中衡光伏并网发电系统【设计明细】
- 格式:doc
- 大小:320.50 KB
- 文档页数:6
1MW光伏并网系统设计及配置一、主要设备选型1、太阳能光伏组件选型单晶太阳能光伏组件,共4256块,实际装机容量1。
本方案推荐采用235WP00016MW。
235Wp组件开路电压为45V左右,工作电压为35V.2、并网逆变器选型本方案采用4台250KW并网逆变器,共1MW。
250KW并网逆变器主要参数如下:二、设计过程1、光伏阵列设计光伏阵列分4个主方阵,每个主方阵容量250.04KW,共1064块组件。
14块为一个子串列,共76串。
一个主方阵太阳电池组件布置为19个2*28子阵列,2*28子阵列布置图如下图所示:2、直流配电设计每台直流配电柜按250KW直流配电单元设计,则1MW系统需要配置4台直流配电柜。
每台配电柜可接入5台直流汇流箱(16路汇流箱),共需配置20台直流汇流箱。
3、交流防雷配电柜设计按照4个250KWp的并网单元配置1台交流防雷配电柜进行设计,即每台交流配电柜可接入4台250KW逆变器的交流防雷配电及计量装置,系统共需配置1台交流防雷配电柜。
每台逆变器的交流输出接入交流配电柜,经交流断路器接入升压变压器的0.4KV侧,并配有逆变器的发电计量表。
每台交流配电柜装有交流电网电压表和输出电流表,可以直观地显示电网侧电压及发电电流.4、交流升压变压设计并网逆变器输出为三相0。
4KV电压,考虑到当地电网情况,需要采用10KV 电压并网。
由于低压侧电流大,考虑线路的综合排布,选用1台额定容量1500KVA 升压变压器升压。
5、系统组成方案原理框图其中:41其中:41高压电网三、系统配置。
并网光伏系统设计方案并网光伏系统设计方案1. 概述本文档旨在提供一种完整的设计方案,用于实现并网光伏系统。
该系统通过将光伏发电系统与电网相连接,实现对光伏电能的高效利用。
本文档将涵盖并网光伏系统的整体设计、组件选择和系统连接等方面的内容。
2. 设计目标本系统的主要设计目标包括:•提高光伏电能的有效利用;•实现光伏电能的平滑并网;•提供可靠的电能供应;•实现系统的安全运行。
3. 系统组成本并网光伏系统主要由以下组件组成:•光伏阵列:用于将太阳能转化为直流电能;•逆变器:将直流电转化为交流电,并对交流电进行电压和频率的调节;•电网连接器:用于将逆变器输出的交流电与电网相连接;•电能计量器:对系统的发电量和购电量进行计量;•监控系统:监测系统的运行状况,并提供实时数据。
4. 设计步骤设计并网光伏系统的步骤如下:4.1 光伏阵列设计光伏阵列的设计需要考虑以下因素:•太阳能辐射强度:根据所在地区的太阳能辐射数据,确定光伏阵列的装机容量;•阵列布局:根据光伏阵列的装机容量和场地条件,确定阵列的布局方式(如平面布置、斜面布置等);•组件选择:选择合适的光伏组件,考虑其转换效率、功率温度系数等性能指标;•连接方式:确定光伏组件之间的串并联连接方式,以确保系统的输出电压和电流适应逆变器的需求。
4.2 逆变器选择与设计逆变器的选择与设计需要考虑以下因素:•输出功率:根据光伏阵列的装机容量和预期的并网电压,确定逆变器的输出功率范围;•电压稳定性:选择具有较好电压稳定性的逆变器,以确保系统的输出电压在合理范围内;•频率调节:选择逆变器能够提供频率调节功能,以适应电网的需求;•保护功能:选择具有多重保护功能的逆变器,以确保系统的安全运行。
4.3 系统连接与调试系统连接与调试的步骤如下:•将光伏阵列的输出与逆变器的输入相连接;•将逆变器的输出与电网连接器相连接;•进行系统的初步调试,检查电流、电压等参数是否正常;•进行系统的安全性检查,确保系统的工作安全可靠。
并网光伏发电站系统设计一、系统设计(一)一般规定1、并网光伏发电系统中的设备与材料的选型和设计应符合国家相关规定,主要设备应通过国家批准的认证机构的产品认证。
2、并网光伏发电系统中材料强度设计值和其它物理、力学性能可按照国家相关规定的要求执行。
3、并网光伏发电系统中所选用的电气设备,在其外壳的显著位置应有防触电警示标识。
4、并网光伏发电系统中材料的防火性能应符合GB50016的规定。
支架结构件和连接件应采用不燃材料,保温材料和密封材料宜采用不燃烧或难燃材料,其防火封堵结构应采用防火密封材料。
各类电气设备的防火性能应符合国家相关规定。
5、并网光伏发电站向当地交流负载提供电能和向电网发送的电能质量应符合公用电网的电能质量要求。
6、装机容量超过1MWp的光伏系统,应配置小型气象设备。
(二)材料与设备1、光伏组件(1)光伏组件的安全性应符合GB/T20047.1的规定。
(2)晶体硅光伏组件、薄膜光伏组件、聚光光伏组件的性能要求应符合行业规范的认证要求和相关规定。
(3)晶硅组件衰减率首年不高于2.5%,后续每年不高于0.6%,25年内不高于17%;双面电池组件的功率衰减在1年内不高于2.5%(正面),25年内不高于14.5%,30年不高于17%;薄膜组件衰减率首年不高于5%,后续每年不高于0.4%,25年内不高于15%。
(4)所有组件工作温度范围为-400C~+85℃,初始功率(出厂前)不应低于组件标称峰值功率。
(5)组件型号应具备相关国际国内产品认证。
2、汇流箱(1)汇流箱的额定电压和电流应满足并网光伏发电系统使用的要求。
(2)应具有下列基本保护功能如下:①每一输入回路具有短路保护功能;②输出回路设置具有隔离功能的断路器。
(3)汇流箱宜设置组串监测装置,其监测信号需传送到监控装置。
(4)户外安装的汇流箱防护等级应不低于IP54。
(5)外壳正面应有铭牌、安全警示标识等,箱内应附电路原理图和接线图、使用说明书及产品合格证等。
独立并网光伏发电系统设计一、引言随着清洁能源的发展,光伏发电成为一种广泛应用的可再生能源,并逐渐成为独立发电和并网发电的主要选择。
本文将对独立、并网光伏发电系统的设计进行详细介绍,包括系统组成、设计原则、系统容量计算以及系统的运行和维护等方面。
二、系统组成独立、并网光伏发电系统主要由光伏电池组件、逆变器、电池、电池管理系统、电网接入设备等组成。
光伏电池组件将太阳能转化为直流电,逆变器将直流电转化为交流电供应给电网或用于独立发电;电池则用于储存多余的电能,以供夜间或负荷高峰时使用;电池管理系统用于对电池的充放电状态进行管理和监控;电网接入设备用于将系统的交流电接入电网。
三、设计原则1.可靠性:系统应能够长期稳定运行,并具备适应恶劣气候条件的能力;2.安全性:系统应考虑天气变化和突发事件对系统运行的影响,并采取相应的措施保证系统的安全;3.高效性:系统应能够最大限度地利用太阳能,提高能源的利用效率;4.经济性:系统应具备较低的建设和运维成本,并具备长期的经济回报能力;5.环保性:系统应具备较低的能源消耗和排放,对环境友好。
四、系统容量计算系统容量的计算主要考虑以下几个因素:1.电能需求:根据用户的用电需求确定系统的总容量,包括日间负荷和夜间供电需求;2.太阳能资源:根据所在地的太阳辐射资源情况,确定系统的太阳能利用率;3.备用电源:根据用户对电源可靠性的要求,确定是否需要备用电源,备用电源的容量根据负荷需求计算;4.备用电池:根据夜间供电需求和发电设备的容量,确定备用电池的容量。
五、系统运行和维护1.运行:光伏发电系统的运行需要根据实际情况定期检查和维护设备,保证系统的正常运行。
同时,要监测系统的发电情况和负荷需求,及时处理发生的故障和问题;2.维护:定期对电池进行充放电检测,避免电池过放或过充,延长电池的使用寿命。
同时,对光伏电池组件进行清洁和检查,避免灰尘和腐蚀物影响发电效率;3.故障处理:系统运行过程中,可能会发生故障和问题,需要及时进行排查和处理,以保证系统的安全和稳定运行。
并网光伏系统设计流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!1. 项目评估和需求分析确定项目地点和可用面积。
评估当地的太阳能资源,包括日照时间、太阳辐射强度等。
并网光伏系统设计方案
并网光伏系统是指将光伏发电系统与市电并网运行的一种系统。
下面给出一种典型的并网光伏系统设计方案。
该并网光伏系统设计方案主要包括太阳能光伏电池组件、逆变器、支架、电缆、监控控制系统等。
光伏电池组件:根据实际需求,选择合适的太阳能光伏电池组件,组成光伏电池组件阵列。
选用高效、稳定的光伏电池组件,能够提供较高的发电效率和稳定的发电性能。
逆变器:逆变器是将直流发电转换为交流发电的设备。
根据光伏电压和电流,选择合适的逆变器,注意选择具有高效率、稳定性和低损耗的逆变器,以提高系统发电效率。
支架:支架用于固定光伏电池组件,确保光伏电池组件能够正确地朝向太阳和在适当的角度倾斜,以最大程度地接收太阳光。
支架也需要具备防风、防腐蚀等特性,确保系统的安全和持久性。
电缆:电缆用于连接光伏电池组件和逆变器,将直流发电从光伏电池组件传输到逆变器,同时将交流发电从逆变器传输到电网。
选用合适的电缆,确保电流传输的安全和可靠性。
监控控制系统:监控控制系统用于实时监测光伏系统的工作状态,包括发电功率、电压、电流等参数。
同时,监控控制系统还能对系统进行故障诊断和故障报警,确保系统能及时发现和
解决问题。
总之,设计一个合理的并网光伏系统应该综合考虑发电效率、系统稳定性和安全性等因素。
只有系统的各个组件协调配合,才能够提高系统的发电效率,实现可靠稳定的发电。
同时,监测控制系统的存在也能够及时发现并解决系统中出现的问题,确保系统的长期稳定运行。
摘要随着社会生产的日益发展,对能源的需求量在不断增长,全球范围内的能源危机也日益突出。
地球中的化石能源是有限的,总有一天会被消耗尽。
随着化石能源的减少,其价格也会提高,这将会严重制约生产的发展和人民生活水平的提高。
可再生能源是满足世界能源需求的一种重要资源,特别是对于我们这个人口大国来讲更加重要。
其中太阳能资源在我国非常丰富,其应用具有很好的前景。
光伏并网发电系统是通过太阳能电池板将太阳能转化为电能,并通过并网逆变器将直流电变为与市电同频同相的交流电,并回馈电网。
光伏并网发电系统的核心技术是并网逆变器,在本文中对于单相并网逆变器硬件进行了建摸及设计。
给出了硬件主回路并对各部分的功能进行了分析,同时选用TI公司的DSP芯片TMS320F2812作为控制CPU,阐述了芯片特点及选择的原因。
并对并网逆变器的控制及软件实现进行了研究。
文中对于光伏电池的最大功率跟踪(MPPT)技术作了阐述并提出了针对本设计的实现方法。
最后对安全并网的相关问题进行了分析探讨。
文章的主要内容如下:1.目前国内外光伏发电的现状和发展前景,并对光伏并网发电系统的功能、分类和特点作了简单介绍,对光伏并网发电系统建立了一个总体认识。
2.研究了光伏电池的基本发电原理和输出特性。
重点研究了光伏电池的输出特性和其影响因素,并得出相应的结论。
3.并网逆变器主要包括DC/DC及DC/AC两部分,文中分析了各部分设计重点,明确了选用TI公司的DSP芯片TMS320F2812作为控制CPU的原因及优点,同时给出了控制及软件实现方法。
4.光伏电池发电输出是非线性的,存在输出最大功率(CMPPT)跟踪问题。
本文阐述了常用的最大功率点跟踪方法,并结合本设计提出了改进方法。
使光伏电池工作于最大输出功率点上,获得高效功率输出。
5.在实际太阳能并网发电系统中,太阳能电池的输出及电网的电压是不断波动的,如何实现安全并网以及在运行中对各种故障的检测及报警进行了探讨,重点对“孤岛效应”进行了分析。
光伏发电并网工程电气设计方案【引言】光伏发电并网工程是目前可再生能源领域中的重要组成部分,其核心是将光能转化为电能,并将所产生的电能并网供应给电力系统。
为了确保光伏发电并网工程的正常运行和高效性能,电气设计在其中起着至关重要的作用。
本文将就光伏发电并网工程电气设计方案进行详细的介绍。
【系统组成】2.逆变器:逆变器是将直流电能转化为交流电能的装置,其主要功能是将光伏组件输出的直流电能转换为电力系统所需的交流电能。
在电气设计中,需要根据光伏组件的总功率和输出电压来选择适配的逆变器。
3.电表:电表用于测量光伏发电并网工程的发电量和消纳量,以及电站的电能质量参数。
在电气设计中,需要选择合适的电表类型和安装位置。
4.汇流箱:汇流箱用于集中汇集光伏组件的电流和电压,同时起到保护和连接的作用。
在电气设计中,需要根据光伏组件的数量和布置来确定汇流箱的容量和布局。
5.电气保护设备:电气保护设备主要包括断路器、避雷器、接地装置等,用于确保光伏发电并网工程的安全稳定运行。
6.监测设备:监测设备用于实时监测光伏发电系统的运行状态和性能参数,以便进行运维和故障诊断。
在电气设计中,需要根据监测要求选配合适的监测设备。
7.高压侧配电设备:高压侧配电设备用于将逆变器输出的交流电能接入电力系统。
在电气设计中,需要根据并网点的要求选配合适的高压侧配电设备。
【设计要点】在光伏发电并网工程电气设计中,需要注意以下几个要点:1.系统可靠性:光伏发电并网工程是长期运行的设备,因此电气设计应确保系统具有较高的可靠性和稳定性。
例如,通过合理选择设备和布线方式,提高系统的抗干扰能力和电气安全性。
2.性能优化:电气设计应根据光伏发电系统的特点和运行要求,优化系统的性能。
例如,合理选择逆变器,优化电路参数,降低系统的损耗和成本。
3.安全保护:电气设计应注重系统的安全保护。
例如,合理设置断路器、避雷器和接地装置,以防止系统因雷击等异常情况而受到损坏。
光伏并网发电系统设计
摘要:最大功率点跟踪是光伏并网发电系统中经常遇见的问题。
系统设计采用电流型控制芯片UC3845实现最大功率点跟踪(MPPT),由单片机STC12C5408AD产生SPWM信号,实现频率相位跟踪功能、输入欠压保护功能、输出过流保护功能。
结果表明,该设计不但电路设计简单,软硬件结合,控制方法灵活,而且能够有效的完成最大功率跟踪的目的。
关键词:STC12C5408AD DC-AC转换电路MPPT
太阳能作为绿色能源,具有无污染、无噪音、取之不尽、用之不竭等优点,越来越受到人们的关注。
光伏电池的输出是一个随光照、温度等因素变化的复杂量,且输出电压和输出电流存在非线性关系。
光伏系统的主要缺点是初期投资大、太阳能电池的光电转换效率低。
为充分利用太阳能必须控制电池阵列始终工作在最大功率点上,最大功率点跟踪(MPPT, Maximum Power Point Tracker)是太阳能并网发电中的一项重要的关键技术。
1 设计任务
为研究方便设计一光伏并网发电模拟装置,其结构框图如图1所示。
用直流稳压电源U S和电阻R S模拟光伏电池,U S=60V,R S=30Ω~36Ω;u REF为模拟电网电压的正弦参考信号,其峰峰值为2V,频率f REF为45Hz~55Hz;T为工频隔离变压器,变比为n2:n1=2:1、n3:n1=1:10,将u F作为输出电流的反馈信号;负载电阻R L=30Ω~36Ω。
要求系统具有最大功率点跟踪(MPPT)功能,频率、相位跟踪功能,输入欠压保护和输出过流保护功能。
另外要求系统效率高、失真度低。
U
R L
图1 并网发电模拟装置框图
2 系统总体方案
光伏并网系统主要由前级的DC-DC变换器和后级的DC-AC逆变器组成。
在系统中,DC-DC变换器采用BOOST结构,主要完成系统的MPPT控制;DC-AC部分采用全桥逆变器,维持中间电压稳定并且将电能转换成110 V/50 Hz交流电。
设计采用单片机SPWM调制,驱动功率场效应管,经滤波产生正弦波,驱动隔离变压器,向负载输出功率。
系统设计保证并网逆变器输出的正弦电流与电网电压同频同相。
系统总体硬件框图如图2所示:
图2系统总体硬件框图
3MPPT原理及电路设计
3.1 MPPT原理
由于光伏阵列的最大功率点是一个时变量,可以采用搜索算法进行最大功率点跟踪。
其搜索算法可分为自寻优和非自寻优两种类别。
所谓自寻优算法即不直接检测外界环境因素的变化,而是通过直接测量得到的电信号,判断最大功率点的位置。
典型的追踪方法有扰动观测法和增量导纳法等。
增量导纳法算法的精确度最高,但是,由于增量导纳法算法复杂,对实现该算法的硬件质量要求较高、运算时间变长,会增加不必要的功率损耗,所以实际工程应用中,
通常采用扰动观测法算法]1[。
扰动观测法原理:每隔一定的时间增加或者减少电压,并通过观测其后功率变化的方向,来决定下一步的控制信号。
其具体调整方案如下:U、I为上一次的检测值,P为对应的输出功率;U1、I1为当前检测值,P1为对应功率。
对应增大参考电压会出现以下两种情况: (1)P1>P,说明扰动方向正确,系统应保持原来的扰动方向; (2)P1<P,说明扰动方向错误,系统需要调整扰动方向。
当寻优过程处于暂态过程时,即光伏阵列输出功率与最大功率的差值较大时,则增大步长,以改善动态响应特性,提高追踪速度;当寻优过程接近稳态时或输出功率的波动只由步
长的大小决定时,则减小步长,以提高稳态响应品质]2[。
如此反复直到工作点接近Pmax。
这
是一个自寻优的过程,它的控制原则是参考电压的变化始终让电池输出功率朝大的方向改变。
3.2 MPPT电路设计
当一个内阻不为零的电源和负载相连时,当负载的电阻值和电源内阻值相等时即电源输出电压等于电源额定电压的1/2时,负载上获得最大功率。
将DC-DC变换器输入、输出电压和电流测量结果经过单片机分析运算,由单片机输出PWM脉冲调节DC-DC转换器功率开关管的占空比。
调节占空比D可以使MPPT电路从输人端看进去的等效电阻发生改变,进而达到阻抗匹配的目的,就可以实现DC-DC转换电路在光伏发电系统中对太阳能电池最大功
率点的跟踪]3[。
图3 DC-DC电路图
太阳能光伏阵列输出电压和输出电流的检测对最大功率跟踪功能的实现是至关重要的,精确的电压、电流测量值有助于提高最大功率点跟踪的准确性。
因此,选用电流型PWM控制芯片UC3845可以方便的设定流过主开关的电流峰值,而且还能提高系统的动态响应。
具体
电路如图3所示。
实现最大功率跟踪功能即满足
d 1
2s
U U
=,因此,采用DC-DC的输出电
压来调整DC-AC的输出,使负载R L消耗的功率改变。
当
d 1
2s
U U
>时致使VCC电压升高,
此时DC-AC输出的正弦波幅值增大,因此,负载R L消耗的功率增大,导致
d
U减小,从而实现MPPT功能。
4DC-AC电路设计
DC-AC转换器采用SPWM方式的全桥逆变电路,此电路的核心是SPWM发生器。
其控制电路采用STC12C5408AD单片机控制,通过软件查表法产生SPWM,采用TLP250驱动功率场效应管,实现DC-AC转换。
再通过电压电流采样电路,接单片机中断,可实现频率跟踪、相位跟踪与欠压、过流保护。
DC-AC主电路采用全桥逆变方式,其开关器件采用功率场效应管,为了降低开关器件的通态损耗,采用大电流低内阻75N75,由于功率场效应管在其导通和关闭的过程中,会有部分开关损耗。
为了降低损耗提高DC-AC的整体效率,在调制SPWM过程中,上桥臂采用50Hz调制,下桥臂采用40kHz载波信号,这样就可以减少一半的开关损耗,极大的提高了DC-AC的效率。
由于单片机可编程,在不改变硬件的情况下,可灵活改变波形参数及预置的电压电流参数,实现频率相位跟踪与欠压过流保护,可以随时修改程序,方便调试。
DC-AC电路如图4所示。
L
图4 DC-AC电路图
5 频率与相位跟踪
u REF为模拟电网电压的正弦参考信号,u F为工频隔离变压器n3线圈端取出电压,将u F 与u REF进行过零检测得到方波,将半个周期的脉冲送入单片机,单片机以u F的上升沿为计数器的起始时间,以u F的下降沿和u REF的下降沿为两个计数器截止时间,单片机就可以得到u F的脉冲宽度和u F与u REF的下降沿之间的宽度。
进而得到u F的频率和输出波形的相位差。
主单片机将频率和相位误差数据送入从单片机,从单片机调整PWM波的占空比修正频率,改变查表时的入口就可以跟踪到相位。
进而调整输出SPWM的频率与相位,实现频率和相位追踪。
6 保护电路的设计
欠压保护将Ud的电压经电阻分压后,送至比较器的反向端与同向端的基准进行比较,一旦其电压值高于同向端的基准,比较器就会向单片机输送低电平信号,直至单片机关断所有PWM信号,进而实现欠压关断输出。
当Ud的电压恢复到大于25V时,比较器就会向单片机输送高电平信号,单片机将重新开通PWM信号,实现恢复输出。
采用电流互感器将检测到的电流信号通过运放放大后与给定的基准进行比较,从而实现输出过流保护。
7 程序流程图
为提高响应时间选用高速、宽电压、低功耗单片机STC12C5408AD,速度比普通8051单片机快。
还有10位ADC,四路PWM。
由于次单片机只有两个定时器T0、T1,产生PWM 波和单片机通信分别要用定时器T0和T1。
鉴于此,主从单片机采用并行通信方式。
程序开始时,先进行初始化。
图5 程序流程图
8 测试结果
当R S 和R L 在适当范围内变化时,用万用表测试出输入电流电压、输出电流电压,从而可以计算出系统的转换效率o
d
P P η=
,其中o o1o1P U I =⋅,d d d P U I =⋅。
U S 采用实验室可调直流稳压电源输入60V ,待系统稳定后用万用表测出d U 、d I 和1o U 、1o I ,测试数据见表1。
表1 变换器效率测算
当f REF 在给定范围内变化以及加非阻性负载时,用示波器观察正弦波u F 和参考正弦波u REF 的频率相位偏差,可算出相位偏差绝对值REF F d ϕϕϕ-=
及相对频率偏差绝对值
REF REF F d f f f f -=,测量数据如表2所示。
表2 频率相位偏差测算
9 结论
多次测量结果表明,相位偏差绝对值05≤d ϕ,相对频率偏差绝对值%1≤d f ,转换效率%80≥η达到系统设计要求。
提高光电转换效率是光伏并网发电系统设计的关键,在DC-DC 升压电路与DC-AC 逆变电路采用75N75场效应管,开关速度快、导通电阻小、承受电流大、
功耗低;+5V 供电部分使用LM2576开关集成稳压器,没有使用普通的7805,大大提高了效率;同样电感磁芯和漆包线及工频隔离变压器要求非常高,还有焊接线路板时尽可能加粗走线,减小了线路损耗,提高了效率。
目前,最大功率点跟踪技术一般用在较大的光伏系统或电站. 随着科技的进步和光伏市场的发展,为了有效的利用太阳能,最大功率点跟踪技术必将在光伏系统中广泛应用,将会取得较大的经济和社会效益。