141整式的乘法3
- 格式:ppt
- 大小:1.00 MB
- 文档页数:11
第一章整式的乘除4整式的乘法(第3课时)一、学生起点分析:学生的知识技能基础:学生在这一章前面几节课中学习了幂的运算,通过前两课时的学习,学生已经掌握了单项式乘单项式、单项式乘多项式的法则,并能正确的进行相关的计算,为本课时单项式乘多项式的学习奠定了充足的知识基础.学生的活动经验基础:在前面的运算学习中,学生经历了一些探索活动,初步积累了一些经验,在上一课时探索单项式乘多项式的法则时,学生一方面体会了对同一面积的不同表达和乘法分配律的运用,另一方面也体会了转化思想在解决新问题中的重要作用,这都为本课时的学习积累了活动经验.二、教学任务分析:教科书根据整式运算的知识脉络和学生的认知基础确定了本节课的主要教学任务:让学生经历猜想、探索、验证多项式乘以多项式的法则的过程,理解法则,并能灵活应用法则进行计算、解决实际问题,体会转化的数学思想方法.本节课所学习的多项式乘多项式,学生根据上节课学习过程中积累的经验,很容易将它转化为已学过的单项式与多项式相乘,进而转化为单项式与单项式相乘.所以本节课的学习既是对前面两节的综合运用,也是对前面两节学习的进一步深化.具体教学目标为:1.知识与技能:在具体情境中了解多项式乘法的意义,会利用法则进行简单的多项式乘法运算.2.过程与方法:经历探索多项式与多项式乘法法则的过程,理解多项式与多项式相乘的运算算理,体会乘法分配律的作用及转化思想在解决问题过程中的应用,发展学生有条理的思考和语言表达能力.3.情感与态度:在解决问题的过程中了解数学的价值,发展“用数学”的信心.三、教学设计分析:本节课共设计了七个环节:前置诊断,开辟道路——创设情境,自然引入——设问质疑,探究尝试——目标导向,应用新知——变式训练,巩固提高——总结串联,纳入系统——达标检测,评价矫正.第一环节:前置诊断,开辟道路活动内容:教师提出问题,引导学生复习上节课所学的单项式乘多项式1、如何进行单项式乘多项式的运算?你能举例说明吗?2、计算:(1))()3222n mn m mn -+⋅( (2))2()52(22b a b b a a a ---- 活动目的:单项式乘以多项式运算是多项式乘以多项式运算的基础,所以帮助学生回忆单项式乘多项式的运算非常重要.课前通过单项式乘多项式的热身活动,帮助学生唤起昨天课堂的记忆,重温探索法则的过程中所积累的活动经验。
八年级数学上册第十四章整式的乘法与因式分解141整式的乘法1413积
的乘方备课资料教案新版新人教版
知识点:积的乘方
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,即(ab)n=anbn(n 为正整数).
关键提醒:(1)积的乘方法则是用乘方的意义推理得到的.如:
(ab)n= =·=anbn.
(2)此性质可以逆运用anbn=(ab)n.
(3)三个或三个以上因式的积的乘方,也有这一性质,如(abc)n=anbncn.
考点1:逆用积的乘方巧解题
【例1】计算:(1) 0.125299×(-8)299;
(2)×.
解:(1)0.125299×(-8)299=[0.125×(-8)]299=(-1)299=-1;
(2)×=××=×=.
点拨:因为本题两算式中的数据是互为倒数的形式,所以可逆用积的乘方法则,先进行乘法运算,再进行乘方运算,这是一种较为简便的运算方法.
考点2;有关乘方的混合运算
【例2】计算:(1)-(2ax2)4;
(2)-a3·a4·a+(a2)4+(-2a4)2.
解:(1)-(2ax2)4=a4x8-16a4x8=-a4x8;
(2)-a3·a4·a+(a2)4+(-2a4)2=-a8+a8+4a8=4a8.
点拨:本题的运算顺序是先乘方,再乘法,最后加减.。
§14.1.4 整式的乘法——多项式乘多项式【教学内容分析】本节课通过“自主——合作”探究得到多项式乘以多项式的乘法法则,该法则是整式乘法的基础。
【教学目标】1.知识与技能目标⑴ 理解多项式与多项式的乘法法则。
⑵ 能够熟练地进行多项式与多项式的乘法。
2. 过程与方法目标⑴ 经历探索多项式与多项式的乘法法则的过程,进一步发展观察、归纳、概括的能力,发展学生有条理的思考及语言表达能力。
⑵ 经历探索多项式与多项式的乘法法则的过程,体会乘法分配律的作用和“化归”的思想。
3.态度价值观目标⑴ 通过探究面积的不同表示方法活动,使学生体验探究的过程,培养学生的创新能力。
⑵ 通过把一个多项式看成一个整体,发展学生的转化能力。
⑶ 通过对多项式与多项式的乘法法则的探索,让学生获得成功的体验,锻炼克服困难的意志。
【教学重点、难点】重点:多项式与多项式的乘法法则。
难点:多项式与多项式的乘法的法则的推导及综合运用。
【教学准备】 教学课件。
【教学过程】教学过程活动一 “自主——合作”探究一.创设情境 1. 已知m ·(p +q )=mp +mq ,如果将m 换成(a +b ),你能计算 吗?2. 问题:若将原长方形绿地的长增加b m 、宽增加q m ,你能用几种方法求出扩大后的长方形绿地的面积呢?方法一: 方法二: 方法三: 方法四: 教师鼓励学生思考,用不同的方法求出矩形的面积,得出多项式乘多项式运算法则 这些代数式之间有什么关系?请说明理由.归纳总结:多项式乘以多项式法则:多项式与多项式相乘,先用一个多项式的每一项乘 另一个多项式的每一项,再把所得的积相加.()()q p b a ++ a p qb a b p q ++()();a p qb p q +++()();p a b q a b +++()();.ap aq bp bq +++ 活动二、提示:让学生明白多项式乘多项式运算时,需注意以下几点: ⑴ 不要漏乘; ⑵ 注意符号; ⑶ 结果最简活动三、例题讲解 运用法则活动四、变式训练,再攀高峰活动五、应用新知,推广应用活动六、能力提升注意:充分调动学生的积极性,培养学生"探究-发现-归纳"的数学思维 活动六、归纳小结,充实结构(1)本节课学习了哪些主要内容?(2)在运用多项式与多项式相乘的法则时,你认为应该注意哪些问题?(3)举例说明在探索多项式与多项式相乘的法则的过程中体现了哪些思想方法?活动七、知识留恋,课后韵味布置作业:必做题:教材习题14.1第5、8题;选做题:教材习题14.1第14、15题.板书设计§14.1.4 整式的乘法(三)——多项式乘多项式活动一 自主—合作探究 活动二 大胆猜想 探索规律多项式乘多项式的运算法则活动三 应用新知 推广应用 活动四 变式训练 巩固提升 活动五 归纳小结 充实结构 活动六 知识留恋,课后韵味312x x ++()();8x y x y --()();22.x y x xy y +-+()() 213x x ++()();23m n n m +-()();22325.x x x ++-()() 21a -();【设计思想】1、在整个设计教学中,目的是想体现学生的参与意识,让学生在运算的过程中发现运算法则。
新课讲授创设情境,感知新知:1.问题:为了扩大绿地面积,要把街心花园的一块长a米,宽m米的长方形绿地增长b米,加宽n米,求扩地以后的面积是多少?2. 提问:用几种方法表示扩大后绿地的面积?不同的表示方法之间有什么关系?3.得出结果:方法一:这块花园现在长(a+b)米,宽(m+n)米,因而面积为(a+b)(m+n)米2.方法二:这块花园现在是由四小块组成,它们的面积分别为:am米2、an米2、bm米2、bn米2,故这块绿地的面积为(am+an+bm+bn)米2.(a+b)(m+n)和(am+an+bm+bn)表示同一块绿地的面积,所以有(a+b)(m+n)=am+an+bm+bn三、学生动手,推导结论:1.引导观察:等式的左边(a+b)(m+n)是两个多项式(a+b)与(m+n)相乘,把(m+n)看成一个整体,那么两个多项式(a+b)与(m+n)相乘的问题就转化为单项式与多项式相乘,这是一个我们已经解决的问题,请同学们试着做一做.2.过程分析:(a+b)(m+n)=a(m+n)+b(m+n)----单×多=am+an+bm+bn ----单×多3.得到结论:多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.巩固练习:1.先化简,再求值:(a-3b)2+(3a+b)2-(a+5b)2+(a-5b)2,其中a=-8,b=-6.2.化简求值:)32)(12()1)(1(3)3)(2(-+--+++-xxxxxx,其中x=54.学生小组合作完成本题。
学生自行总结。