因式分解14.3.1 提公因式法一、教学目标【知识与技能】1.了解因式分解的意义,以及它与整式乘法的关系,掌握因式分解的概念;2.能确定多项式各项的公因式,会用提公因式法把多项式分解因式.【过程与方法】经历从分解因数到分解因式的类比过程,感受因式分解在解决问题中的作用.【情感、态度与价值观】培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】因式分解的概念;提公因式法分解因式.【教学难点】正确理解因式分解的概念,准确找出公因式.五、课前准备教师:课件、三角尺、直尺等.学生:直尺、练习本、铅笔、钢笔或圆珠笔.六、教学过程(一)导入新课我们知道,利用整式的乘法运算,可以将几个整式的积化为一个多项式的形式,反过来,能不能将一个多项式化成几个整式的积的形式呢?若能,这种变形叫做什么呢?(出示课件2)(二)探索新知1.创设情境,探究提公因式法分解因式教师问1:请同学们先完成下列计算,看谁算得又准又快.(1)20×(-3)2+60×(-3);(2)1012-992;(3)572+2×57×43+432.学生回答:如下:解:方法一:(1)20×(-3)2+60×(-3)=20×9-180=180-180=0;(2)1012-992=10201-9801=400;(3)572+2×57×43+432=3249+4902+1849=8151+1849=10000.方法二:(1)20×(-3)2+60×(-3)=-3×[20×(-3)+60]=1-3×[-60+60]=0;(2)1012-992=(101+99)(101-99)=200×2=400;(3)572+2×57×43+432=3(57+43)2=1002=10000.教师问2:上边两种方法,哪一种简单呢?学生回答:方法二简单.教师讲解:在上述运算中,大家或将数字分解成两个数的乘积,或者逆用乘法公式使运算变得简单易行,类似地,在式的变形中,有时也需要将一个多项式写成几个整式的乘积形成,这就是我们从今天开始要探究的内容——因式分解.(板书课题)教师问3:如图,一块菜地被分成三部分,你能用不同的方式表示这块草坪的面积吗?(出示课件4)学生回答:方法一:m(a+b+c);方法二:ma+mb+mc教师问4:m(a+b+c)=ma+mb+mc是整式的乘法,那么ma+mb+mc=m(a+b+c),你猜想是什么呢?学生回答:因式分解.教师问5:请同学们运用整式乘法法则或公式填空:(出示课件5)(1) m(a+b+c)= ____________________ ;(2) (x+1)(x–1)=___________________;(3) (a+b)2 = ______________________.学生回答:(1) m(a+b+c)= ma+mb+mc ;(2) (x+1)(x–1)=x2-1;(3) (a+b)2 = a2+2ab+b2.教师问6:根据等式的性质填空:(1) ma+mb+mc=( )( )(2) x2–1 =( )( )(3) a2 +2ab+b2 =( )2学生回答:(1) ma+mb+mc=( m)( a+b+c )(2) x2–1 =( x+1)( x-1)(3) a2 +2ab+b2 =( a+b)2教师问7:比一比,这些式子有什么共同点?学生讨论后回答:左边是多项式,右边是多相式的乘积.教师总结:(出示课件6)把一个多项式化为几个整式的乘积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.教师问8:你认为因式分解与整式乘法有什么关系?(出示课件7)学生思考回答,师生共同解答如下:因式分解与整式乘法是互逆变形关系,整式乘法是一种运算,而因式分解是对多项式的一种变形,不是运算.教师问9:x2–1 = (x+1)(x–1)有何特征呢?学生回答:左边是多项式,右边是几个整式的乘积例1:下列从左到右的变形中是因式分解的有( )(出示课件8)①x2–y2–1=(x+y)(x–y)–1;②x3+x=x(x2+1);③(x–y)2=x2–2xy+y2;④x2–9y2=(x+3y)(x–3y).A.1个B.2个C.3个D.4个因式分解是积的形式,①是和的形式,所以不是因式分解,②是因式分解,③是整式的乘法,④是因式分解.故选B.答案:B.总结点拨:因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解的右边是两个或几个因式积的形式,整式乘法的右边是多项式的形式.教师问10:再观察下面问题中的第(1)题和第(3)题,你能发现什么特点?(1)x2+x=________;(2)x2-1=________;(3)am+bm+cm=________.学生独立思考后回答:发现(1)中各项都有一个相同的因式x,(3)中各项都有一个相同的因式m.教师问11:观察下列多项式,它们有那些相同的因式?(出示课件10)pa+pb+pc,x2+x学生回答:前者的相同因式为p,后者的相同因式为x。
可编辑修改精选全文完整版《整式的乘法》说课稿尊敬的各位评委、各位老师:大家好!今天我说课的题目是《整式的乘法》,下面我就教材、教法与学法指导、教学设计和教学反思四个方面来向大家介绍一下我对本节课的理解与设计。
一、说教材1、教材的地位与作用:本节课是学生在学习了单项式乘以单项式、单项式乘以多项式之后安排的内容,既是单项式与多项式相乘的应用与推广,又为今后学习乘法公式作准备。
同时,还可以激发学生对数学问题中蕴含的内在规律进行探索的兴趣和培养学生知识迁移的能力;其得出的过程涉及数形结合,整体代换等重要的数学思想。
因此,它在整个初中阶段“数与式”的学习中占有重要地位。
2、教学目标:根据教材内容和学生实际情况,我确定了三个教学目标:(1)知识与能力:通过自己的探索,用几何和代数两种方法得出多项式与多项式的乘法法则;(2)过程与方法:在学生探究的过程中培养学生的思维能力及分析和解决问题的能力,体会数形结合的思想和整体代换的思想;(3)通过数学活动,让学生对数学产生好奇心和求知欲,从而体会到探索与创造的乐趣。
3、教学重难点:多项式乘以多项式法则的推导过程以及法则的归纳和应用。
二、说教法和学法指导:为了充分调动学生的参与意识,更好地落实各项目标,本节课以学生的数学活动为主线,以让学生参与为本课的核心,以自主、合作、探究、实践为学生的主要学习方式,在此基础上,我采用了如下的教学方法:尝试法、实践法、讨论法、发现法,让学生全员参与,全员活动,让学生和老师、学生和学生之间互动,特别是让学生展示、点评、质疑,充分调动了学生的积极性,发挥学生的潜能。
三、说教学设计:本节课的主要教学过程设计了“导学达标——探究释疑——拓展延伸——内化迁移”四个基本环节。
1、导学达标:在这个环节首先检查了学生的预习案完成情况,针对预习中存在的问题进行点拨。
然后由一个实际问题引入课题,激发学生兴趣,最后再解读本课的学习目标、重难点,让学生带着目标和问题展开本节课的学习。
一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“整式的乘法与因式分解”.1.课标分析《标准2022》指出初中阶段“数与代数”领域是数学知识体系的基础之一,是学生认知数量关系、探索数学规律、建立数学模型的基石,可以帮助学生从数量的角度清晰准确地认识、理解和表达现实世界.数与代数领域的学习,有助于学生形成抽象能力、推理能力和模型观念,发展运算能力,是感悟用数学语言表达现实世界的重要载体.“数与式”主题是代数的基本语言,初中阶段关注用字母表述代数式,以及代数式的运算,字母可以像数一样进行运算和推理,通过字母运算和推理得到的结论具有一般性,培养学生抽象能力.本单元的课标要求是会用文字和符号语言表述整数指数幂的基本性质,能根据整数指数幂的基本性质进行幂的运算;理解整式的概念,能进行整式的乘法运算(多项式的乘法仅限于一次式之间和一次式与二次式的乘法);知道平方差公式、完全平方公式的几何背景,并能运用公式进行简单计算和推理;能用提公因式法、公式法(对二次式直接利用平方差公式或完全平方公式)进行因式分解(指数为正整数).整式的乘法运算和因式分解是基本而重要的代数初步知识,这些知识是以后进一步学习分式、根式运算和函数等知识的基础,在后续的数学学习中具有重要的意义.同时,这些知识也是学习物理、化学等学科的基础.在数与式的教学中要把握数与式的整体性,帮助学生进一步感悟数是对数量的抽象;通过代数式与代数运算的教学,让学生进一步理解字母表示数的意义;通过基于符号的运算和推理,建立符号意识,感悟数学结论的一般性,理解运算方法与运算律的关系,提升运算能力.2.本单元教学内容分析人教版教材八年级上册第十四章“整式的乘法与因式分解”,本章包括三个小节:14.1整式的乘法;14.2乘法公式;14.3因式分解.首先强调重要数学思想方法的渗透,由于整式中的字母表示数,因此数的运算律和运算性质在整式的运算中仍然成立,强调了“类比”的思想方法的渗透;由数的运算引出式的运算规律,体现了数学知识之间具体与抽象的内在联系和内在统一性.对于整式乘法法则的教学,要渗透“转化”的思想方法.例如,多项式乘多项式的法则,第一步是转化为多项式与单项式相乘,第二步则是转化为单项式与单项式相乘,而单项式与单项式相乘则转化为有理数的乘法与同底数幂的乘法.在整式除法的教学中,也要渗透“转化”的思想方法,多项式与单项式相除的第一步是转化为单项式与单项式相除,第二步是转化为有理数的除法与同底数幂的除法.由上可知,整式的乘、除法教学要循序渐进,打好各项知识的基础,并运用好“转化”的思想方法,这样才能够很好地完成后面的教学内容,取得较好的教学效果.此外,本章教材中强调了代数与几何之间的联系,整式乘法和乘法公式部分体现了数形结合的重要数学思想和方法,借助几何图形对运算法则及公式做了直观解释,体现了代数和几何之间的内在联系和统一,能让学生更好地理解有关知识,培养学生几何直观和抽象能力的数学核心素养.充分体现从具体到抽象再到具体的认知过程,从具体的实际问题出发,归纳出相关的数学概念,或抽象出隐含在具体问题中的数学思想,这是本章的一个突出特点.培养学生用数学眼光观察世界.以第14.1节为例,无论同底数幂相乘、幂的乘方还是积的乘方,都是从具体的问题出发,然后归纳出运算性质,最后再用归纳得出的结果进一步指导比较复杂的实际问题.整式的乘法也是从具体的问题出发,归纳出运算法则,再进一步用于解决实际问题.这种从具体到抽象,再由抽象到具体的编排方式,可以循序渐进地向学生呈现教学内容,有助于学生的理解和掌握,符合现阶段学生的认知水平.根据数学知识的逻辑关系循序渐进地安排教学内容,本章所涉及的数学教学内容之间不仅具有密切的联系,且具有很强的逻辑关系.在整式的乘法中,多项式的乘法要利用分配律转化为单项式的乘法,而单项式的乘法要利用交换律和结合律转化为幂的运算.整式的除法与乘法互为逆运算,乘法公式是具有特殊形式的整式乘法问题,因式分解是与整式乘法方向相反的恒等变形,在这些内容中,幂的运算是基础,单项式的乘法是关键,学好一般整式乘法的运算是进一步学习本章其他知识的前提.教学中要注重培养学生的逻辑思维、知识体系的形成和思想方法的渗透.对选学内容的学习进行分层教学,提升学生的理解能力,教学中除了要关注学生在数学知识和数学能力方面的提高外,还要考虑在传承数学史知识及数学文化修养方面做出努力,以使学生在获得数学知识的同时人文精神也得到陶冶.本章安排了两个“阅读与思考”的选学栏目,这些选学内容是本章有关内容的拓展与延伸.不失时机地安排学生阅读这些材料,可以开阔他们的视野,拓展他们的知识面.“阅读与思考”中的“杨辉三角”,不但可以使学生了解一些二项展开式中各项系数的知识,增强他们的数学修养,还可以潜移默化地培养他们的爱国情怀.“阅读与思考”中的“x2+(p+q)x+pq型式子的因式分解”,可以让学生初步感受分解因式的另一种方法:十字相乘法,这也有利于学生理解必修内容.三、单元学情分析本单元是人教版数学教材八年级上册第十四章“整式的乘法与因式分解”,学生在学习了有理数、代数式、整式的概念的基础上研究了有理数的加减乘除乘方混合运算和整式的加减运算,学生掌握了研究问题的方法,类比数的研究知道要学习整式的乘除运算.根据乘方意义和运算来研究幂的运算,学生有了一定基础学起来便顺理成章.但是和整式加减法相比,整式乘除法无论是次数和项数都在增加,容易出现错误,这是在教学中要重点关注的地方,对学生的运算能力、理解能力、交流归纳能力及对数学方法的掌握能力要求较高.尤其平方差公式和完全平方公式的变形和灵活应用更是难点,因式分解和乘法公式的关系以及正确因式分解也是重点和易错点,对学生来说仍会有困难.四、单元学习目标1.掌握正整数幂的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,培养学生语言表达能力和抽象概括能力,并能灵活运用这些性质进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的运算法则,并运用它们进行运算,培养学生的运算能力和应用意识.2.经历猜测、推理、验证,会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,培养学生几何直观,能利用公式进行乘法运算,体会公式的简洁性,培养学生的思维能力和运算能力.3.掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算,体会数学运算的简便性,培养学生的模型观念.4.理解因式分解的意义,并感受因式分解与整式乘法是相反方向的运算,培养学生类比的思想;掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤,培养数据观念和模型观念;能够熟练地运用这些方法进行多项式的因式分解.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
14.1.1同底数幂的乘法课时目标1.理解同底数幂的乘法法则并运用法则解决一些实际问题,培养学生运算、推理能力,发展应用意识.2.会用数学的思维推导“同底数幂的乘法法则”,使学生初步理解从特殊到一般、从一般到特殊的认知规律,发展学生观察、归纳、类比等能力.3.在小组合作交流中,培养协作精神、探究精神,增强学习信心.学习重点理解并掌握同底数幂的乘法法则.学习难点运用同底数幂的乘法法则进行相关计算.课时活动设计情境引入教师简述我国超级计算机的发展历程,引出课本问题:一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103s可进行多少次运算?解:103×1015=1018设计意图:通过探究问题激发学生的民族自豪感,也让学生体会生活中存在着大量的较大的数据,激发学生的学习兴趣.探究新知问题1:对于上一教学活动中提出的问题,应如何列式?学生动笔列式,大部分学生可以列出.追问:其中1015中“10”“15”“1015”分别叫做什么?“1015”表示的意义是什么?问题2:1015×103等于多少?学生小组讨论,展示计算过程.1015×103=(10×…×10) 15个10×(10×10×10)=10×10×…×10 18个10=1018.追问1:根据乘方的意义计算23×22.学生快速计算,展示结果.解:23×22=2×2×2×2×2=25追问2:请同学们观察上面各算式的左右两边底数、指数的关系,猜一猜:a m ·a n 的结果(m ,n 都是正整数)师生根据乘方的意义共同验证结论的正确性.教师把结论板书在黑板上:a m ·a n =a m +n (m ,n 都是正整数).师生活动:教师引导学生试着用文字概括这个性质.同底数幂相乘,底数不变,指数相加.追问3:当三个或三个以上同底数幂相乘时,是否也具有这一性质呢?小组合作,验证结论,并点名展示.a m ·a n ·a p =a m +n +p (m ,n ,p 都是正整数)设计意图:让学生根据幂的意义,通过计算得到结果.再观察、比较得到等号左右两边底数、指数的关系.通过猜想、验证,抽象概括出同底数幂的乘法运算的本质特征,发展学生观察、归纳、类比能力,体现了从特殊到一般的认知规律.让学生在计算过程中明白算法和算理.适当拓展,为发展学生思维助力.典例精讲例1计算:(1)x 2·x 5;(2)a ·a 6.解:(1)x 2·x 5=x 2+5=x 7.(2)a ·a 6=a 1+6=a 7.教师总结点拨:不要忽略指数是“1”的因式,如a ·a 6≠a 0+6.例2计算:(1)(b +2)3(b +2)4(b +2);(2)-x 6·(-x )10.解:(1)原式=(b +2)3+4+1=(b +2)8.(2)原式=-x 6+10=-x 16.小组合作完成,并选小组代表上台板演.教师讲解,并让学生理解:底数是单项式,也可以是多项式,通常把底数看成一个整体来运算.把不同底数幂转化为同底数幂时要注意符号的变化.例3已知:a m=4,a m+n=20,求a n的值.解:a m+n=a m·a n(逆运算)=4×a n=20,所以a n=5.师生共同解答,并总结:当幂的指数是和的形式时,可以逆运用同底数幂乘法法则,将幂指数和转化为同底数幂相乘,然后把幂作为一个整体,带入变形后的幂的运算式中求解.设计意图:师生共同完成,教师板书过程并着重让学生说明是不是同底数幂相乘,底数是多少,指数是多少,引导学生用运算法则进行计算.通过计算,让学生积累解题经验的同时,体会从一般到特殊的认知规律,将同底数幂的乘法转化为指数相加运算的思想.巩固训练1.x3·x2的运算结果是(C)A.x2B.x3C.x5D.x62.若a n-2·a n+1=a11,则n=6.3.计算:(1)x n·x n+1;(2)(x+y)3·(x+y)4.解:(1)原式=x n+n+1=x2n+1.(2)原式=(x+y)3+4=(x+y)7.设计意图:通过巩固训练,进一步巩固所学新知,同时检测学习效果.课堂小结今天我们学了哪些内容:同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.a m·a n=a m+n(m,n都是正整数).设计意图:使学生能够对本课时所学知识进行整理,同时明确学习重点.课堂8分钟.1.教材第104页习题14.1第1题(1)(2)和第2题(1).2.七彩作业.教学反思14.1.2幂的乘方课时目标1.理解幂的乘方法则并运用法则解决一些实际问题,发展运算、推理能力和应用意识.2.类比同底数幂的乘法法则学习幂的乘方的法则,发展学生观察、归纳、类比等能力,体验数学的化归思想.3.培养学生合作交流意识和探索精神,让学生体会数学的应用价值.学习重点理解幂的乘方性质.学习难点幂的乘方运算法则及灵活应用.课时活动设计回顾引入问题1:叙述同底数幂的乘法法则,并用字母表示.问题2:请口答下列各题:(1)33×35;(2)y2·y;(3)a m·a2.设计意图:通过点名学生回答,复习同底数幂的乘法法则,加深对所学知识的巩固和理解.通过口算,既检验了上节课的学习效果,也为学习本节课知识打下基础.探究新知问题3:请根据乘方的意义及同底数幂的乘法填空.(1)(32)3=32×32×32=3(6).(2)(a2)3=a2·a2·a2=a(6).(3)(a m)3=a m·a m·a m=a(3m)(m是正整数).追问1:(a m)3底数是a,底数是什么形式?追问2:观察计算的结果,你能发现什么规律?根据规律猜想幂的乘法法则.学生口述规律,教师引导学生得到(a m)n=a mn(m,n都是正整数).即幂的乘方,底数不变,指数相乘.教师讲述:规律的正确性需要严谨的证明,如何把特殊一般化,常用的方法是用字母去表示数.追问3:试着证明你的猜想.设计意图:问题3引导学生根据幂的意义,将幂的乘方转化为同底数幂的乘法.追问1、2让通过观察底数、指数的变化,猜想幂的乘方法则.追问3让学生类比问题3计算,并小组内交流.通过问题推进探索规律,让学生自主构建获得新知,培养学生的语言表达能力和符号意识.典例精讲例1计算:(1)(103)5;(2)(a2)4;(3)(a m)2;(4)-(x4)3.解:(1)原式=103×5=1015.(2)原式=a2×4=a8.(3)原式=a m·2=a2m.(4)原式=-x4×3=-x12.例2计算:(1)[(x+y)2]2;(2)[(-x)4]3.解:(1)原式=(x+y)2×3=(x+y)6.(2)原式=(-x)4×3=(-x)12.设计意图:运用幂的乘方法则进行计算时,一定不要将幂的乘方与同底数幂的乘法混淆.在幂的乘方中,底数可以是单项式,也可以是多项式.在运算时,注意把底数看成一个整体,同时注意“负号”.将底数由单项式变式为多项式,在思考过程中实现了知识的迁移,训练了学生的思维,进一步感悟整体思想.巩固训练1.计算:(1)(x4)3·x6;(2)(y4)2+(y2)3·y2.解:(1)原式=x4×3·x6=x12·x6=x18.(2)原式=y4×2+y2×3+2=y8+y8=2y8.教师点拨:与幂的乘方有关的混合运算中,一般先算幂的乘方,再算乘除,最后算加减.2.已知10m=3,10n=2,求下列各式的值.(1)103m;(2)102n;(3)103m+2n.解:(1)原式=(10m)3=33=27.(2)原式=(10n)2=22=4.(3)原式=103m ×102n =27×4=108.3.已知2x +5y -3=0,求4x ·32y 的值.解:∵2x +5y -3=0,∴2x +5y =3.∴4x ·32y =(22)x ·(25)y =22x ·25y =22x +5y =23=8.教师点拨:此类题的关键是逆用幂的乘方及同底数幂的乘法公式,将所求值的式子正确变形,然后代入已知条件求值即可.4.比较3500,4400,5300的大小.解:3500=35×100=(35)100=2431004400=44×100=(44)100=2561005300=53×100=(53)100=125100∵256100>243100>125100,∴4400>3500>5300.教师点拨:比较底数大于1的幂的大小的方法有两种:1.底数相同,指数越大,幂就越大;2.指数相同,底数越大,幂就越大.设计意图:使帮助学生巩固刚刚学习的新知识,在此基础上加深知识的应用,培养学生的逆向思维,增强学生思维的灵活性.课堂小结运算种类公式法则中运算计算结果底数指数同底数幂乘法a m ·an =a m +n 乘法不变指数相加幂的乘方(a m )n =a mn乘方不变指数相乘设计意图:使学生能够对本课时所学知识进行整理,同时明确学习重点.课堂8分钟.1.教材第104页习题14.1第1题(3)(4)(6)第2题(4).2.七彩作业.14.1.3积的乘方1.利用几何图形,探索积的乘方运算性质,进一步体会幂的意义,发展学生的空间观念、推理能力和有条理语言、符号表达能力,掌握转化的数学思想.2.能用积的乘方的运算法则解决问题,提高学生的应用意识.3.通过探究学习过程,激发学习数学的兴趣,培养学习数学的信心,感受数学的内在美.积的乘方运算法则的理解及其应用.积的乘方推导过程的理解和灵活运用.课时活动设计回顾引入在前面的学习中,我们知道了同底数幂的乘法和幂的乘方运算法则,你能分别用字母表示出来吗?教师总结,课件展示.设计意图:学生口答同底数幂的乘法和幂的乘方运算法则,为学习本节课的内容做好知识储备,要注意语言的准确性.探究新知问题1:如图,正方形的边长为2a,求该正方形的面积.学生展示结果.教师记录:有学生列式(2a)2,有学生列式2a×2a.追问1:根据正方形面积的意义,判断(2a)2与2a×2a的数量关系.学生回答:(2a)2=2a×2a.问题2:2a×2a=2×2×a×a依据(乘法交换律)=22×a2依据(乘法结合律)=4a2.所以(2a)2=4a2.师生共同探索,用几何图形验证上面等式.(2a)2=4a2.猜想:(3×4)2和32×42相等吗?学生通过计算,发现(3×4)2=32×42.追问2:观察(2a)2和(3×4)2,它们底数分别是什么?学生口答:2a和3×4.追问3:接着观察(2a)2=4a2,(3×4)2=32×42,你发现什么规律?学生小组讨论,每个小组派代表口述规律.追问4:你能用符号表示你发现的规律吗?师生活动:学生独立思考并书写,教师板书在黑板上:(ab)n=a n b n(n是正整数).追问5:你能将上述发现的规律推导出来吗?师生活动:学生独立证明,并小组交流,教师板书证明过程.(ab)n=(ab)·(ab)…(ab)=a·a…a·b·b…b=a n b n.设计意图:学生计算正方形的面积,预设得到两种不同的形式.通过设置问题,让学生判断每一步的依据,使学生明白算理.通过两个例子,学生初步获得结论,用符号概括出所发现的规律.通过学生自己观察、概括总结,既培养了学生的参与意识,也为学生探索类似知识提供了研究方法.典例精讲例1计算:(1)(3x)2;(2)(-2b)5;(3)(-2xy)4;(4)(3a2)n.解:(1)原式=32x2=9x2.(2)原式=(-2)5b5=-32b5.(3)原式=(-2)4x4y4=16x4y4.(4)原式=3n(a2)n=3n a2n.例2用简便方法计算:(1)23×53;(2)(0.125)2023×82024.解:(1)原式=(2×5)3=103=1000.(2)原式=(0.125)2023×82023×8=(0.125×8)2023×8=8.教师点拨:逆用积的乘方公式a n·b n=(ab)n,要灵活运用,对于不符合公式的形式,要通过恒等变形,转化为公式的形式.设计意图:师生共同解答,通过针对性练习,让学生直观地理解各知识点,实现陈述性知识向程序性知识的转化.用学生熟悉的数之间的关系引导学生感受简便方法,使学生初步感知积的乘方的逆运算,形成简便运算意识,有效培养思维的灵活性.巩固训练1.计算(-x2y)2的结果是(A)A.x4y2B.-x4y2C.x2y2D.-x2y22.下列运算正确的是(C)A.x·x2=x2B.(xy)2=xy2C.(x2)3=x6D.x2+x2=x43.计算:(1)2(x3)2·x3-(3x3)3+(-5x)2·x7;(2)(3xy2)2+(-4xy3)·(-xy).解:(1)原式=2x6·x3-27x9+25x2·x7=2x9-27x9+25x9=0.(2)原式=9x2y4+4x2y4=13x2y4.设计意图:进一步巩固所学新知,同时检测学生的学习成果,及时查漏补缺.课堂小结今天我们学了哪些内容?积的乘方法则:(ab)n=a n·b n(n是正整数).注意点:(1)注意防止符号上的错误;(2)三个或三个以上的因式的积的乘方也具有这一性质;(3)积的乘方法则也可以逆用.设计意图:使学生能够对本课时所学知识进行整理,同时明确学习重点.课堂8分钟.1.教材第104页习题14.1第1题(5)第2题(2)(3).2.七彩作业.教学反思14.1.4整式的乘法第1课时单项式与单项式相乘课时目标1.理解单项式乘以单项式的算理,会进行简单的运算.2.经历探索单项式乘以单项式的过程,体会从特殊到一般、从具体到抽象的认识过程和转化思想.3.培养学生推理能力、计算能力,通过小组合作与交流,增强协作精神.学习重点单项式与单项式相乘的运算法则及其应用.学习难点灵活地进行单项式与单项式相乘的运算.课时活动设计回顾引入教师讲述:同学们,在七年级我们学习了整式加减的运算方法,今天我们继续学习整式的乘法.整式包含单项式和多项式,什么是单项式?出示课件展示:回答问题-2xy的系数是-2,次数是2.设计意图:通过回顾单项式的概念,指出单项式的系数和次数,为学习单项式乘以单项式做好知识储备.探究新知问题1:光的速度约为每秒3×105千米,太阳光照射到地球上需要的时间约是5×102秒,求地球与太阳的距离约是多少千米?如何列式?学生独立思考列出算式:(3×105)×(5×102)km.追问1:怎样计算(3×105)×(5×102)呢?计算过程中运用哪些运算律和运算性质?师生活动:学生计算结束后,教师黑板书写计算过程:(3×105)×(5×102)=(3×5)×105+2=15×107=1.5×108km教师引导学生发现计算过程中运用了乘法交换律、结合律及同底数幂的运算性质.追问2:将上式中的数字改为字母ac5·bc2,类比上面的运算方法计算这个式子.学生独立计算,选一名学生在黑板上书写计算过程:ac5·bc2=(a·b)·(c5·c2)=abc5+2=abc7.追问3:这是什么运算?如何进行运算?教师引导学生试着用文字概括这个性质:这是单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.设计意图:教师引导学生观察、分析两个单项式如何相乘,使学生能运用乘法交换律、结合律和同底数幂的运算性质等知识探索单项式乘单项式.在此基础上,教师引导归纳,最后得出单项式乘单项式法则.让学生在自主探究中掌握解决这类问题的一般方法,体会了从特殊到一般的认识规律.通过小组交流讨论归纳法则,培养学生的归纳总结能力.典例精讲例1计算:(1)(-5a2b)(-3a);(2)(2x)3(-5xy2).解:(1)原式=[(-5)×(-3)](a2·a)b=15a3b.(2)原式=8x3·(-5xy2)=[8×(-5)](x3·x)y2=-40x4y2.例2计算:(1)-2a3bc·(-ab2)·(-ab2)2;(2)-9x2y·(a-b)3·13xy2·(b-a)2.解:(1)原式=-2a3bc·(-ab2)·a2b4=2a6b7c.(2)原式=-9x2y·13xy2·(a-b)3·(a-b)2=-3x3y3(a-b)5.设计意图:本着循序渐进原则逐步增加运算类型,由单一到综合.通过练习使学生在实际应用中掌握法则及三点注意.通过教师点评使学生掌握解题过程及书写格式,使学生完成知识迁移从而提高综合运用知识的能力.巩固训练1.计算3a2·2a3的结果是(B)A.5a5B.6a5C.5a6D.6a62.若(a m b n)·(a2b)=a5b3,则m+n=(D)A.8B.7C.6D.53.已知-2x3m+1y2n与7x n-6y-3-m的积与x4y是同类项,求m2+n的值.解:∵-2x3m+1y2n与7x n-6y-3-m的积与x4y是同类项,∴2t3-=1,3+1+t6=4.解得=3,=2.∴m2+n=7.设计意图:进一步巩固所学新知,同时检测学习效果,及时查漏补缺.课堂小结今天我们学了哪些内容?单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.设计意图:通过课堂小结,对本节课内容进行梳理,加深学生对本节课所学内容的理解和掌握,为接下来的学习打好基础.课堂8分钟.1.教材第104页习题14.1第3题.2.七彩作业.教学反思第2课时单项式与多项式相乘课时目标1.探索并了解单项式与多项式相乘的法则,会运用法则进行简单计算.2.经历探索单项式与多项式相乘的运算过程,体会分配律的作用和转化思想,感受运算法则和相应的几何模型之间的联系,发展数形结合的思想.3.让学生逐步形成独立思考、主动探索的习惯,培养思维的严密性和初步解决问题的能力.学习重点单项式与多项式相乘的法则.学习难点整式乘法法则的推导与应用.课时活动设计复习回顾计算.(1)(-2ac)2(-3ab2c);23+设计意图:学生独立完成两个计算题.第一题复习了单项式乘以单项式,第二题复习了乘法分配律.这两个知识点是研究单项式乘多项式的基础,为这节课的学习做了知识准备.探究新知问题:为了扩大绿地的面积,要把街心花园的一块长p米,宽b米的长方形绿地,向两边分别加宽a米和c米,你能用几种方法表示扩大后的绿地的面积?分四人小组,与同伴交流,寻求不同的表示方法.教师根据学生讨论情况适时点拨启发.在同学讨论的基础上,分小组展示不同方法.教师记录并总结:1.把它看成三个小长方形,扩大后绿地的面积为pa+pb+pc.2.把它看成一个大长方形,则面积为p(a+b+c).追问1:p(a+b+c)和pa+pb+pc之间有着怎样的关系?为什么?学生观察可知p(a+b+c)=pa+pb+pc,因为它们都表示的是同一个量:扩大后长方形绿地的面积.追问2:你能用乘法分配律证明这个等式吗?学生回答:由乘法分配律的公式推出结论p(a+b+c)=pa+pb+pc.追问3:观察等式左边是什么与什么相乘?学生回答:单项式和多项式.追问4:你能总结单项式与多项式相乘的法则吗?教师引导学生在不同代数式的呈现中,找到规律:单项式与多项式相乘,就是用单项式去乘多项式中的每一项,再把所得的积相加.教师鼓励学生用自己的语言概括单项式乘以多项式的法则.设计意图:用几何图形的面积验证了两个整式相等,发展了学生的几何直观.类比前面的知识,还可以通过代数方法验证,即乘法分配律来验证.两种方法是学习本章知识的主要方法,体现了数形结合思想.在解决问题过程中,学生观察、总结规律,探究法则,总结出单项式乘以多项式的法则,培养学生的概括能力和语言的严谨性.典例精讲例1计算:(1)(-4x2)(3x+1);232-2B·12ab.解:(1)原式=(-4x2)·(3x)+(-4x2)×1=(-4×3)(x2·x)+(-4x2)=-12x3-4x2.(2)原式=23ab2·12ab+(-2ab)·12ab=13a2b3-a2b2.教师点拨:在计算过程中要注意符号,多项式的每一项都包含前面的符号.用单项式去乘多项式的每一项,结果是一个多项式,项数与因式中多项式的项数相同.例2先化简,再求值:3a(2a2-4a+3)-2a2(3a+4),其中a=-2.解:3a(2a2-4a+3)-2a2(3a+4)=6a3-12a2+9a-6a3-8a2=-20a2+9a.当a=-2时,原式=-20×(-2)2+9×(-2)=-20×4-9×2=-98.教师点拨:在整式乘法的混合运算中,要注意运算顺序.按运算法则进行化简,然后代入求值,特别注意的是代入“负数”要用括号括起来.例3如果(-3x)2(x2-2nx+2)的展开式中不含x3项,求n的值.解:(-3x)2(x2-2nx+2)=9x2(x2-2nx+2)=9x4-18nx3+18x2∵展开式中不含x3项,∴n=0.教师总结点拨:注意当要求多项式中不含有哪一项时,则表示这一项的系数为0.设计意图:通过例题的讲解,巩固单项式乘以多项式的运算法则.适当增加题目类型,拓展学生思维,培养学生对所学知识的综合应用能力.巩固训练1.如果(x+a)x-2(x+a)的结果中不含x项,那么a的值为(A)A.2B.-2C.0.5D.-0.52.计算:(1)4(a-b+1)=4a-4b+4;(2)3x(2x-y2)=6x2-3xy2;(3)(2x-5y+6z)(-3x)=-6x2+15xy-18xz;(4)(-2a2)2(-a-2b+c)=-4a5-8a4b+4a4c.设计意图:进一步巩固所学新知,同时检测学生的学习成果.课堂小结1.单项式与多项式相乘的法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.2.单项式与多项式相乘,实质上是转化为单项式与单项式相乘.3.单项式与多项式相乘,应注意(1)“不漏乘”;(2)注意“符号”.设计意图:使学生能够对本课时所学知识进行整理,同时明确学习重点,进一步巩固强化.课堂8分钟.1.教材第105页习题14.1第4题.2.七彩作业.教学反思第3课时多项式与多项式相乘课时目标1.理解多项式乘以多项式的运算法则,能够按多项式乘法法则进行简单的计算,发展运算、推理能力和应用意识.2.经历探索多项式乘法法则的过程,用数学的思维体会乘法分配律的作用与转化思想,体会数形结合思想.3.应用多项式与多项式相乘的法则解决实际问题,发展应用意识.学习重点多项式乘法法则的理解及运用.学习难点探索多项式乘法的法则,注意多项式的乘法运算中“漏项”“符号”的问题.课时活动设计回顾引入请口算下列练习中的(1)、(2):(1)3x(x+y)=3x2+3xy.(2)(a+c)c=ac+bc.(3)(a+n)(m+b)=am+nm+ab+nb.比较(3)与(1)、(2)在形式上有何不同?设计意图:学生口算(1)、(2),复习了单项式乘多项式.通过与(3)式比较发现式子形式不同,引导学生从对单项式乘多项式的认识过渡到对多项式乘多项式的认识,从而激发学生对学习新知识的欲望.探究新知拿出准备好的硬纸板,画出如图所示的图形,并标上字母.要求学生根据图中的数据,求一下这个长方形的面积.与同伴交流,表示出它的面积为(m+b)(n+a).问题1:请同学们将纸板上的长方形沿中间的竖线剪开,分成两部分,如图.剪开之后,分别求一下这两部分的面积,再求一下它们的和.学生分成小组,合作探究,求出第一块的面积为m(n+a),第二块的面积为b(n+a),它们的和为m(n+a)+b(n+a).组织学生继续沿着横的线段剪开,将图形分成四部分,如图,求这四块长方形的面积.求出S1=mn;S2=nb;S3=am;S4=ab,它们的和为S=mn+nb+am+ab.追问:依据上面的操作求得的图形面积,那么(m+b)(n+a)应该等于什么?解:(m+b)(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab.学生分成小组讨论交流自己的看法.学生能够发现,因为以上三次计算是按照不同的方法对同一个长方形的面积进行的计算,那么,每次的计算结果应该是相同的,所以(m+b)(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab.问题2:你能类比单项式与多项式相乘的法则,叙述多项式与多项式相乘的法则吗?师生共同归纳:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.字母呈现:.设计意图:让学生用几何图形探究代数公式,体现数形结合思想;利用环环相扣的问题,为学生设置了思考与探索空间;通过归纳多项式乘多项式的法则,培养了学生归纳、概括的能力,让学生体会转化、类比和整体的数学思想.典例精讲例1计算:(1)(3x+1)(x+2);(2)(x-8y)(x-y);(3)(x+y)(x2-xy+y2).解:(1)原式=3x·x+2·3x+1·x+1×2=3x2+6x+x+2=3x2+7x+2.(2)原式=x·x-xy-8xy+8y2=x2-9xy+8y2.(3)原式=x·x2-x·xy+xy2+x2y-xy2+y·y2=x3-x2y+xy2+x2y-xy2+y3=x3+y3.例2已知ax2+bx+1(a≠0)与3x-2的积不含x2项,也不含x项,求系数a,b的值.解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2=3ax3+(-2a+3b)x2+(-2b+3)x-2.∵积不含x2的项,也不含x的项,∴-2+3=0, -2+3=0.∴=94,=32.设计意图:通过例题的讲解,巩固多项式乘以多项式的运算法则,使教材呈现的知识慢慢内化为学生的认知结构,加深对知识的理解和掌握.巩固训练1.计算(x-1)(x-2)的结果为(D)A.x2+3x-2B.x2-3x-2C.x2+3x+2D.x2-3x+22.计算:(1)(x-3y)(x+7y);(2)(2x+5y)(3x-2y).解:(1)原式=x2-3xy+7xy-21y2=x2+4xy-21y2.(2)原式=6x2+15xy-4xy-10y2=6x2+11xy-10y2.3.化简求值:(4x+3y)(4x-3y)+(2x+y)(3x-5y),其中x=1,y=-2.解:原式=16x2-12xy+12xy-9y2+6x2-10xy+3xy-5y2=22x2-7xy-14y2.把x=1,y=-2代入,得22×12-7×1×(-2)-14×(-2)2=-20.设计意图:进一步巩固所学新知,同时检测学生的学习成果,及时查漏补缺.课堂小结今天我们学了哪些内容?1.多项式与多项式相乘法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.2.(a+b)(m+n)=am+an+bm+bn.3.多项式与多项式相乘,实际上是转化为单项式与多项式相乘的运算.设计意图:以填空的形式回顾本节课所学知识,加深学生对本节课所学知识的理解和掌握.课堂8分钟.1.教材第105页习题14.1第5题.2.七彩作业.第4课时同底数幂的除法1.经历探索同底数幂除法公式的推导过程,发展学生的推理能力和表达能力.2.进一步体会幂的意义,理解零指数幂.3.理解同底数幂的除法运算性质,能解决实际问题,培养学生的应用意识.同底数幂的除法运算法则及其应用.探索同底数幂的除法法则的过程.课时活动设计回顾同底数幂的乘法、幂的乘方、积的乘方公式内容及推导套路,引出课题,并让学生小组合作探究结果,教师适时适当点拨.如何解决两个整式相除的问题?方法一:除法意义或除法与分数的关系;方法二:乘除互逆.设计意图:让学生有迹可寻,运用套路,体会数学公式学习的一般方法步骤.一个问题既可自然引出课题,又可继续探索公式推导的方法.探究新知问题1:我们如何计算a m÷a n(a≠0,m,n都是正整数,并且m>n)?学生小组讨论,教师引导学生运用乘法的逆运算解决问题.根据除法是乘法的逆运算,计算被除数除以除数所得的商,也就是求一个数,使它与除数的积等于被除数.学生完成后,教师在黑板上写出解题过程:∵a m-n·a n=a(m-n)+n=a m,∴a m÷a n=a m-n.师生活动:教师引导学生试着用文字概括这个性质.同底数幂相除,底数不变,指数相减.问题2:底数a可以是什么样的数,不能是什么样的数?根据多位学生的回答,教师总结得出结论:同底数幂相除的运算中,相同底数可以是不为0的数字或字母,也可以是单项式、多项式.问题3:根据除法的意义和问题1的内容,探讨a0=?师生共同解答,并总结:同底数幂相除,如果被除式的指数等于除式的指数,例如a m÷a m,根据除法的意义可知所得的商为1.另一方面,如果按照同底数幂的除法来计算,又有a m÷a m=a m-m=a0.于是规定a0=1(a≠0).任何不等于0的数的0次幂都等于1.设计意图:从学生已有的知识和经验出发,引导学生探索发现同底数幂的除法的运算规律,遵循循序渐进的认知规律.通过学生小组讨论,根据以往学习的经验,自主学习新知识,培养探究能力.典例精讲例计算:(1)x8÷x2;(2)(ab)5÷(ab)2.解:(1)原式=x8-2=x6.(2)原式=(ab)5-2=(ab)3=a3b3.设计意图:通过练习使学生掌握同底数幂相除的运算法则.通过教师点评使学生掌握解题过程及书写格式,使学生完成知识迁移从而提高综合运用知识的能力.巩固训练1.下列运算正确的是(D)A.(-a)6÷a2=a3B.(-a)3÷(-a)2=aC.a8÷a2=a4D.(-a)2÷a2=12.计算:(1)(mn)7÷(mn)5;1212解:(1)原式=(mn)7-5=(mn)2.(2)原式12=12=14.设计意图:通过设置巩固训练,进一步巩固所学新知,同时检测学习效果.课堂小结通过这节课的学习,你有哪些收获?1.同底数幂相除,底数不变,指数相减.2.任何不等于0的数的0次幂都等于1.设计意图:小结新课内容,及时梳理,使学生对前后的知识有所串联,让新知识与旧知识得到同化,并且内化成自身的数学体系,提高学生的数学素质.课堂8分钟.。
第十四章整式的乘法与因式分解14.1.4 整式的乘法第3课时一、教学目标【知识与技能】1.探究同底数幂除法的性质和单项式除以单项式、多项式除以单项式的法则,并会应用法则计算.2.会进行单项式除以单项式、多项式除以单项式的运算,理解整式除法运算的原理.【过程与方法】1.经历探究整式的除法的运算性质的过程,进一步体会幂的意义,发展推理能力和有条件的表达能力.2.体会知识间逻辑关系、类比探究在研究除法问题时的价值,体会转化思想在整式除法中的作用.【情感、态度与价值观】感受数学法则、公式的简洁美、和谐美.二、课型新授课三、课时第3课时四、教学重难点【教学重点】应用整式除法法则进行计算.【教学难点】根据乘、除互逆的运算关系得出同底数幂的除法运算法则.五、课前准备教师:课件、直尺、计算器等。
学生:练习本、钢笔或圆珠笔。
六、教学过程(一)导入新课木星的质量约是1.9×1024吨,地球的质量约是5.98×1021吨,你知道木星的质量约为地球质量的多少倍吗?(出示课件2)木星的质量约为地球质量的(1.90×1024)÷(5.98×1021)倍.想一想:上面的式子该如何计算?(二)探索新知1.师生互动,探究同底数幂的除法法则教师问1:请完成下面的题目:(出示课件4)(1)25×23;(2)x6×x4;(3)2m×2n.学生回答:(1)28;(2)x10;(3)2m+n.教师问2:本题是直接利用什么乘法法则计算的?学生回答:同底数幂的乘法法则:底数不变,指数相加.教师问3:思考下面的题该如何计算?(1)( )( )×23=28 (2)x6·( )( )=x10(3)( )( )×2n=2m+n学生回答:可以把乘法法则反过来利用.教师问4:反过来就我们今天要学的同底数幂的除法,能不能先试着写成除法形式?学生讨论后解答:(1)28÷23=?;(2)x10÷x6=?;(3)2m+n÷2n=?教师问5:你是如何计算的呢?学生回答:本题逆向利用同底数幂的乘法法则计算.教师问6:能不能试着完成下列各题:计算:(1)28÷23;(2)x10÷x6;(3)2 m+n÷2n学生回答:(1) 28÷23=25;(2) x10÷x6=x4;(3) 2 m+n÷2n =2m教师问7:观察下面的等式,你能发现什么规律?(出示课件5)(1)28÷23=25=28-3;(2) x10÷x6=x4=x10-6;(3) 2 m+n÷2n =2m =2m-n学生回答:底数不变,指数相减.教师总结:同底数幂相除,底数不变,指数相减.教师问8:以上法则能用字母表示吗?学生总结:a m÷a n=a m-n.教师问9:对指数有何要求吗?学生回答:m,n都是正整数,且m>n.教师总结:a m ÷a n=a m–n(m,n都是正整数,且m>n)教师问10:如何验证其正确性呢?学生回答:验证:因为a m–n·a n=a m–n+n=a m,所以a m ÷a n=a m–n.教师问11:对于除法运算,有没有什么特殊要求呢?学生回答:对于除法运算应要求除数(或分母)不为零,所以底数不能为零.即a m÷a n=a m-n(a≠0,m,n都是正整数,并且m>n).教师问12:计算:a m÷a m学生计算a m÷a m时,可能会出现1或a0两个答案.教师顺势归纳:从除法的意义可知商为1,另一方面,如果依照同底数幂的除法计算,得a0.所以规定:a0=1(a≠0).教师问13:为什么规定a0=1(a≠0)时要说明a≠0呢?学生回答:因为当a=0时,分母或除数为0,式子无意义.总结点拨:(出示课件6)同底数幂的除法一般地,我们有a m÷a n=a m–n(a ≠0,m,n都是正整数,且m>n)即同底数幂相除,底数不变,指数相减.规定:a0=1(a ≠0)这就是说,除0以外任何数的0次幂都等于1.例1:计算:(出示课件7)(1)x8÷x2;(2) (ab)5÷(ab)2.师生共同解答如下:解:(1)x8 ÷x2=x8–2=x6;(2) (ab)5÷(ab)2=(ab)5–2=(ab)3=a3b3.总结点拨:计算同底数幂的除法时,先判断底数是否相同或变形相同,若底数为多项式,可将其看作一个整体,再根据法则计算.例2:已知a m=12,a n=2,a=3,求a m–n–1的值.(出示课件9)师生共同解答如下:解:∵a m=12,a n=2,a=3,∴a m–n–1=a m÷a n÷a=12÷2÷3=2.总结点拨:解此题的关键是逆用同底数幂的除法,对a m–n–1进行变形,再代入数值进行计算.2.复习旧知,探究单项式除以多项式的法则教师问14:计算:4a2x3·3ab2学生回答:4a2x3·3ab2=12a3b2x3教师问15:计算:12a3b2x3÷ 3ab2学生讨论回答:(出示课件11)解法1: 12a3b2x3÷ 3ab2相当于求( )·3ab2=12a3b2x3.由(1)可知括号里应填4a2x3.解法2:原式=4a2x3· 3ab2÷ 3ab2=4a2x3.理解:上面的商式4a2x3的系数4=12 ÷3;a的指数2=3–1,b的指数0=2–2,而b0=1,x的指数3=3–0.教师问15:类比上述研究过程计算以下两题.(1)-2x3÷(-x);(2)8m2n2÷2m2n.学生回答:(1)2x2;(2)4n教师问16:通过计算,你又发现什么规律?学生回答:单项式相除,把系数和同底数的幂分别相除.师生互动合作交流,得出单项式除以单项式的法则:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.总结点拨:(出示课件12)单项式除以单项式的法则:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.例3:计算:(出示课件13)(1)28x4y2÷7x3y;(2)–5a5b3c ÷15a4b.师生共同解答如下:解:(1)原式=(28 ÷7)x4–3y2–1=4xy;(2)原式=(–5÷15)a5–4b3–1c=- 1ab2c.3总结点拨:单项式除以单项式要按照法则逐项进行,不得漏项,并且要注意符号的变化.3.师生互动,学习多项式除以单项式的法则教师问17:一幅长方形油画的长为(a+b),宽为m,求它的面积.(出示课件16)学生回答:面积为(a+b)m=ma+mb.教师问18:若已知油画的面积为(ma+mb),宽为m,如何求它的长?学生回答:长为(ma+mb)÷m.教师问19:如何计算(am+bm) ÷m?(出示课件17)学生讨论后回答:计算(am+bm) ÷m就相当于求( ) ·m=am+bm,教师问20:()填什么呢?学生回答:a+b教师问21:am ÷m+bm ÷m=?学生回答:a+b教师问22:观察上边的问题,你发现了什么?学生回答:(am+bm) ÷m=am ÷m+bm ÷m教师问23:计算下列各式:(1)(ax+bx)÷x;(2)(a2+ab)÷a;(3)(4x2y+2xy2)÷2xy.学生回答:(1) a+b;(2) a+b;(3) 2x+y.教师问24:说你是怎样计算的?学生回答:多项式除以单项式,用多项式的每一项除以单项式.教师问25:它们的项数之间有什么发现吗?师生共同解答如下:在学生独立解决问题之后,及时引导学生反思自己的思维过程,并对自己计算所得的结果进行观察,总结出计算的一般方法和结果的项数特征:商式与被除式的项数相同.教师问26:你能归纳出多项式除以单项式的法则吗?(出示课件18)学生归纳,教师点拨:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.教师问27:你能把这句话写成公式的形式吗?学生回答:(am+bm)÷m=am÷m+bm÷m.关键:应用法则是把多项式除以单项式转化为单项式除以单项式.例4:计算:(12a3–6a2+3a) ÷3a. (出示课件19)师生共同解答如下:解: (12a3–6a2+3a) ÷3a=12a3÷3a+(–6a2) ÷3a+3a÷3a=4a2+(–2a)+1=4a2–2a+1.总结点拨:多项式除以单项式,实质是利用乘法的分配律,将多项式除以单项式问题转化为单项式除以单项式问题来解决.计算过程中,要注意符号问题.例5:先化简,后求值:[2x(x2y–xy2)+xy(xy–x2)]÷x2y,其中x=2015,y=2014.(出示课件21)师生共同解答如下:解:原式=[2x3y–2x2y2+x2y2–x3y]÷x2y,=x–y.把x=2015,y=2014代入上式,得原式=x–y=2015–2014=1.(三)课堂练习(出示课件24-29)1.下列说法正确的是( )A.(π–3.14)0没有意义B.任何数的0次幂都等于1C.(8×106)÷(2×109)=4×103D.若(x+4)0=1,则x≠–42.下列算式中,不正确的是( )A.(–12a5b)÷(–3ab)=4a4B.9x m y n–1÷3x m–2y n–3=3x2y2C. 4a2b3÷2ab=2ab2D.x(x–y)2÷(y–x)=x(x–y)3.已知28a3b m÷28a n b2=b2,那么m,n的取值为( )A.m=4,n=3 B.m=4,n=1C.m=1,n=3 D.m=2,n=34.一个长方形的面积为a2+2a,若一边长为a,则另一边长为_____________.5. 已知一多项式与单项式–7x5y4 的积为21x5y7–28x6y5,则这个多项式是______.6.计算: (1)6a3÷2a2;(2)24a2b3÷3ab;(3)–21a2b3c÷3ab;(4)(14m3–7m2+14m)÷7m.7. 先化简,再求值:(x+y)(x–y)–(4x3y–8xy3)÷2xy,其中x=1,y=–3.8. (1)若32•92x+1÷27x+1=81,求x的值;(2)已知5x=36,5y=2,求5x–2y的值;(3)已知2x–5y–4=0,求4x÷32y的值.参考答案:1.D2.D3.A4.a+25. –3y3+4xy6. 解:(1) 6a3÷2a2=(6÷2)(a3÷a2)=3a.(2) 24a2b3÷3ab=(24÷3)a2–1b3–1=8ab2.(3)–21a2b3c÷3ab=(–21÷3)a2–1b3–1c= –7ab2c;(4)(14m3–7m2+14m)÷7m=14m3÷7m-7m2÷7m+14m÷7m= 2m2–m+2.7. 解:原式=x2–y2–2x2+4y2=–x2+3y2.当x=1,y=–3时,原式=–12+3×(–3)2=–1+27=26.8. 解:(1)32•34x+2÷33x+3=81,即3x+1=34,解得x=3;(2)52y=(5y)2=4,5x–2y=5x÷52y=36÷4=9.(3)∵2x–5y–4=0,移项,得2x–5y=4.4x÷32y=22x÷25y=22x–5y=24=16.(四)课堂小结今天我们学了哪些内容:a m÷a n=a m-n(a≠0,m,n都是正整数,并且m>n)a0=1(a≠0)(am+bm)÷m=am÷m+bm÷m.(五)课前预习预习下节课(14.2)的相关内容。
14.3 因式分解(第1课时)【教材分析】14.3因式分解(第2课时)教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生的推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.教学重点利用平方差公式分解因式.教学难点领会因式分解的解题步骤和分解因式的彻底性.应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.1)课堂导入请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).【学生活动】动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25.(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25. 2.分解因式:16m2-9n2.【学生活动】从逆向思维入手,很快得到下面答案:1.a2-25=a2-52=(a+5)(a-5).2.16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).2)重点讲解【例1】把下列各式分解因式:(投影显示或板书)(1)x2-9y2;(2)16x4-y4;(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;(5)m2(16x-y)+n2(y-16x).【思路点拨】在观察中发现(1)~(5)题均满足平方差公式的特征,可以使用平方差公式因式分解.【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.【学生活动】分四人小组,合作探究.解:(1)x2-9y2=(x+3y)(x-3y).(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y).(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by).(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y).(5)m2(16x-y)+n2(y-16x) =(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).3)问题探究【探研时空】1.求证:当n是正整数时,n3-n的值一定是6的倍数.2.试证两个连续偶数的平方差能被一个奇数整除.4)难点剖析例3分解因式:(2)a3b-ab.展示点评:一个多项式第一次分解后若还能进行分解,应怎么做?展示点评:(继续分解到不能再分解为止)小组讨论:归纳分解因式的一般步骤.解答过程见教材P116例3反思小结:1.分解因式的一般步骤:一提二套三分组即先看有没有公因式,若有提出公因式,再看能不能运用公式,若能,运用公式进行分解;若不能,则考虑分组,分组的原则:①分组后有公因式可提;②分组后有公式可套. 2.公式中的“a”“b”可表示单项式也可表示多项式;若表示多项式,应将多项式用括号括起来.3.分解因式必须进行到不能再分解为止.5)训练提升1.分解因式:(1)4x2-y2;(2)-16+a2b2;(3)x2100-25y2;(4)(x+2y)2-(x-y)2.解:(1)原式=(2x+y)(2x-y).(2)原式=(ab+4)(ab-4).(3)原式=(x10+5y)(x10-5y).(4)原式=[(x+2y)+(x-y)][(x+2y)-(x-y)]=3y(2x+y).2.分解因式:(1)a3-9a;(2)3m(2x-y)2-3mn2;(3)(a-b)b2-4(a-b).解:(1)原式=a(a2-9)=a(a+3)(a-3).(2)原式=3m[(2x-y)2-n2]=3m(2x-y+n)(2x-y-n).(3)原式=(a-b)(b2-4)=(a-b)(b+2)(b-2).3.(云南中考)分解因式:3x2-12=3(x-2)(x+2).4.(梅州中考)分解因式:m3-m=m(m+1)(m-1).5.(孝感中考)若a-b=1,则代数式a2-b2-2b的值为____1____.6.老师在黑板上写出三个算式:52-32=8×2,92-72=8×4,152-32=8×27,王华接着又写了两个具有同样规律的算式:112-52=8×12,152-72=8×22,…(1)请你再写出两个(不同于上面算式)具有上述规律的算式;(2)用文字写出反映上述算式的规律;(3)证明这个规律的正确性.解:(1)答案不唯一,如:112-92=8×5,132-112=8×6.(2)任意两个奇数的平方差等于8的倍数.(3)证明:设m, n为整数,两个奇数可表示为2m+1和2n+1,则(2m+1)2-(2n+1)2=4(m-n)(m+n+1).①当m,n同是奇数或偶数时,m-n一定为偶数,∴ 4(m-n)(m+n+1)一定是8的倍数;②当m,n 一奇一偶时,则m+n+1一定为偶数,∴4(m-n)(m+n+1)一定是8的倍数.综上所述,任意两个奇数的平方差是8的倍数.14.3因式分解(第3课时)教学目标1.领会运用完全平方公式进行因式分解的方法,发展推理能力.2.经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.教学重点理解运用完全平方公式进行因式分解.教学难点灵活地运用公式法进行因式分解.教学过程:1)课堂导入【复习引入】1.(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3)x2-0.01y2.2.计算下列各式:(1)(m-4n)2;(2)(m+4n)2;(3)(a+b)2;(4)(a-b)2.【教师活动】引导学生完成下面四道题,并运用数学“互逆”的思想,寻找因式分解的规律.2)重点讲解3.分解因式:(1)m2-8mn+16n2;(2)m2+8mn+16n2;(3)a2+2ab+b2;(4)a2-2ab+b2.【学生活动】从逆向思维的角度入手,很快得到下面答案.解:(1)m2-8mn+16n2=(m-4n)2. (2)m2+8mn+16n2=(m+4n)2.(3)a2+2ab+b2=(a+b)2. (4)a2-2ab+b2=(a-b)2.【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.3)问题探究【例1】把下列各式分解因式:教材P118例5点拨:对比公式,准确找出问题中的a、b【例2】把下列各式分解因式:教材P118例5【例3】如果x2+axy+16y2是完全平方公式,求a的值.【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值.4)难点剖析例1 把下列完全平方式分解因式:(1)x2+14x+49; (2)(m+n)2-6(m +n)+9.例2 把下列各式分解因式:(1)3ax2+6axy+3ay2; (2)-2x2-8y2+8xy.5)训练提升1.下列式子为完全平方式的是( D )A.a2+ab+b2 B.a2+2a+2C.a2-2b+b2 D.a2+2a+12.若x2+6x+k是完全平方式,则k=____9__.3.若x2+mx+4是完全平方式,则m的值是_±4_.4.因式分解:(1)4x2+y2-4xy;(2)9-12a+4a2;(3)(m+n)2-6(m+n)+9.解:(1)原式=(2x)2+y2-2×2x·y=(2x-y)2.(2)原式=32-2×3×2a+(2a)2= (3-2a)2.(3)原式=(m+n-3)2.5.下列四个多项式,能因式分解的是( B )A.a2+1 B.a2-6a+9C.x2+5y D.x2-5y6.把多项式4x2y-4xy2-x3分解因式的结果是( B )A.4xy(x-y)-x3 B.-x(x-2y)2C.x(4xy-4y2-x2) D.-x(-4xy+4y2+x2)7.若m=2n+1,则m2-4mn+4n2的值是____1____.8.(1)已知a-b=3,求a(a-2b)+b2的值;(2)已知ab=2,a+b=5,求a3b+2a2b2+ab3的值.解:(1)方法一:原式=a2-2ab+b2=(a-b)2.当a-b=3时,原式=32=9.方法二:∵a-b=3,∴a=b+3.∴原式=(b+3)(3-b)+b2=9-b2+b2=9.(2)原式=ab(a2+2ab+b2)=ab(a+b)2.当ab=2,a+b=5时,原式=2×52=50.9.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)法运算,使所得整式可以因式分解,并进行因式分解.解:答案不唯一,如:(x2+2xy)+x2=2x2+2xy=2x(x+y);(y2+2xy)+x2=(x+y)2;(x2+2xy)-(y2+2xy)=x2-y2=(x+y)(x-y);(y2+2xy)-(x2+2xy)=y2-x2=(y+x)(y-x).。
第十四章整式的乘法与因式分解14.3因式分解14.3.2公式法第2课时一、教学目标【知识与技能】1.在掌握了因式分解意义的基础上,会运用平方差公式和完全平方公式对比较简单的多项式进行因式分解.【过程与方法】1.经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.2.在运用公式法进行因式分解的同时,培养学生的观察、比较和判断能力以及运算能力,用不同的方法分解因式可以提高综合运用知识的能力.【情感、态度与价值观】1.培养学生逆向思维的意识,同时培养学生团队合作、互帮互助的精神.2.进一步体验“整体”的思想,培养“换元”的意识.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】运用完全平方公式法进行因式分解.【教学难点】观察多项式的特点,判断是否符合公式的特征和综合运用分解的方法,并完整地进行分解.五、课前准备教师:课件、直尺、矩形图片等。
学生:三角尺、练习本、铅笔、钢笔。
六、教学过程(一)导入新课我们知道,因式分解与整式乘法是反方向的变形,我们学习了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?(出示课件2)(二)探索新知1.创设情境,探究运用完全平方公式分解因式教师问1:什么叫因式分解?(出示课件4)学生回答:把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.教师问2:我们已经学过哪些因式分解的方法?学生回答:提公因式法、平方差公式:a2–b2=(a+b)(a–b)教师问3:把下列各式分解因式:(1)ax4-a;(2)16m4-n4.学生回答:(1)ax4-a=a(x2+1)(x+1)(x-1);(2)16m4-n4=(4m2+n)(2m+n)(2m-n).教师问4:结合上题思考因式分解要注意什么问题?学生回答:①一提二看三检查;②分解要彻底.教师问5:我们学过的乘法公式除了平方差公式之外,还有哪些公式?请写出来.学生回答:完全平方公式:(a±b)2=a2±2ab+b2教师讲解:这节课我们就来讨论如何运用完全平方公式把多项式因式分解.教师问6:你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积吗?(出示课件5)学生讨论后拼出下图:教师问7:这个大正方形的面积可以怎么求?学生回答:(a+b)2=a2+2ab+b2教师问8:将上面的等式倒过来看,能得到什么呢?学生回答:a2+2ab+b2=(a+b)2(出示课件6)教师问:观察这两个多项式:a2+2ab+b2;a2–2ab+b2,请回答下列各题:(出示课件7)(1)每个多项式有几项?学生回答:三项(2)每个多项式的第一项和第三项有什么特征?学生回答:这两项都是数或式的平方,并且符号相同.(3)中间项和第一项,第三项有什么关系?学生回答:是第一项和第三项底数的积的±2倍.教师讲解:我们把a²+2ab+b²和a²–2ab+b²这样的式子叫做完全平方式.教师问9:把下列各式分解因式:(1)a2+2ab+b2;(2)a2-2ab+b2.学生回答:(1)a2+2ab+b2=(a+b)2;(2)a2-2ab+b2=(a-b)2.教师问10:将整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.能不能用语言叙述呢?学生回答后,师生共同讨论后解答如下:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方.即a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.教师问11:下列各式是不是完全平方式?如果是,请分解因式.(1)a2-4a+4;(2)x2+4x+4y2;(3)4a2+2ab+14b2;(4)a2-ab+b2;(5)x2-6x-9;(6)a2+a+0.25.学生讨论后回答如下:(1)a2-4a+4;是,原式=(a-2)2 (2)x2+4x+4y2;不是(3)4a2+2ab+14b2;是,原式=(2a+12b)2(4)a2-ab+b2;不是(5)x2-6x-9;不是(6)a2+a+0.25.是,原式=(a+0.5)2教师问12:根据学习用平方差公式分解因式的经验和方法,分析和推测什么叫做运用完全平方公式分解因式?能够用完全平方公式分解因式的多项式具有什么特点?学生讨论后回答,师生共同归纳如下:①三项式;②两项为两个数的平方和的形式;③第三项为加(或减)这两个数的积的2倍.总结点拨:(出示课件8)完全平方式:a²±2ab+b²完全平方式的特点:1.必须是三项式(或可以看成三项的);2.有两个同号的数或式的平方;3.中间有两底数之积的±2倍.简记口诀:首平方,尾平方,首尾两倍在中央.(出示课件9)凡具备这些特点的三项式,就是完全平方式,将它写成完全平方形式,便实现了因式分解.两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例1:分解因式:(出示课件12)(1)16x2+24x+9;(2)–x2+4xy–4y2.师生共同解答如下:(1)分析:(1)中,16x2=(4x)2,9=3²,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2+24x+9=(4x)2+2·4x·3+32.解:(1)16x2+24x+9=(4x)2+2·4x·3+32=(4x+3)2;(2)中首项有负号,一般先利用添括号法则,将其变形为–(x2–4xy+4y2),然后再利用公式分解因式.(2)–x2+4xy–4y2=–(x2–4xy+4y2)=–(x–2y)2.例2:如果x2–6x+N是一个完全平方式,那么N是()(出示课件15)A.11B.9C.–11D.–9师生共同解答如下:解析:根据完全平方式的特征,中间项–6x=2x×(–3),故可知N=(–3)2=9.答案:B总结点拨:(出示课件16)本题要熟练掌握完全平方公式的结构特征,根据参数所在位置,结合公式,找出参数与已知项之间的数量关系,从而求出参数的值.计算过程中,要注意积的2倍的符号,避免漏解.例3:把下列各式分解因式:(出示课件18)(1)3ax2+6axy+3ay2;(2)(a+b)2–12(a+b)+36.师生共同解答如下:分析:(1)中有公因式3a,应先提出公因式,再进一步分解因式;(2)中将a+b 看成一个整体,设a+b=m,则原式化为m2–12m+36.解:(1)原式=3a(x2+2xy+y2)=3a(x+y)2;(2)原式=(a+b)2–2·(a+b)·6+62=(a+b–6)2.总结点拨:利用公式把某些具有特殊形式(如平方差式,完全平方式等)的多项式分解因式,这种分解因式的方法叫做公式法.(出示课件19)例4:把下列完全平方式分解因式:(出示课件21)(1)1002–2×100×99+99²;(2)342+34×32+162.师生共同解答如下:解:(1)原式=(100–99)²=1(2)原式=(34+16)2=2500.总结点拨:本题利用完全平方公式分解因式,可以简化计算.例5:已知:a 2+b 2+2a–4b+5=0,求2a 2+4b–3的值.(出示课件23)师生共同解答如下:分析:从已知条件可以看出,a 2+b 2+2a–4b+5与完全平方式有很大的相似性(颜色相同的项),因此可通过“凑”成完全平方式的方法,将已知条件转化成非负数之和等于0的形式,从而利用非负数的性质来求解.(出示课件24)解:由已知可得(a 2+2a+1)+(b 2–4b+4)=0即(a+1)2+(b–2)2=01020a b +=⎧∴⎨-=⎩12a b =-⎧∴⎨=⎩∴2a 2+4b–3=2×(–1)2+4×2–3=7总结点拨:遇到多项式的值等于0、求另一个多项式的值,常常通过变形为完全平方公式和(非负数的和)的形式,然后利用非负数性质来解答.(三)课堂练习(出示课件27-31)1.下列四个多项式中,能因式分解的是()A.a 2+1B.a 2–6a+9C.x 2+5yD.x 2–5y 2.把多项式4x 2y–4xy 2–x 3分解因式的结果是()A.4xy(x–y)–x 3B.–x(x–2y)2C.x(4xy–4y 2–x 2)D.–x(–4xy+4y 2+x 2)3.若m=2n+1,则m 2–4mn+4n 2的值是________.4.若关于x 的多项式x 2–8x+m 2是完全平方式,则m 的值为_________.5.把下列多项式因式分解.(1)x 2–12x+36;(2)4(2a+b)2–4(2a+b)+1;(3)y 2+2y+1–x 2;6.计算:(1)38.92–2×38.9×48.9+48.92.(2)20142-2014×4026+201327.分解因式:(1)4x 2+4x+1;(2)13x 2–2x+3.小聪和小明的解答过程如下:他们做对了吗?若错误,请你帮忙纠正过来.8.(1)已知a–b=3,求a(a–2b)+b 2的值;(2)已知ab=2,a+b=5,求a 3b+2a 2b 2+ab 3的值.小聪:小明:参考答案:1.B2.B3.14.±45.解:(1)原式=x2–2·x·6+62=(x–6)2;(2)原式=[2(2a+b)]²–2·2(2a+b)·1+1²=(4a+2b–1)2;(3)原式=(y+1)²–x²=(y+1+x)(y+1–x).6.解:(1)原式=(38.9–48.9)2=100.(2)原式=20142-2×2014×2013+20132=(2014-2013)2=17.解:(1)原式=(2x)2+2•2x•1+1=(2x+1)2 (2)原式=13(x2–6x+9)=13(x–3)28.解:(1)原式=a2–2ab+b2=(a–b)2.当a–b=3时,原式=32=9.(2)原式=ab(a2+2ab+b2)=ab(a+b)2.当ab=2,a+b=5时,原式=2×52=50.(四)课堂小结今天我们学了哪些内容:a2±2ab+b2=(a±b)2一提,二看,三检查。
第十四章整式的乘法与因式分解14.1整式的乘法14.1.1同底数幂的乘法◇教学目标◇【知识与技能】在推理判断中得出同底数幂乘法的运算法则,并掌握“法则”的应用.【过程与方法】经历探索同底数幂的乘法运算性质的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力.【情感、态度与价值观】在小组合作交流中,培养协作精神、探究精神,增强学习信心.◇教学重难点◇【教学重点】同底数幂乘法运算性质的推导和应用.【教学难点】同底数幂的乘法的法则的应用以及逆用.◇教学过程◇一、情境导入“盘古开天辟地”的故事:公元前一百万年,没有天没有地,整个宇宙是混浊的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.问题:盘古的左眼变成了太阳,那么,太阳离我们多远呢?你可以计算一下,太阳到地球的距离是多少?光的速度为3×105千米/秒,太阳光照射到地球大约需要5×102秒,你能计算出地球距离太阳大约有多远呢?二、合作探究探究点1同底数幂的乘法典例1计算a2·a3的正确结果是()A.a 5B.a 6C.a 8D.a 9 [解析] a 2·a 3=a 2+3=a 5.[答案] A【技巧点拨】本题是同底数幂的乘法运算,直接利用同底数幂的乘法运算法则运算即可,注意底数不变,指数相加.变式训练 化简-b ·b 3·b 4的正确结果是( )A.-b 7B.b 7C.-b 8D.b 8[答案] C探究点2 法则的逆用 典例2 已知3a =1,3b =2,则3a +b 的值为( )A.1B.2C.3D.27[解析] ∵3a ×3b =3a +b ,∴3a +b =3a ×3b =1×2=2.[答案] B三、板书设计同底数幂的乘法同底数幂的乘法{ 同底数幂的乘法法则{法则符号表达字母范围幂的乘法法则逆用◇教学反思◇本节课应注重同底数幂的乘法法则的推导过程,而不单单是要求记住结论,在导出的过程中,从具体到抽象,有层次地进行概括,归纳推理,学生不是被动地接受,而是在已有经验的基础上创新,从而培养学生的动手能力和创新意识.14.1.2幂的乘方◇教学目标◇【知识与技能】1.理解幂的乘方的运算性质,进一步体会和巩固幂的意义;2.通过推理得出幂的乘方的运算性质,并且掌握这个性质.【过程与方法】经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力.【情感、态度与价值观】培养学生合作交流意义和探索精神,让学生体会数学的应用价值.◇教学重难点◇【教学重点】幂的乘方法则.【教学难点】幂的乘方法则的推导过程及灵活应用.◇教学过程◇一、情境导入木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么太阳和木星的体积是多少?二、合作探究探究点1幂的乘方典例1计算a6(a2)3=.[解析]根据幂的运算法则即可求出答案.原式=a6·a6=a12.[答案]a12变式训练计算:(-a2)2=.[答案]a4探究点2幂的乘方逆用典例2若10m=5,10n=3,则102m+3n=.[解析]102m+3n=102m·103n=(10m)2·(10n)3=52·33=675.[答案]675【技巧点拨】注意幂的乘方公式的逆用,a mn =(a m )n =(a n )m .变式训练 若a m =6,a n =3,则a m +2n 的值为 .[答案] 54三、板书设计幂的乘方幂的乘方{ 幂的乘方法则{法则符号表达字母范围幂的乘方逆用◇教学反思◇本节的内容是幂的乘方,教学过程中,激发和鼓励学生的学习探究;提问不仅有序、有提示、有鼓励,而且有启发、问在有疑之处.本课的主要教学任务是“幂的乘方”,即幂的乘方,底数不变,指数相乘.在课堂教学时,通过幂的意义引导学生探索发现得出这一性质.14.1.3积的乘方◇教学目标◇【知识与技能】探索积的乘方的运算性质,能用积的乘方的运算性质进行计算.【过程与方法】经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.【情感、态度与价值观】培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.◇教学重难点◇【教学重点】积的乘方的运算.【教学难点】积的乘方的推导过程的理解和灵活运用.◇教学过程◇一、情境导入我们前面学过同底数幂的运算法则;幂的乘方运算法则的内容,你知道它们的区别和联系吗?请同学们思考怎样计算(2a3)4,每一步的根据是什么?二、合作探究探究点1积的乘方法则典例1计算:(-2xy2)3=.[解析](-2xy2)3=(-2)3x3(y2)3=-8x3y6.[答案]-8x3y6根据积的乘方的性质把问题转化为几个幂的乘方,然后再进行运算,用准法则是解这类问题的关键.a2b)3=.变式训练计算:(-13[答案] -127a 6b 3探究点2 公式的逆用 典例2 阅读下列各式:(ab )2=a 2b 2,(ab )3=a 3b 3,(ab )4=a 4b 4,…①归纳得(ab )n = ;(abc )n = ;②计算4100×0.25100= ;(12)5×35×(23)5= ; ③应用上述结论计算:(-0.125)2021×22022×42020.[解析] ①(ab )n =a n b n ,(abc )n =a n b n c n .②4100×0.25100=(4×0.25)100=1,(12)5×35×(23)5 =(12×3×23)5=1.③(-0.125)2021×22022×42020=-0.125×22×(-0.125×2×4)2020=-0.5×(-1)2020=-0.5.探究点3 幂的运算综合练习 典例3 计算:(-2x 2)3+x 2·x 4-(-3x 3)2.[解析] (-2x 2)3+x 2·x 4-(-3x 3)2=-8x 6+x 6-9x 6=-16x 6.三、板书设计积的乘方积的乘方{ 积的乘方法则{法则符号表达字母范围积的乘方逆用幂的运算综合练习◇教学反思◇本节主要是积的乘方,学生很容易得出计算公式,关键是利用公式进行运算,通过练习引导学生明确先利用法则把运算转化为几个幂的乘方的积,然后计算,通过小组练习,讨论,纠错得到正确的解法.14.1.4整式的乘法第1课时单项式与单项式相乘◇教学目标◇【知识与技能】会进行单项式乘单项式的运算.【过程与方法】经历探索单项式乘以单项式的过程,体会乘法结合律的作用和转化的思想,发展有条理的思考及语言表达能力.【情感、态度与价值观】培养学生推理能力、计算能力,通过小组合作与交流,增强协作精神.◇教学重难点◇【教学重点】单项式乘法运算法则的推导与应用.【教学难点】单项式乘法运算法则的推导与应用.◇教学过程◇一、情境导入前面我们学习了幂的运算,我们知道整式有两种,分别为单项式与多项式,那么整式的乘法应有几种,哪种最简单?二、合作探究探究点1单项式乘单项式法则典例1计算:4x2y·(-1x)=.4[解析]根据单项式与单项式相乘,把它们的系数分别相乘,相同字母的幂分别相加,其余字母x)=-x3y.连同它的指数不变,作为积的因式,计算即可.4x2y·(-14[答案]-x3y变式训练计算(-2x3y2)3·4xy2=.[答案]-32x10y8探究点2求代数式的值典例2如果x n y4与2xy m相乘的结果是2x5y7,求mn的值.[解析]由题意可知x n y4×2xy m=2x n+1·y4+m=2x5y7,∴n+1=5,4+m=7,∴m=3,n=4,∴mn=12.探究点3法则应用典例3计算(9×105)×(2.5×103)=.(用科学记数法表示) [解析](9×105)×(2.5×103)=9×2.5×105×103=22.5×108=2.25×109. [答案]2.25×109探究点4幂的运算综合练习典例4计算:(-3x2y2)2·2xy+(xy)3=.[解析](-3x2y2)2·2xy+(xy)3=9x4y4·2xy+x3y3=18x5y5+x3y3.[答案]18x5y5+x3y3三、板书设计单项式与单项式相乘单项式乘单项式{单项式乘单项式法则{法则符号表达单项式乘法法则的应用◇教学反思◇本节是单项式与单项式的乘法,学生通过面积的计算,或乘方分配律可以得出运算法则;通过学生小组练习、讨论、纠错提高学生的合作能力,以及在运算中提高学生的应用意识,总结出单项式乘单项式的步骤以及易错点,以引起学生的注意.第2课时单项式与多项式相乘◇教学目标◇【知识与技能】掌握单项式与多项式的乘法运算法则,会进行简单的整式乘法运算.【过程与方法】经历探索单项式与多项式相乘的运算过程,体会乘法分配律的作用和转化思想,发展有条理地思考及语言表达能力.【情感、态度与价值观】培养良好的探究意识与合作交流的能力,体会整式运算的应用价值.◇教学重难点◇【教学重点】单项式与多项式相乘的法则.【教学难点】整式乘法法则的推导与应用.◇教学过程◇一、情境导入有3家超市以相同价格n(单位:元/台)销售A牌电视机,它们在一年内的销售量(单位:台)分别是x,y,z,请你采用不同的方法计算它们在这一年内销售这种电视机的总收入.小明的答案是n(x+y+z),小芳的答案是nx+ny+nz,各说各有理,你能给他们评判一下吗?二、合作探究探究点1单项式乘多项式典例1计算:(x-3y)(-6x)=.[解析]根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.[答案]-6x2+18xyxy2.变式训练计算:(3x3y2-6x2y)·13[解析]原式=x4y4-2x3y3.探究点2求未知系数的值典例2 已知a (x 2+x -c )+b (2x 2-x -2)=7x 2+4x +3,求a ,b ,c 的值.[解析] ∵a (x 2+x -c )+b (2x 2-x -2)=7x 2+4x +3,∴(a +2b )x 2+(a -b )x -(ac +2b )=7x 2+4x +3,∴{a +2b =7,a -b =4,-(ac +2b )=3,解得a =5,b =1,c =-1.求未知系数的值,根据两个多项式相等时,如ax 2+bx =cx 2+dx ,则有a =c ,b =d ,得到方程组即可求解,关键是整式的乘法.探究点3 求代数式的值典例3 已知ab 2=-2,则-ab (a 2b 5-ab 3+b )=( )A.4B.2C.0D.14[解析] -ab (a 2b 5-ab 3+b )=-a 3b 6+a 2b 4-ab 2=-(ab 2)3+(ab 2)2-ab 2,当ab 2=-2时,原式=-(-2)3+(-2)2-(-2)=8+4+2=14.[答案] D【技巧点拨】这类问题先根据单项式的乘法计算得到多项式,然后把多项式用已知式子表示出来,整体代入求值,这种整体思想是我们经常用到的一种方法.三、板书设计单项式与多项式相乘单项式乘多项式{ 单项式乘多项式法则{法则符号表达几何意义法则的应用◇教学反思◇本节的内容是单项式乘多项式,法则的得到比较简单,教学中,应紧扣法则,单项式乘多项式转化为单项式乘单项式的问题计算,同学小组练习讨论理解多项式的每一项,包括它前面的符号.在实施“情境——探究”教学过程中,注重引导学生在课堂活动过程中感悟知识的生成、发展与变化,培养学生主动探索、敢于实践、善于发现的科学精神.第3课时多项式与多项式相乘◇教学目标◇【知识与技能】理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算.【过程与方法】经历探索多项式与多项式相乘的运算法则的推理过程,体会数学的转化思想.【情感、态度与价值观】通过推理,培养学生计算能力,发展有条理的思考,逐步形成主动探索的习惯.◇教学重难点◇【教学重点】多项式与多项式的乘法法则的理解及应用.【教学难点】多项式与多项式的乘法法则的应用.◇教学过程◇一、情境导入试着用不同方式计算下图的面积,探讨你能得到什么结论.二、合作探究探究点1多项式乘多项式典例1计算(2m-3)(m+2).[解析](2m-3)(m+2)=2m×m+2m×2+(-3)×m+(-3)×2=2m2+4m-3m-6=2m2+m-6.整式的乘法就是根据运算法则转化为单项式乘单项式计算,最后把所得结果相加,注意有同类项的要合并同类项,需提醒是的多项式的项包括它前面的符号.注意不要漏项,漏字母,有同类项的合并同类项.探究点2求未知系数的值典例2若(x+m)(x-8)中不含x的一次项,则m的值为()A.8B.-8C.0D.8或-8[解析]∵(x+m)(x-8)=x2-8x+mx-8m=x2+(m-8)x-8m,又结果中不含x的一次项,∴m -8=0,∴m=8.[答案] A变式训练若(y+3)(y-2)=y2+my+n,则m,n的值分别为()A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-6[答案] B探究点3求代数式的值典例3若代数式(x+1)2+m(x+1)+n可以化简为x2+2x-3,则m+n=. [解析]∵(x+1)2+m(x+1)+n=x2+2x+1+mx+m+n=x2+(2+m)x+m+n+1,由题意得{m+2=2,m+n+1=-3,解得{m=0,n=-4,故m+n=-4.[答案]-4探究点4积中不含某项典例4(x2-mx+6)(3x-2)的积中不含x的二次项,则m的值是()A.0B.23C.-23D.-32[解析](x2-mx+6)(3x-2)=3x3-(2+3m)x2+(2m+18)x-12,∵(x2-mx+6)·(3x-2)的积中不含x的二次项,∴2+3m=0,解得m=-23.[答案] C三、板书设计多项式与多项式相乘多项式乘多项式{ 多项式乘多项式法则(法则符号表达几何意义法则的应用:求未知系数◇教学反思◇本节的内容是多项式的乘法,针对本节课学生的易错点,如“漏项”、“忘变号”的情况,在例题后进行强调,并总结规律,让学生以后在练习计算时避免“漏项”“忘变号”的发生.第4课时同底数幂的除法◇教学目标◇【知识与技能】1.掌握同底数幂的除法运算性质,并能运用它解决一些实际问题;2.理解零次幂的意义,了解规定a0=1(a≠0)的合理性;【过程与方法】经历同底数幂的除法运算性质的获得过程,掌握同底数幂的除法运算性质,会用同底数幂的除法运算性质进行有关计算,提高学生的运算能力,进一步体会幂的意义,发展推理能力,提高语言表达能力.【情感、态度与价值观】经历探索同底数幂的除法运算性质的过程,体验通过“转化”构建新知识体系,培养学生大胆猜想,善于观察、归纳的数学品质和创新精神.◇教学重难点◇【教学重点】同底数幂的除法运算.【教学难点】理解零次幂的意义.◇教学过程◇一、情境导入至此,我们已经学习了整式的加法、减法、乘法运算.在整式运算中,有时还会遇到两个整式相除的情况.由于除法是乘法的逆运算,因此我们可以利用整式的乘法来讨论整式的除法.二、合作探究探究点1同底数幂的除法典例1计算(-a)10÷(-a)3的结果等于.[解析](-a)10÷(-a)3=(-a)10-3=(-a)7=-a7.[答案]-a7【技巧点拨】先把底数-a看作一个整体,直接运用同底数幂的除法法则;也可以将底数化为a,再运用同底数幂的除法法则,即(-a)10÷(-a)3=a10÷(-a3)=-a10-3=-a7.变式训练化简:(x+y)5÷(-x-y)2÷(x+y).[解析] 原式=(x +y )5÷(x +y )2÷(x +y )=(x +y )5-2-1=(x +y )2.探究点2 零次幂典例2 计算:(1)20220+(-3)0-4×(12)0; [解析] 原式=1+1-4×1=-2.三、板书设计同底数幂的除法1.同底数幂的除法法则:底数不变,指数相减.即a m ÷a n =a m -n (a ≠0).2.零指数幂:任何一个不等于零的数的零次幂都等于1.即a 0=1(a ≠0).◇教学反思◇本节课的学习对于学生来说,无论在知识上,还是在类比学习能力和抽象思维能力的培养上,都起着不容忽视的作用.数学学习不能单纯依赖模仿与记忆,应该从学生的生活经验和已有知识的背景出发,提供给学生进行数学活动和探索的机会,使他们在自主探索的过程中真正理解和掌握数学知识.在培养学生合作与交流的同时,充分调动学生的参与意识和学习积极性,使学生体验到平等、自由和民主,同时也受到了激励和鼓舞,从而形成积极的人生态度.第5课时 整式的除法◇教学目标◇【知识与技能】会进行单项式除以单项式、多项式除以单项式的运算,理解整式除法运算的原理.【过程与方法】经历探究整式的除法的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.【情感、态度与价值观】感受数学法则、公式的简洁美、和谐美.◇教学重难点◇ 【教学重点】整式除法的法则并应用其法则计算.【教学难点】理解整式除法的法则及其原理.◇教学过程◇一、情境导入一种数码照片的文件大小是28K,一个存储量为26M(1M =210K)的移动存储器能存储多少张这样的数码照片?二、合作探究探究点1 同底数幂的除法 典例1 32x =2,3y =5,则34x -2y = .[解析] 原式=34x 32y =(32x )2(3y )2,当32x =2,3y =5时,原式=2252=425. [答案] 425变式训练 若5=3x ,7=9y ,则3x -2y 的值为 .[答案] 57探究点2 单项式除以单项式 典例2 计算:10ab 3÷(-5ab )= .[解析] 根据单项式除法法则,系数和系数,相同的字母分别相除,作为商的一个因式,只在被除式的字母连同它的指数作为商的一个因式,即可求出答案.原式=-105a 1-1b 3-1=-2b 2.[答案] -2b 2变式训练 4x 2y 3÷(-12xy )2= . [答案] 16y探究点3 多项式除以单项式典例3 小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x 3y -2xy 2,商式必须是2xy ,则小亮报一个除式是 .[解析] (x 3y -2xy 2)÷2xy =12x 2-y.[答案] 12x 2-y三、板书设计整式的除法整式的除法{ 同底数幂的除法{法则符号表达单项式除以单项式多项式除以单项式◇教学反思◇本节的内容是整式的除法,内容较多,分三部分,通过运算要求学生说出式子每一步变形的根据,并要求学生养成检验的好习惯,利用乘除互为逆运算,检验商式的正确性.培养学生耐心细致、严谨的数学思维品质,训练学生形成一定的计算能力,慢慢培养学生良好的思维习惯和主动参与学习的习惯.14.2乘法公式14.2.1平方差公式◇教学目标◇【知识与技能】会推导平方差公式,并且懂得运用平方差公式进行简单计算.【过程与方法】经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式.【情感、态度与价值观】通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性.◇教学重难点◇【教学重点】平方差公式的推导和运用,以及对平方差公式的几何背景的了解.【教学难点】准确把握运用平方差公式的特征,应用平方差公式解题.◇教学过程◇一、情境导入从前有一个狡猾的地主,他把一块长为x米的正方形土地租给张老汉种植,有一天,他对张老汉说:“我把这块地的一边减少5米,另一边增加5米,继续租给你,你也没吃亏,你看如何?”张老汉一听觉得没有吃亏,就答应了.你能告诉张老汉他吃亏了吗?二、合作探究探究点1平方差公式的特征典例1下列多项式乘法中可以用平方差公式计算的是()A.(-a+b)(a-b)B.(x+2)(2+x)C.(x3+y)(y-x3) D.(x-2)(x+1)[解析]A项,原式=-(a-b)(a-b)=-(a-b)2,故A不能用平方差公式;B项,原式=(x+2)2,故B不能用平方差公式;D项,原式=x2-x+1,故D不能用平方差公式.[答案] C平方差公式的特征:一是左边是两个多项式相乘,这两个多项式中有一项相同,另一项互为相反数;二是右边是相同项与相反项的平方差;三是公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式.变式训练计算(2x3-3a)(-2x3-3a)的结果是()A.-4x6-9a2B.-4x6+9a2C.-4x6-12ax3+9a2D.-4x6-12ax3-9a2[答案] B探究点2平方差公式求值整体思想应用典例2如果(a-b-3)(a-b+3)=40,那么a-b的值为()A.49B.7C.-7D.7或-7[解析](a-b-3)(a-b+3)=(a-b)2-9=40,即(a-b)2=49,则a-b=7或-7.[答案] D探究点3平方差公式的计算典例3计算:69×71=.[解析]原式=(70-1)(70+1)=702-1=4900-1=4899.[答案]4899变式训练计算:20212-2020×2022=.[答案] 1探究点4平方差公式的几何意义典例4如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(a-b)2=a2-2ab+b2B.a(a-b)=a2-abC.(a -b )2=a 2-b 2D.a 2-b 2=(a +b )(a -b )[解析] 第一个图形阴影部分的面积是a 2-b 2,第二个图形的面积是(a +b )(a -b ).则a 2-b 2=(a +b )(a -b ).[答案] D三、板书设计平方差公式平方差公式{平方差公式{公式符号表达公式特点以及变形几何背景应用{计算、化简简化运算 ◇教学反思◇ 本节的内容是平方差公式,主要观察是否符合公式特点,只有符合公式特点才能用公式直接求解,利用公式计算.在实施情境探究教学过程中,应注意让学生感知问题的生成、发展与变化,培养学生善于发现的科学精神以及合作交流的精神和创新意识.14.2.2完全平方公式第1课时完全平方公式◇教学目标◇【知识与技能】会推导完全平方公式,并能运用公式进行简单的运算.【过程与方法】经历利用多项式与多项式的乘法以及幂的意义,推导出完全平方公式的过程.【情感、态度与价值观】通过练习培养学生观察、类比、发现的能力,体验数学活动充满着探索性和创造性.◇教学重难点◇【教学重点】完全平方公式的推导和应用.【教学难点】完全平方公式的应用.◇教学过程◇一、情境导入现有如图所示的三种规格的硬纸片各若干张,请你根据二次三项式a2+2ab+b2,选取相应种类和数量的硬纸片,拼出一个正方形,并探究所拼出的正方形的代数意义.二、合作探究探究点1完全平方公式典例1计算(3a-2b)2的结果为()A.9a2+4b2B.9a2+6ab+4b2C.9a2-12ab+4b2D.9a2-4b2[解析]原式=(3a)2-2×3a×2b+(2b)2=9a2-12ab+4b2.[答案] C【技巧点拨】解本题的关键是熟练运用完全平方公式,记忆完全平方公式可用口诀“首平方,尾平方,首位两倍在中间,中间符号随前面”.很多同学遗漏掉中间积的2倍这一项,应引起注意.探究点2简化运算典例2下列关于962的计算方法正确的是()A.962=(100-4)2=1002-42=9984B.962=(95+1)(95-1)=952-1=9024C.962=(90+6)2=902+62=8136D.962=(100-4)2=1002-2×4×100+42=9216[解析]962=(100-4)2=1002-2×100×4+42=9216,A项错误;962=(95+1)(95+1)=952+2×95×1+1=9216,B项错误;962=(90+6)2=902+2×90×6+62=9216,C项错误;962=(100-4)2=1002-2×100×4+42=9216,D项正确.[答案] D应用完全平方公式时,要注意:①公式中的a,b可以是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式;③对于三项的可以把其中的两项看做一项后,也可以用完全平方公式.探究点3完全平方式典例3若4a2-kab+9b2是完全平方式,则常数k的值为()A.6B.12C.±12D.±6[解析]∵4a2-kab+9b2是完全平方式,∴-kab=±2×2a×3b=±12ab,∴k=±12.[答案] C变式训练已知x2-8x+a可以写成一个完全平方式,则a可为()A.4B.8C.16D.-16[答案] C探究点4完全平方公式变形应用典例4已知a+b=3,ab=-2,求下列各式的值.(1)a2+b2;(2)a-b.[解析](1)∵a+b=3,ab=-2,∴a2+b2=(a+b)2-2ab=32-2×(-2)=13.(2)∵a +b =3,ab =-2,∴a -b =±√(a -b )2=±√a 2+b 2-2ab =±√13-2×(-2)=±√17.探究点5 完全平方公式的几何背景典例5 如图1是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积为( )A.abB.(a +b )2C.(a -b )2D.a 2-b 2[解析] 中间空的部分的面积=大正方形的面积-4个小长方形的面积=(a +b )2-4ab =a 2+2ab +b 2-4ab =(a -b )2.[答案] C三、板书设计完全平方公式完全平方公式{完全平方公式{公式符号表达公式特点以及变形几何背景应用{计算、化简简化运算 ◇教学反思◇本节的内容是完全平方公式,在教学中,重视公式的几何背景,较直观地让学生理解代数中的某些问题.利用拼图游戏,调动学生的积极性,让学生关注几何与代数之间的内在联系,增强记忆,也可用口诀的形式让学生形象记忆,尤其针对学生易漏掉中间积的2倍这一项做好针对性的练习.第2课时添括号法则◇教学目标◇【知识与技能】掌握乘法公式的结构特征及公式的含义,理解添括号法则,会正确地添括号运用这些公式进行计算.【过程与方法】通过探索和理解乘法公式,感受乘法公式从一般到特殊的认知过程,拓展思维空间.【情感、态度与价值观】培养良好的分析思想和与人合作的习惯,体会数学的重要价值.◇教学重难点◇【教学重点】正确应用乘法公式(平方差公式、完全平方公式).【教学难点】对乘法公式的结构特征以及内涵的理解.◇教学过程◇一、情境导入教室里有a名同学,第一次有b名同学被老师喊到办公室去了,第二次有c名同学被老师喊到办公室去了,请你用代数式表示教室里现在有多少名学生?你能用两种形式表示吗?二、合作探究探究点1添括号法则典例1①5x+3x2-4y2=5x-();②-3p+3q-1=3q-().[解析]①5x+3x2-4y2=5x-(4y2-3x2).②-3p+3q-1=3q-(3p+1).[答案]4y2-3x2;3p+1添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括到括号里的各项都改变符号.注意遇负全变,遇正不变.探究点2添括号后用公式计算典例2 计算:(a -2b +1)(a +2b -1).[解析] (a -2b +1)(a +2b -1)=[a -(2b -1)][a +(2b -1)]=a 2-(2b -1)2=a 2-4b 2+4b -1.探究点3 用完全平方公式计算典例3 计算:(a +2ab -1)2.[解析] 原式=(a +2ab )2-2(a +2ab )·1+12=a 2+4a 2b +4a 2b 2-2a -4ab +1.变式训练 (a +2b -c )2.[解析] 原式=(a +2b )2+c 2-2c (a +2b )=a 2+4ab +4b 2+c 2-2ac -4bc.探究点4 代数式求值 典例4 先化简,再求值:(a +2b )(a -2b )+(a +2b )2+(2ab 2-8a 2b 2)÷2ab ,其中a =1,b =2.[解析] 原式=a 2-4b 2+a 2+4ab +4b 2-4ab +b =2a 2+b ,∵a =1,b =2,∴原式=2a 2+b =4.三、板书设计添括号法则添括号{ 添括号法则乘法公式{平方差公式完全平方公式应用◇教学反思◇本节的内容是添括号法则,添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,所以我们可以用去括号法则验证所添括号后的代数式是否正确,添括号能利用乘法公式简单计算,重在理解遇负全变,遇正不变的口诀.14.3因式分解14.3.1提公因式法◇教学目标◇【知识与技能】1.了解因式分解的意义,以及它与整式乘法的关系,掌握因式分解的概念;2.能确定多项式各项的公因式,会用提公因式法把多项式分解因式.【过程与方法】经历从分解因数到分解因式的类比过程,感受因式分解在解决问题中的作用.【情感、态度与价值观】培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.◇教学重难点◇【教学重点】了解因式分解的意义,掌握用提公因式法把多项式分解因式.【教学难点】整式乘法与因式分解之间的关系.正确地确定多项式的最大公因式.◇教学过程◇一、情境导入试计算:37×337+63×337.这里用到了什么运算律?二、合作探究探究点1因式分解的意义典例1下列从左边到右边的变形,是因式分解的是()A.(3-x)(3+x)=9-x2B.x2+2x+1=x(x+1)+1C.a2b+ab2=ab(a+b)D.(a-b)(n-m)=(b-a)(n-m)[解析](3-x)(3+x)=9-x2,是多项式乘法,故A错误;x2+2x+1=(x+1)2,故B错误;a2b+ab2=ab(a+b),C正确;(a-b)(n-m)≠(b-a)(n-m),不是因式分解,故D错误.[答案] C。
第十四章整式的乘法与因式分解14.1.4整式的乘法第1课时一、教学目标【知识与技能】1.会进行单项式乘单项式的运算.2.探索并了解单项式与多项式相乘的法则,会运用法则进行简单计算.【过程与方法】1.经历探索单项式乘以单项式的过程,体会乘法结合律的作用和转化的思想,发展有条理的思考及语言表达能力.2.进一步理解数学中“转化”“换元”的思想方法,即把单项式与多项式相乘转化为单项式与单项式相乘.【情感、态度与价值观】1.培养学生推理能力、计算能力,通过小组合作与交流,增强协作精神.2.逐步形成独立思考、主动探索的习惯,培养思维的严密性和初步解决问题的愿望和能力.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】1.单项式与单项式相乘的法则.2.单项式与多项式相乘的法则及其运用.【教学难点】1.对单项式的乘法运算的算理的理解.2.单项式与多项式相乘去括号法则的应用.五、课前准备教师:课件、直尺、计算器等。
学生:直尺、计算器。
六、教学过程(一)导入新课教师:前面我们学习了幂的运算,这节课我们先来回答下面的问题,再进入今天的课题。
教师问1:幂的运算性质有哪几条?学生思考后找同学回答:同底数幂的乘法法则:a m·a n=a m+n( m、n都是正整数).幂的乘方法则:(a m)n=a mn ( m、n都是正整数).积的乘方法则:(ab)n=a n b n ( m、n都是正整数).教师对学生回答结果做出表扬后继续提问。
教师问2:计算:(1)x2· x3· x4= ;(2)(x3)6= ;(3)(–2a4b2)3= ;(4) (a 2)3 · a 4= ;(5)(- 53)5·(- 35)5= 。
学生回答:(1)x 9;(2)x 18;(3)-8a 12b 6;(4)a 10(5)1教师:复习完前面的相关知识后,下面进入今天的课题。
(二)探索新知1.师生互动,探究单项式乘法的意义下列代数式中,哪些是单项式?哪些是多项式?-2x 3;1+y ;45ab 3c ;-y ;6x 2-x +5;3ab 10. 学生回答:单项式有:-2x 3;45ab 3c ;-y ;3ab 10. 多项式有:1+y ;6x 2-x +5.教师问3:光的速度约为每秒3×105千米,太阳光射到地球上需要的时间约是5×102秒,地球与太阳的距离约是多少千米?(出示课件4)学生回答:地球与太阳的距离约是(3×105)×(5×102)km.教师问4:怎样计算(3×105)×(5×102)?计算过程中用到了哪些运算律及运算性质?(出示课件5)学生讨论后回答:(3×105)×(5×102)=(3×5)×(105×102) (乘法交换律、结合律)=15×107. (同底数幂的乘法)教师问5:15×107,这样书写规范吗?应该如何写呢?学生回答:不规范,应为1.5×108.教师问6:如果将上式中的数字改为字母,比如ac5·bc2,怎样计算这个式子?(出示课件6)学生讨论后回答:ac5·bc2是两个单项式ac5与bc2相乘,我们可以利用乘法交换律,结合律及同底数幂相乘的运算性质来计算:ac5·bc2 =(a ·b) ·(c5·c2) (乘法交换律、结合律)=abc5+2 (同底数幂的乘法)=abc7.教师问7:这是什么运算?如何进行运算?学生回答:乘法运算,单项式乘以单项式.教师问8:你能类比上题计算2x2y·3xy2;4a2x5·(-3a3bx)吗?学生尝试计算,交流,展示计算过程.(1)2x2y·3xy2=(2×3)(x2·x)(y·y2)=6x3y3;(2)4a2x5·(-3a3bx)=[4×(-3)](a2·a3)·b·(x5·x)=-12a5bx6.教师问9:用到了哪些知识?怎么进行单项式乘以单项式的运算?学生回答:运用了乘法的交换律和结合律,进行单项式乘以单项式的运算:把系数相乘,相同字,相同字母相乘.教师问10:你能总结单项式乘以单项式的规律吗?学生回答:单项式乘以单项式:把单项式的系数相乘,相同的字母相乘,再把所得的积相乘.教师问11:计算:5x2y3·7x3y4z2.学生回答:5x2y3·7x3y4z2=(5×7)·(x2·x3)(y3·y4)z2=35x5y7z2教师问12:计算5x2y3·7x3y4z2时,对于字母z2如何办呢?学生回答:只在一个因式中出现的字母,写在后边作为一项.教师问13:写在什么后边作为一项?学生回答:写在积的后面作为一项.总结点拨:(出示课件7)单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例1:计算:(出示课件8)(1)(–5a2b)(–3a);(2)(2x)3(–5xy2).解:(1)(–5a2b)(–3a)= [(–5)×(–3)](a2•a)b= 15a3b;(2)(2x)3(–5xy2)=8x3(–5xy2)=[8×(–5)](x3•x)y2=–40x4y2.总结点拨:(出示课件9)1. 在计算时,应先确定积的符号,积的系数等于各因式系数的积;2. 注意按顺序运算;3. 不要漏掉只在一个单项式里含有的字母因式;4. 此性质对三个及以上单项式相乘仍然适用.例2:已知–2x 3m +1y 2n 与7x n –6y –3–m 的积与x 4y 是同类项,求m 2+n 的值.(出示课件12)解:∵–2x 3m +1y 2n 与7x n –6y –3–m 的积与x 4y 是同类项,231,3164,--=⎧∴⎨++-=⎩n m m n解得:3,2,n m =⎧⎨=⎩∴m 2+n =7.总结点拨:单项式乘以单项式就是把它们的系数和同底数幂分别相乘,结合同类项的定义,列出二元一次方程组求出参数的值,然后代入求值即可.教师问14:如图,分别求出下边每块草坪的面积是多少?学生回答:如果把它看成三个小长方形,那么它们的面积可分别表示为pa 、pb 、pc.教师问15:如图,试求出三块草坪的总面积是多少?(出示课件14) 学生回答:pa+pb+pc.教师问16:如果把它们拼成一个大长方形,如下图,它的总面积是多少呢?(出示课件15)学生回答:如果把它看成一个大长方形,那么它的长为(a+b+c),面积可表示为p(a+b+c).教师问17:(出示课件17)由此我们可以得到什么呢?学生回答:pa+pb+pc=p(a+b+c).教师问18:看到这个等式,你想到了什么呢?学生回答:想到了乘法分配律!教师问19:哪位同学能说一下乘法分配律是怎样计算的呢?学生根据自己的理解回答。
第十四章整式的乘法与因式分解14.1整式的乘法14.1.3积的乘方一、教学目标【知识与技能】探索积的乘方的运算性质,能用积的乘方的运算性质进行计算.【过程与方法】经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.【情感、态度与价值观】培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.二、课型新授课三、课时第1课时四、教学重难点【教学重点】积的乘方运算法则的理解及其应用.【教学难点】积的乘方推导过程的理解和灵活运用.五、课前准备教师:课件、直尺、计算器等。
学生:直尺、计算器。
六、教学过程(一)导入新课若已知一个正方体的棱长为2×103cm,你能计算出它的体积是多少吗?学生思考后列式:V=(2×103)3(cm3)教师提出问题:底数是2和103的乘积,虽然103是幂,但总体来看,它是积的乘方。
积的乘方如何运算呢?能不能找到一个运算法则?(出示课件2)(二)探索新知1.创设情境,探究积的乘方的法则教师问1:请同学们完成下面的题目计算:(1)x2·x5;(2)y2n·y n+1;(3)(x4)3;(4)(a2)3·a5.学生回答:(1)x7;(2)y3n+1;(3)x12;(4)a11.教师问2:同底数幂的乘法法则,幂的乘方法则是什么?学生回答:同底数幂的乘法法则:底数不变,指数相加;a m·a n=a m+n (m,n都是正整数).幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n都是正整数).教师问3:地球半径约为6.4×103km,球的体积计算公式为:V=4πr3,你知道3地球的体积大约是多少吗?(出示课件4)学生独立思考问题3并口答:体积应是V=4π(6.4×103)3km3.3教师问4:结果是幂的乘方形式吗?学生讨论后回答:底数是6.4和103的乘积,虽然103是幂,但总体来看不是幂的乘方.教师讲解:如何运算呢?本节课我和同学们一起来探究积的乘方的运算.教师问4:计算:(3×4)2和32×42,看一下他们的结果,你发现了什么?学生计算后回答:它们的结果相等,即(3×4)2=32×42教师问5:下列两题有什么特点?(出示课件7)(1)(ab)2;(2)(ab)3学生回答:底数为两个因式相乘,积的形式.教师问6:你猜想一下它们的结果是多少呢?学生回答:(ab)2=a2b2,则(ab)3=a3b3,教师问7:你能证明上边的猜想吗?(出示课件8)学生讨论并回答:(ab)2=(ab)·(ab)(乘方的意义)=(aa)·(bb)(乘法交换律、结合律)=a2b2(同底数幂相乘的法则)同理:(ab)3=(ab)·(ab)·(ab)(乘方的意义)=(aaa)·(bbb)(乘法交换律、结合律)=a3b3(同底数幂相乘的法则)教师问8:同学们试着猜想一下:(ab)n=?(出示课件9)学生猜想:(ab)n=a n b n.教师问9:你能用你学过的知识验证你的猜想吗?从运算结果看能发现什么规律?师生共同讨论后解答如下:因此可得:(ab)n=a n b n(n为正整数).教师总结:得到结论:(出示课件10)积的乘方:(ab)n=a n·b n(n是正整数),即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.教师问10:前面提出问题中正方体的体积V=(2×103)3它不是最简形式,根据发现的规律如何计算呢?学生解答:可作如下运算:V=(2×103)3=23×(103)3=23×103×3=8×109cm3.教师问11:三个或三个以上的积的乘方等于什么?学生讨论后回答:三个或三个以上的因式的积的乘方也具有这一性质.如(abc)n=a n·b n·c n(n为正整数);教师讲解:积的乘方等于积中“每一个”因式乘方的积,防止有的因式漏掉乘方出现错误;教师问12:积的乘方的法则:(ab)n=a n·b n(n是正整数),把等式的左右两边一换可以得到:a n·b n=(ab)n(n为正整数).这样成立吗?师生共同讨论后解答如下:积的乘方法则可以进行逆运算.即:a n·b n=(ab)n(n为正整数).总结点拨:分析这个等式:左边是幂的乘积,而且幂指数相同,右边是积的乘方,且指数与左边指数相等,那么可以总结为:同指数幂相乘,底数相乘,指数不变.例1:计算:(出示课件11)(1)(2a)3;(2)(–5b)3;(3)(xy2)2;(4)(–2x3)4.师生共同解答如下:解:(1)原式=23a3=8a3;(2)原式=(–5)3b3=–125b3;(3)原式=x2(y2)2=x2y4;(4)原式=(–2)4(x3)4=16x12.总结点拨:运用积的乘方法则进行计算时,注意每个因式都要乘方,尤其是字母的系数不要漏乘方.例2计算:(出示课件14)(1)–4xy2·(xy2)2·(–2x2)3;(2)(–a3b6)2+(–a2b4)3.师生共同解答如下:解:(1)原式=–4xy2·x2y4·(–8x6)=[–4×(–8)]x1+2+6y2+4=32x9y6;(2)原式=a6b12+(–a6b12)=[1+(–1)]a6b12=0总结点拨:涉及积的乘方的混合运算,一般先算积的乘方,再算乘法,最后算加减,然后合并同类项.例3:如何简便计算(0.04)2022×[(–5)2022]2?(出示课件15)师生共同解答如下:解法一:(0.04)2022×[(–5)2022]2=(0.22)2022×54044=(0.2)4044×54044=(0.2×5)4044=14044=1解法二:(0.04)2022×[(–5)2022]2=(0.04)2022×(25)2022=(0.04×25)2022=12022=1总结点拨:(出示课件16)①逆用积的乘方公式a n·b n=(ab)n,要灵活运用,对于不符合公式的形式,要通过恒等变形,转化为公式的形式.②一般转化为底数乘积是一个正整数,再进行幂的计算较简便.(三)课堂练习(出示课件20-24)1.计算(–x2y)2的结果是()A.x4y2B.–x4y2C.x2y2D.–x2y22.下列运算正确的是()A.x•x2=x2B.(xy)2=xy2C.(x2)3=x6D.x2+x2=x43.计算:(1)82024×0.1252023=________;(2)(-3)2023×(-13)2022________;(3)(0.04)2023×[(–5)2023]2=________.4.判断:(1)(ab2)3=ab6()(2)(3xy)3=9x3y3() (3)(–2a2)2=–4a4()(4)–(–ab2)2=a2b4() 5.计算:(1)(ab)8;(2)(2m)3;(3)(–xy)5;(4)(5ab2)3;(5)(2×102)2;(6)(–3×103)3.6.计算:(1)2(x3)2·x3–(3x3)3+(5x)2·x7;(2)(3xy2)2+(–4xy3)·(–xy);(3)(–2x3)3·(x2)2.7.如果(a n•b m•b)3=a9b15,求m,n的值.参考答案:1.A2.C3.(1)8;(2)-3;(3)14.(1)×(2)×(3)×(4)×5.解:(1)原式=a8b8;(2)原式=23·m3=8m3;(3)原式=(–x)5·y5=–x5y5;(4)原式=53·a3·(b2)3=125a3b6;(5)原式=22×(102)2=4×104;(6)原式=(–3)3×(103)3=–27×109=–2.7×1010.6.(1)解:原式=2x6·x3–27x9+25x2·x7=2x9–27x9+25x9=0;(2)解:原式=9x2y4+4x2y4=13x2y4;(3)解:原式=–8x9·x4=–8x13.7.解:∵(a n•b m•b)3=a9b15,∴(a n)3•(b m)3•b3=a9b15,∴a3n•b3m•b3=a9b15,∴a3n•b3m+3=a9b15,∴3n=9,3m+3=15.∴n=3,m=4.(四)课堂小结今天我们学了哪些内容:积的乘方法则:(ab)n=a n·b n(n是正整数).使用范围:底数是积的乘方.方法:把积的每一个因式分别乘方,再把所得的幂相乘.注意点:(1)注意防止符号上的错误;(2)三个或三个以上的因式的积的乘方也具有这一性质;(3)积的乘方法则也可以逆用.(五)课前预习预习下节课(14.1.4)98页到99页的相关内容。
最新 精品 Word 欢迎下载 可修改14.1.4 整式(zhěnɡ shì)的乘法(1)1.了解单项式与单项式的乘法(chéngfǎ)法则;2.运用(yùnyòng)单项式与单项式的乘法法则(f ǎz é)计算.重点(zhòngdiǎn):单项式与单项式的乘法法则.难点:运用单项式与单项式的乘法法则计算.一、自学指导自学1:自学课本P98-99页“思考题及例4”,理解单项式与单项式乘法的法则,完成下列填空.(5分钟)1.填空:(ab)c =(ac)b ;a m a n =a m a n =a m +n (m ,n 都是正整数);(a m )n =a mn (m ,n 都是正整数);(ab)n =a n b n (n 都是正整数).2.计算:a 2-2a 2=-a 2,a 2·2a 3=2a 5,(-2a 3)2=4a 6;12x 2yz ·4xy 2=(12×4)·x (2+1)y (1+2)z =2x 3y 3z . 总结归纳:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.点拨精讲:单项式乘以单项式运用乘法的交换律和结合律将数和同底数幂分别结合在一起.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.课本P99页练习题1,2.2.计算:(1)3x 2·5x 3;(2)4y·(-2xy 2);(3)(3x 2y)3·(-4x);(4)(-2a)3·(-3a)2;(5)-6x 2y ·(a -b)3·13xy 2·(b -a)2. 解:(1)3x 2·5x 3=(3×5)·(x 2·x 3)=15x 5;(2)4y·(-2xy 2)=(-4×2)·x·(y·y 2)=-8xy 3;(3)(3x 2y)3·(-4x)=27x 6y 3·(-4x)=(-27×4)·(x·x 6)·y 3=-108x 7y 3;(4)(-2a)3·(-3a)2=(-8a 3)·9a 2=(-8×9)·(a 3·a 2)=-72a 5;(5)-6x 2y ·(a -b)3·13xy 2·(b -a)2=(-6×13)(x 2·x )(y·y 2)[(a -b)3·(a -b)2]=-2x 3y 3(a -b)5. 点拨精讲:先乘方再算单项式与单项式的乘法,(a -b)看作一个整体,一般情况选择偶数次幂变形符号简单一些.3.已知单项式-3x4m -n y 2与12x 3y m +n 的和为一个单项式,则这两个单项式的积是-32x 6y 4.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 若(-2xm +1y 2n -1)·(5x n y m )=-10x 4y 4,求-2m 2n ·(-12m 3n 2)2的值. 解:∵(-2x m +1y 2n -1)·(5x n y m )=-10x 4y 4,∴-10x m +n +1y 2n +m -1=-10x 4y 4,∴最新 精品 Word 欢迎下载 可修改 ⎩⎪⎨⎪⎧m +n +1=4,2n +m -1=4,∴⎩⎪⎨⎪⎧m =1,n =2,∴-2m 2n ·(-12m 3n 2)2=-12m 8n 5=-12×18×25=-16. 探究 2 宇宙空间的距离通常以光年(guāngnián)作单位,一光年(guāngnián)是光在一年内通过的距离,如果(rúguǒ)光的速度约为3×105千米(qiān mǐ)/秒,一年约为3.2×107秒,则一光年约为多少(duōshǎo)千米?解:依题意,得(3×105)×(3.2×107)=(3×3.2)·(105×107)=9.6×1012.答:一光年约为9.6×1012千米.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.一种电子计算机每秒可做2×1010次运算,它工作2×102秒可做4×1012次运算.2.已知x 2n =3,则(19x 3n )2·4(x 2)2n 的值是12. 3.小华家新购了一套结构如图的住房,正准备装修.(1)用代数式表示这套住房的总面积为15xy ;(2)若x =2.5 m ,y =3 m ,装修客厅和卧室至少需要112.5平方米的木地板.(3分钟)单项式与单项式相乘:积的系数等于各系数相乘,这部分为数的计算,应该先确定符号,再确定绝对值;积的字母部分运算法则为相同字母不变,指数相加;单个的字母及其指数写下来;单项式与单项式相乘,积仍是单项式;单项式与单项式乘法法则的理论依据是乘法的交换律和结合律.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)内容总结 1、在最软入的时候,你会想起谁。
14.1.2 幂的乘方(chéngfāng)
1.理解(lǐjiě)幂的乘方法则;
2.运用幂的乘方法(fāngfǎ)则计算.
重点:理解(lǐjiě)幂的乘方法则.
难点(nádiǎn):幂的乘方法则的灵活运用.
一、自学指导
自学1:自学课本P96-97页“探究及例2”,理解幂的乘方的法则完成填空.(5分钟)
(1)52中,底数是5,指数是2,表示2个5相乘;(52)3表示3个52相乘;
(2)(52)3=52×52×52(根据幂的意义)
=5×5×5×5×5×5(根据同底数幂的乘法法则)
=52×3;
(a m)2=a m·a m=a2m(根据a m·a n=a m+n);
(a m)n=a m·a m…a m,\s\up6(n个a m)) (根据幂的意义)
=a m+m+…+m,\s\up6(n个m)) (根据同底数幂的乘法法则)
=a mn(根据乘法的意义).
总结归纳:幂的乘方,底数不变,指数相乘.(a m)n=a mn(m,n都是正整数).
二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)
1.课本P97页练习题.
2.计算:(1)(103)2;(2)(x3)5;(3)(-x m)5;(4)(a2)4·a5.
解:(1)(103)2=103×2=106;(2)(x3)5=x3×5=x15;
(3)(-x m)5=-x5m;(4)(a2)4·a5=a2×4·a5=a8·a5=a13.
点拨精讲:遇到乘方与乘法的混算应先乘方再乘法.
3.计算:(1)[(-x)3]2;(2)(-24)3;(3)(-23)4;
(4)(-a5)2+(-a2)5.
解:(1)[(-x)3]2=(-x3)2=x6;(2)(-24)3=-212;(3)(-23)4=212;(4)(-a5)2+(-a2)5=a10-a10=0.
点拨精讲:弄清楚底数才能避免符号错误,混合运算时首先确定运算顺序.
小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)
探究1 若42n=28,求n的值.
解:∵4=22,∴42n=(22)2n=24n,∴4n=8,∴n=2
点拨精讲:可将等式两边化成底数或指数相同的数,再比较.
探究2 已知a m=3,a n=4(m,n为整数),求a3m+2n的值.
解:a3m+2n=a3m·a2n=(a m)3·(a n)2=33×42=27×16=432.
学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)
1.填空:108=( )2,b27=( )9,(y m)3=( )m,p2n+2=( )2.
2.计算:(1)(-x3)5;(2)a6(a3)2·(a2)4;(3)[(x-y)2]3;(4)x2x4+(x2)3.
解:(1)(-x 3)5=-x 15;(2)a 6(a 3)2·(a 2)4=a 6·a 6·a 8=a 20;(3)[(x -y)2]3
=(x -y)6;(4)x 2x 4+(x 2)3=x 6+x 6=2x 6.
3.若x m x 2m =3,求x 9m 的值.
解:∵x m x 2m =3,∴x 3m =3,∴x 9m =(x 3m )3=33=27.
(3分钟)公式(gōngshì)(a m )n 的逆用:a mn =(a m )n =(a n )m .
(学生总结本堂课的收获(shōuhuò)与困惑)(2分钟)
(10分钟)
内容总结
(1
)
14.
1.2
幂的
乘方
1.
理解幂的乘方法则
(2)(2)(52)3=52×52×52(根据幂的意义)
=5×5×5×5×5×5(根据同底数幂的乘法法则)
=52×3
(3)(am)n =am·am
1、在最软入的时候,你会想起谁。
22.2.132.13.202209:5509:55:52Feb-2209:55
2、人心是不待风吹儿自落得花。
二〇二二年二月十三日2022年2月13日星期日
3、有勇气承担命运这才是英雄好汉。
09:552.13.202209:552.13.202209:5509:55:522.13.202209:552.13.2022
4、与肝胆人共事,无字句处读书。
2.13.20222.13.202209:5509:5509:55:5209:55:52
5、若注定是过客,没何必去惊扰一盏灯。
Sunday, February 13, 2022February 22Sunday, February 13, 20222/13/2022
6、生的光荣,活着重要。
9时55分9时55分13-Feb-222.13.2022
7、永远叫不醒一个装睡的人。
22.2.1322.2.1322.2.13。
2022年2月13日星期日二〇二二年二月十三日
8、人生能有几回搏。
09:5509:55:522.13.2022Sunday, February 13, 2022 亲爱的用户: 相识是花结成蕾。
在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,感谢你的阅读。