2019年高考数学一轮复习(文科)训练题:天天练 1 含解析
- 格式:doc
- 大小:82.00 KB
- 文档页数:4
2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .cos 2y x =B .2log ||y x =C .2x x e e y --= D .31y x =+(2012天津文)2.曲线=xy e 在点A (0,1)处得切线斜率为( ) A .1 B .2 C .e D .1e(2011江西文4) 3.由直线0,3,3==-=y x x ππ与曲线x y cos =所围成的封闭图形的面积为A.21B. 1C. 23D. 3二、填空题4.一份试卷有10个题目,分为,A B 两组,每组5题,要求考生选择6题,且每组至多选择4题,则考生有 ▲ 种不同的选答方法.5.已知空间中两点P 1(x ,2,3)和P 2(5,x +3,7)间的距离为6,则x= .6.某小卖部为了了解冰糕销售量y(箱)与气温x(C ︒)之间的关系,随机统计了某4天卖出的冰糕的箱数与当天气温,并制作了对照表(如左所示):由表中数据算得线性回归方程a bx y+=ˆ中的2-≈b ,预测当气温为25C ︒时, 冰糕销量为 杯.分析:线性回归方程a bx y+=ˆ恒过(,)x y ,由表中算得(,)x y =(10,40)代入回归方程,可得a =60,即ˆ260yx =-+,将5x =-代入回归方程,得ˆy =70. 7.已知225,xx-+= 则88x x -+=8.如果在今后若干年内我国国民经济生产总值都保持年平均9%的增长率,则要达到国民经济生产总值比2006年翻两番的年份大约是___.(0374.2109lg ,4771.03lg ,3010.02lg ===)9.已知函数))(2(log )(1*+∈+=N n n n f n ,定义使)()2()1(k f f f ⋅⋅⋅⋅为整数的数)(*∈N k k 叫做企盼数,则在区间[1,2009]内这样的企盼数共有 ▲ 个.10.已知直线,a b 相交于点P 夹角为60,过点P 作直线,又知该直线与,a b 的夹角均为60,这样的直线可作______条11.已知直线l m αβ⊥⊂平面,直线平面,有下列命题:;l m αβ①若∥,则⊥②若αβ∥,则l ∥m ;,,l m l m αβαβ③若∥则⊥;④若⊥则∥。
天天练24 不等式的性质及一元二次不等式一、选择题1.若a >b >0,c <d <0,则一定有( ) A .ac >bd B .ac <bd C .ad <bc D .ad >bc 答案:B解析:根据c <d <0,有-c >-d >0,由于a >b >0,故-ac >-bd ,ac <bd ,故选B.2.若a <b ,d <c ,并且(c -a )(c -b )<0,(d -a )(d -b )>0,则a ,b ,c ,d 的大小关系为( )A .d <a <c <bB .a <d <c <bC .a <d <b <cD .d <c <a <b 答案:A解析:因为a <b ,(c -a )(c -b )<0,所以a <c <b ,因为(d -a )(d -b )>0,所以d <a <b 或a <b <d ,又d <c ,所以d <a <b .综上,d <a <c <b .3.(2018·河南信阳月考)对于任意实数a ,b ,c ,d ,以下四个命题:①若ac 2>bc 2,则a >b ;②若a >b ,c >d ,则a +c >b +d ;③若a >b ,c >d ,则ac >bd ;④若a >b ,则1a >1b .其中正确的有( )A .1个B .2个C .3个D .4个 答案:B解析:因为ac 2>bc 2,可见c 2≠0,所以c 2>0,所以a >b ,故①正确.因为a >b ,c >d ,所以根据不等式的可加性得到a +c >b +d ,故②正确.对于③和④,用特殊值法:若a =2,b =1,c =-1,d =-2,则ac =bd ,故③错误;若a =2,b =0,则1b 无意义,故④错误.综上,正确的只有①②,故选B.4.(2018·辽宁阜新实验中学月考)已知命题p :x 2+2x -3>0,命题q :x >a ,若綈q 的一个充分不必要条件是綈p ,则实数a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-3]答案:A解析:将x 2+2x -3>0化为(x -1)(x +3)>0,所以命题p :x >1或x <-3.因为綈q 的一个充分不必要条件是綈p ,所以p 的一个充分不必要条件是q ,所以(a ,+∞)是(-∞,-3)∪(1,+∞)的真子集,所以a ≥1.故选A.5.(2018·南昌一模)已知a ,b ,c ∈R ,a +b +c =0,abc >0,T =1a +1b +1c ,则( )A .T >0B .T <0C .T =0D .T ≥0 答案:B解析:通解 由a +b +c =0,abc >0,知三个数中一正两负,不妨设a >0,b <0,c <0,则T =1a +1b +1c =ab +bc +ca abc =ab +c (b +a )abc =ab -c 2abc,因为ab <0,-c 2<0,abc >0,所以T <0,故选B. 优解 取特殊值a =2,b =c =-1,则T =-32<0,排除A ,C ,D ,可知选B.6.不等式x2x -1>1的解集为( )A.⎝ ⎛⎭⎪⎫12,1 B .(-∞,1) C.⎝ ⎛⎭⎪⎫-∞,12∪(1,+∞) D.⎝ ⎛⎭⎪⎫12,2 答案:A解析:原不等式等价于x2x -1-1>0,即x -(2x -1)2x -1>0,整理得x -12x -1<0,不等式等价于(2x -1)(x -1)<0,解得12<x <1.故选A. 7.(2018·河南洛阳诊断)若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-235,+∞B.⎣⎢⎡⎦⎥⎤-235,1 C .(1,+∞) D.⎝⎛⎦⎥⎤-∞,-235 答案:B解析:由Δ=a 2+8>0知方程恒有两个不等实根,又因为x 1x 2=-2<0,所以方程必有一正根,一负根,对应二次函数图象的示意图如图.所以不等式在区间[1,5]上有解的充要条件是⎩⎪⎨⎪⎧f (5)≥0,f (1)≤0,解得-235≤a ≤1,故选B.8.不等式x 2-2x +m >0对一切实数x 恒成立的必要不充分条件是( )A .m >2B .0<m <1C .m >0D .m >1 答案:C解析:当不等式x 2-2x +m >0对一切实数x 恒成立时,对于方程x 2-2x +m =0,Δ=4-4m <0,解得m >1,所以m >1是不等式x 2-2x +m >0对一切实数x 恒成立的充要条件;m >2是不等式x 2-2x +m >0对一切实数x 恒成立的充分不必要条件;0<m <1是不等式x 2-2x +m >0对一切实数x 恒成立的既不充分也不必要条件;m >0是不等式x 2-2x +m >0对一切实数x 恒成立的必要不充分条件.故选C.二、填空题9.已知函数f (x )=ax +b,0<f (1)<2,-1<f (-1)<1,则2a -b 的取值范围是________.答案:⎝ ⎛⎭⎪⎫-32,52解析:设2a -b =mf (1)+nf (-1)=(m -n )·a +(m +n )b ,则⎩⎪⎨⎪⎧m -n =2,m +n =-1,解得m =12,n =-32,∴2a -b =12f (1)-32f (-1),∵0<f (1)<2,-1<f (-1)<1,∴0<12f (1)<1,-32<-32f (-1)<32,则-32<2a-b <52.10.(2018·江苏无锡一中月考)若关于x 的方程(m -1)·x 2+(m -2)x -1=0的两个不等实根的倒数的平方和不大于2,则m 的取值范围为________.答案:{m |0<m <1或1<m ≤2}解析:根据题意知方程是有两个根的一元二次方程,所以m ≠1且Δ>0,即Δ=(m -2)2-4(m -1)·(-1)>0,得m 2>0,所以m ≠1且m ≠0.由根与系数的关系得⎩⎨⎧x 1+x 2=m -21-m,x 1·x 2=11-m,因为1x 1+1x 2=x 1+x 2x 1x 2=m -2,所以1x 21+1x 22=⎝ ⎛⎭⎪⎫1x 1+1x 22-2x 1x 2=(m -2)2+2(m -1)≤2,所以m 2-2m ≤0,所以0≤m ≤2.所以m 的取值范围是{m |0<m <1或1<m ≤2}.11.(2018·内蒙古赤峰调研)在a >0,b >0的情况下,下面四个不等式:①2ab a +b ≤a +b 2;②ab ≤a +b 2;③a +b 2≤ a 2+b 22;④b 2a +a 2b ≥a +b .其中正确不等式的序号是________. 答案:①②③④解析:2ab a +b -a +b 2=4ab -(a +b )22(a +b )=-(a -b )22(a +b )≤0,所以2aba +b≤a +b2,故①正确;由基本不等式知②正确;⎝⎛⎭⎪⎫a +b 22-a 2+b 22=-(a -b )24≤0,所以a +b 2≤ a 2+b 22,故③正确;⎝ ⎛⎭⎪⎫b2a+a 2b -(a +b )=a 3+b 3-a 2b -ab 2ab =(a 3-a 2b )+(b 3-ab 2)ab =(a -b )2(a +b )ab ≥0,所以b 2a +a 2b ≥a +b ,故④正确.综上所述,四个不等式全都正确.三、解答题12.已知函数f (x )=mx 2-mx -1.(1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围;(2)若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围.解:(1)由题意可得m =0或⎝ ⎛m <0,Δ=m 2+4m <0⇔m =0或-4<m <0⇔-4<m ≤0.故m 的取值范围是(-4,0].(2)要使f (x )<-m +5在[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)⇒7m -6<0,所以m <67,则0<m <67; 当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)⇒m -6<0, 所以m <6,所以m <0.综上所述:m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪m <67.。
最新高考数学一模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=()A.(1,4)B.(3,4)C.(1,3)D.(1,2)∪(3,4)2.在数列{a n}中,a n+1﹣a n=3,a2=4,S n为{a n}的前n项和,则S5=()A.30 B.35 C.45 D.503.已知变量x与变量y之间具有相关关系,并测得如下一组数据:x 6 5 10 12y 6 5 3 2则变量x与y之间的线性回归直线方程可能为()A.=0.7x﹣2.3 B.=﹣0.7x+10.3 C.=﹣10.3x+0.7 D.=10.3x﹣0.74.已知双曲线的离心率为2,则其一条渐近线方程为()A.x﹣3y=0 B.x﹣y=0 C.x﹣y=0 D.3x﹣y=05.在△ABC中M是BC的中点,BC=8,AM=3,AM⊥BC,则•=()A.﹣7 B.﹣C.0 D.76.已知函数f(x)为奇函数,当x≥0时,f(x)=log2(x+l)+m,则f(1﹣)的值为()A.﹣B.﹣log2(2﹣)C.D.log2(2﹣)7.在如图程序框图中,输入n=l,按程序运行后输出的结果为()A.1 B.2 C.3 D.48.已知x,y满足约束条件,(其中a>0),若z=x+y的最大值为1,则a=()A.l.. B.3 C.4 D.59.函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为π,且其图象经过点(,0),则函数f(x)在区间[0,]上的最大值与最小值的和为()A.1﹣B.0 C.D.1+10.已知直线l1的方程为x﹣y﹣3=0,l1为抛物线x2=ay(a>0)的准线,抛物线上一动点P到l1,l2距离之和的最小值为2,则实数a的值为()A.l B.2 C.4 D.2811.如图,网格纸上的小正方形的边长为l,粗线画出的是某几何体的三视图,若该几何体的顶点都在一个球面上,则该球的表面积为()A.12πB.24 πC.36πD.48π12.已知函数f(x)=xlnx﹣ax2+a不存在最值,则实数a的取值范围是()A.(0,1)B.(0,] C.[1,+∞)D.[,+∞)二、填空题:本大题共4小题,每小题5分,共20分13.若复数z满足(1+2i)z=5,则复数z的共轭复数z=________.14.如图,已知三棱柱ABC﹣A1B l C1中,点D是AB的中点,平面A1DC分此棱柱成两部分,多面体A1ADC与多面体A1B1C1DBC体积的比值为________.15.已知函数f(x)=的值域为R,则实数a的取值范围是________.16.已知数列{a n}满足a1=a2=2,且a n+2=(1+cosnπ)(a n﹣1)+2(n∈N*),S n是数列{a n}的前n 项和,则S2n=________.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,角A,B,C的对边分别为a,b,c,c=5且b(2sinB+sinA)+(2a+b)sinA=2csinC.(1)求C的值;(2)若cosA=,求b的值.18.作为市政府为民办实事之一的公共自行车建设工作已经基本完成了,相关部门准备对该项目进行验收,验收的硬性指标是:市民对该项目的满意指数不低于0.8,否则该项目需进行整改,该部门为了了解市民对该项目的满意程度,在公共自行车自助点随机访问了前来使用的100名市民,并根据这100名市民对该项目满意程度的评分(满分100分),绘制了如图频率分布直方图:(1)为了了解部分市民对公共自行车建设项目评分较低的原因,该部门从评分低于60分的市民中随机抽取2人进行座谈,求这2人评分恰好都在[50,60)的概率;(2)根据你所学的统计知识,判断该项目能否通过验收,并说明理由.(注:满意指数=)19.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,∠DAB=,△ADP为等边三角形.(1)求证:AD⊥PB;(2)若AB=2,BP=,求点D到平面PBC的距离.20.在椭圆E:上任取一点P,过P作x轴的垂线PD,D为垂足,点M满足,点M的轨迹为曲线C.(1)求曲线C的方程;(2)过点B1(0,1)作直线交椭圆E于A1,B1,交曲线C于A2,B2,当|A1B1|最大时,求|A2B2|.21.已知函数f(x)=x﹣﹣alnx(a∈R).(1)求f(x)的单调区间;(2)设g(x)=f(x)+2alnx,且g(x)有两个极值点x l,x2,其中x1∈(0,e],求g(x1)﹣g(x2)的最小值.[选修4-1:几何证明选讲](共1小题,满分10分)22.如图,点A在⊙O上,过点O的割线PBC交⊙O于点B,C,且PA=4,PB=2,OB=3,∠APC的平分线分别交AB,AC于D,E.(1)证明:∠ADE=∠AED;(2)证明:AD•AE=BD•CE.[选修4-4:坐标系与参数选讲]23.已知曲线C的极坐标方程是ρ﹣4sinθ=0.以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l过点M(1,0),倾斜角为.(1)求曲线C的直角坐标方程与直线l的参数方程;(2)设直线l与曲线C交于A、B两点,求|MA|+|MB|.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣2|.(1)解不等式f(x)+f(x+1)≥5;(2)若|a|>1且,证明:|b|>2.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=()A.(1,4)B.(3,4)C.(1,3)D.(1,2)∪(3,4)【考点】交、并、补集的混合运算.【分析】由题意,可先解一元二次不等式,化简集合B,再求出B的补集,再由交的运算规则解出A∩(∁R B)即可得出正确选项【解答】解:由题意B={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},故∁R B={x|x<﹣1或x>3},又集合A={x|1<x<4},∴A∩(∁R B)=(3,4)故选B2.在数列{a n}中,a n+1﹣a n=3,a2=4,S n为{a n}的前n项和,则S5=()A.30 B.35 C.45 D.50【考点】等差数列的前n项和.【分析】由已知等式可得由数列为公差是3的等差数列,再求出首项,代入等差数列的前n 项和得答案.【解答】解:在数列{a n}中,由a n+1﹣a n=3,可得数列{a n}是公差为3的等差数列,由a2=4,得a1=a2﹣d=4﹣3=1,∴.故选:B.3.已知变量x与变量y之间具有相关关系,并测得如下一组数据:x 6 5 10 12y 6 5 3 2则变量x与y之间的线性回归直线方程可能为()A.=0.7x﹣2.3 B.=﹣0.7x+10.3 C.=﹣10.3x+0.7 D.=10.3x﹣0.7【考点】线性回归方程.【分析】根据表中数据,计算、,再根据变量y随变量x的增大而减小,是负相关,验证回归直线方程是否过过样本中心点(,)即可.【解答】解:根据表中数据,得;=(6+5+10+12)=,=(6+5+3+2)=4,且变量y随变量x的增大而减小,是负相关,所以,验证=时,=﹣0.7×+10.3≈4,即回归直线=﹣0.7x+10.3过样本中心点(,).故选:B.4.已知双曲线的离心率为2,则其一条渐近线方程为()A.x﹣3y=0 B.x﹣y=0 C.x﹣y=0 D.3x﹣y=0【考点】双曲线的简单性质.【分析】运用双曲线的离心率公式和a,b,c的关系,解方程可得a=1,即可得到所求渐近线方程.【解答】解:双曲线的离心率为2,可得e===2,解得a=1,由b=,可得双曲线的渐近线方程为y=±x.故选:B.5.在△ABC中M是BC的中点,BC=8,AM=3,AM⊥BC,则•=()A.﹣7 B.﹣C.0 D.7【考点】平面向量数量积的运算.【分析】根据勾股定理求出AB,AC,利用余弦定理解出cosA,代入数量积的定义式计算.【解答】解:∵M是BC中点,∴BM=CM==4,∵AM⊥BC,AM=3,∴AB=AC=5.在△ABC中,cos∠BAC==﹣.∴•=AB×AC×cos∠BAC=﹣7.故选:A.6.已知函数f(x)为奇函数,当x≥0时,f(x)=log2(x+l)+m,则f(1﹣)的值为()A.﹣B.﹣log2(2﹣)C.D.log2(2﹣)【考点】函数奇偶性的性质.【分析】根据函数奇偶性的性质,利用f (0)=0,先求出m ,然后代入即可. 【解答】解:函数f (x )为奇函数,当x ≥0时,f (x )=log 2(x+l )+m , ∴f (0)=log 2l+m=0,则m=0,则f (1﹣)=﹣f (﹣1)=﹣log 2(﹣1+l )=﹣log 2=﹣,故选:A .7.在如图程序框图中,输入n=l ,按程序运行后输出的结果为( )A .1B .2C .3D .4 【考点】程序框图.【分析】根据题意,模拟程序框图的运行过程,即可得出程序输出的数值是什么. 【解答】解:模拟程序框图的运行过程,如下; i=0,n=1,1是奇数,n=3×1+1=4; i=0+1=1,4≠1,4不是奇数,n=2; i=1+1=2,2≠1,2不是奇数,n=1; i=2+1=3,1=1,输出i 的值为3. 故选:C .8.已知x ,y 满足约束条件,(其中a >0),若z=x+y 的最大值为1,则a=( )A .l..B .3C .4D .5 【考点】简单线性规划.【分析】画出满足条件的平面区域,求出角点A 的坐标,通过图象得出=1,解出即可.【解答】解:画出满足条件的平面区域,如图示:,由,解得:A(,),由z=x+y得:y=﹣x+z,显然直线过A时,z最大,此时,z==1,解得:a=5,故选:D.9.函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为π,且其图象经过点(,0),则函数f(x)在区间[0,]上的最大值与最小值的和为()A.1﹣B.0 C.D.1+【考点】正弦函数的图象.【分析】由周期求出ω,由特殊点的坐标求出φ的值,可得f(x)的解析式,再利用正弦函数的定义域和值域,求得f(x)的最大值和最小值,可得函数f(x)在区间[0,]上的最大值与最小值的和.【解答】解:函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为π,可得=π,求得ω=2,∴f(x)=sin(2x+φ).再根据其图象经过点(,0),可得sin(+φ)=0,∴φ=﹣,f(x)=sin(2x﹣).则函数f(x)在区间[0,]上,2x﹣∈[﹣,],∴当2x﹣=﹣时,函数f(x)的最小值为﹣;当2x﹣=时,函数f(x)的最大值为1,的最大值与最小值的和为﹣+1=,故选:C.10.已知直线l1的方程为x﹣y﹣3=0,l1为抛物线x2=ay(a>0)的准线,抛物线上一动点P到l1,l2距离之和的最小值为2,则实数a的值为()A.l B.2 C.4 D.28【考点】抛物线的简单性质.【分析】利用抛物线定义,距离和的最小值为抛物线焦点F(0,)到直线l1:x﹣y﹣3=0的距离.【解答】解:由题意,利用抛物线定义,距离和的最小值为抛物线焦点F(0,)到直线l1:x﹣y﹣3=0的距离,∴距离之和的最小值d==2,∴a=4.故选:C.11.如图,网格纸上的小正方形的边长为l,粗线画出的是某几何体的三视图,若该几何体的顶点都在一个球面上,则该球的表面积为()A.12πB.24 πC.36πD.48π【考点】球的体积和表面积;简单空间图形的三视图.【分析】判断几何体的特征,长方体中的三棱锥,利用长方体的体对角线得出外接球的半径求解即可.【解答】解:三棱锥A﹣BCD,底面为;直角三角形,镶嵌在长方体中,DC=4,AB=2,BD=2,三棱锥与长方体的外接球是同一球,半径为R==,∴该球的表面积为4π×6=24π,故选:B.12.已知函数f(x)=xlnx﹣ax2+a不存在最值,则实数a的取值范围是()A.(0,1)B.(0,] C.[1,+∞)D.[,+∞)【考点】利用导数求闭区间上函数的最值.【分析】问题等价于函数y=lnx与y=2ax﹣1的图象最多1个交点,当y=lnx和y=2ax﹣1相切时,设切点是(x0,lnx0),求出a的临界值即可.【解答】解:由题意,f′(x)=lnx+1﹣2ax令f′(x)=0,得lnx=2ax﹣1,函数f(x)不存在最值,等价于f′(x)=lnx﹣2ax+1最多1个零点,等价于函数y=lnx与y=2ax﹣1的图象最多1个交点,当y=lnx和y=2ax﹣1相切时,设切点是(x0,lnx0),∴,解得:a=,故当a=时,直线y=2ax﹣1与y=lnx的图象相切,故a≥时,y=lnx与y=2ax﹣1的图象最多1个交点.则实数a的取值范围是[,+∞).故选:D.二、填空题:本大题共4小题,每小题5分,共20分13.若复数z满足(1+2i)z=5,则复数z的共轭复数z=1+2i.【考点】复数代数形式的乘除运算.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+2i)z=5,得,∴.故答案为:1+2i.14.如图,已知三棱柱ABC﹣A1B l C1中,点D是AB的中点,平面A1DC分此棱柱成两部分,多面体A1ADC与多面体A1B1C1DBC体积的比值为1:5.【考点】棱柱、棱锥、棱台的体积.【分析】设出棱柱的底面积和高,由D为AB的中点求出三角形ADC的面积,由棱锥体积公式求得多面体A1ADC的体积,作差得到多面体A1B1C1DBC体积,作比得答案.【解答】解:如图,设三棱柱ABC﹣A1B l C1的底面ABC的面积为S,高为h,则三棱柱的体积V=Sh,∵D为AB的中点,∴,三棱锥A1﹣ADC的高为h,∴,则多面体A1B1C1DBC的体积,则多面体A1ADC与多面体A1B1C1DBC体积的比值为.故答案为:1:5.15.已知函数f(x)=的值域为R,则实数a的取值范围是[0,).【考点】函数的值域;分段函数的应用.【分析】根据分段函数的表达式,分别求出每一段上函数的取值范围进行求解即可.【解答】解:当x≥1时,f(x)=2x﹣1≥1,当x<1时,f(x)=(1﹣2a)x+3a,∵函数f(x)=的值域为R,∴(1﹣2a)x+3a必须到﹣∞,即满足:,解得0≤a<,故答案为:[0,).16.已知数列{a n}满足a1=a2=2,且a n+2=(1+cosnπ)(a n﹣1)+2(n∈N*),S n是数列{a n}的前n 项和,则S2n=2n+1+2n﹣2.【考点】数列的求和.【分析】根据条件讨论n的奇偶性,分别化简递推公式并判断出数列的特征,由等比数列的通项公式求通项公式a n,根据等差数列和等比数列的前n项和公式,可求数列的前2n项的和S2n.【解答】解:(1)当n是奇数时,cosnπ=﹣1,由a n+2=(1+cosnπ)(a n﹣1)+2(n∈N*)得,a n+2=2,所以a1,a3,a5,…,a2n﹣1,…是各项为2的常数列,当n为偶数时,cosnπ=1,同理可得a n+2=2a n,所以a2,a4,a6,…,a2n,…是首项为a2=2,公比为2的等比数列,则,所以S2n=(a1+a3+a5+…+a2n﹣1)+(a2+a4+a6+…a2n)=2n+=2n+1+2n﹣2,故答案为:2n+1+2n﹣2.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,角A,B,C的对边分别为a,b,c,c=5且b(2sinB+sinA)+(2a+b)sinA=2csinC.(1)求C的值;(2)若cosA=,求b的值.【考点】余弦定理;两角和与差的正弦函数;正弦定理.【分析】(1)利用正弦定理化简已知等式可得(2b+a)b+(2a+b)a=2c2,化简可得:a2+b2﹣c2=﹣ab,利用余弦定理可求cosC=﹣,结合范围C∈(0,π),即可求得C的值.(2)由已知,利用同角三角函数基本关系式可求sinA,利用两角和的正弦函数公式即可求得sinB=sin(A+C)的值,由正弦定理即可计算求得b=的值.【解答】(本题满分为12分)解:(1)∵b(2sinB+sinA)+(2a+b)sinA=2csinC.∴(2b+a)b+(2a+b)a=2c2,…2分化简可得:a2+b2﹣c2=﹣ab,∴cosC==﹣,…4分∵C∈(0,π),∴C=…6分(2)∵cosA=,A∈(0,π),∴sinA=,∴sinB=sin(A+C)=sinAcosC+cosAsinC==,…10分∴由正弦定理可得:b===4.…12分18.作为市政府为民办实事之一的公共自行车建设工作已经基本完成了,相关部门准备对该项目进行验收,验收的硬性指标是:市民对该项目的满意指数不低于0.8,否则该项目需进行整改,该部门为了了解市民对该项目的满意程度,在公共自行车自助点随机访问了前来使用的100名市民,并根据这100名市民对该项目满意程度的评分(满分100分),绘制了如图频率分布直方图:(1)为了了解部分市民对公共自行车建设项目评分较低的原因,该部门从评分低于60分的市民中随机抽取2人进行座谈,求这2人评分恰好都在[50,60)的概率;(2)根据你所学的统计知识,判断该项目能否通过验收,并说明理由.(注:满意指数=)【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(1)由频率分布直方图得评分在[40,50),[50,60)的市民分别有2个和3个,由此能求出该部门从评分低于60分的市民中随机抽取2人进行座谈,这2人评分恰好都在[50,60)的概率.(2)求出样本满意程度的平均得分80.5,从而求出市民满意指数,由此能求出结果.【解答】解:(1)由频率分布直方图得评分在[40,50),[50,60)的频率分别为0.02和0.03,∴评分在[40,50),[50,60)的市民分别有2个和3个,∴该部门从评分低于60分的市民中随机抽取2人进行座谈,基本事件总数n==10,这2人评分恰好都在[50,60)包含的基本事件个数m==3,∴这2人评分恰好都在[50,60)的概率p=.(2)样本满意程度的平均得分为:45×0.02+55×0.03+65×0.15+75×0.24+85×0.3+95×0.26=80.5,估计市民满意程度的平均分为80.5,∴市民满意指数为:,∴该项目能通过验收.19.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,∠DAB=,△ADP为等边三角形.(1)求证:AD⊥PB;(2)若AB=2,BP=,求点D到平面PBC的距离.【考点】点、线、面间的距离计算.【分析】(1)取AD中点O,连结PO,BO,由已知可得PO⊥AD,BO⊥AD,又PO∩BO=O,即可证AD⊥平面POB,从而可得PB⊥AD.(2)先证明PO⊥AD,可得PO⊥平面ABCD,利用等体积,求出点D到平面PBC的距离.【解答】(1)证明:取AD中点O,连结PO,BO.侧面PAD为等边三角形,底面ABCD为菱形且∠DAB=∴PO⊥AD,BO⊥AD,又PO∩BO=O,∴AD⊥平面POB,∴PB⊥AD;(2)解:由题意,可得OB=OP=,∵PB=,∴PB2=OB2+OP2,∴OP⊥OB∵OB∩AD=O,∴PO⊥平面ABCD∴V D﹣PBC=V P﹣DBC==1,∵AD∥BC,∴PB⊥BC,∴S△PBC==,设点D到平面PBC的距离为h,则,∴h=.20.在椭圆E:上任取一点P,过P作x轴的垂线PD,D为垂足,点M满足,点M的轨迹为曲线C.(1)求曲线C的方程;(2)过点B1(0,1)作直线交椭圆E于A1,B1,交曲线C于A2,B2,当|A1B1|最大时,求|A2B2|.【考点】直线与圆锥曲线的综合问题;椭圆的简单性质.【分析】(1)设M(x,y),P(x0,y0),则D(x0,0),求得向量DM,DP的坐标,由向量共线的坐标表示,结合P在椭圆上,代入化简即可得到所求曲线的方程;(2)讨论当直线的斜率不存在时,可得|A1B1|=2;当直线的斜率存在时,设直线的方程为y=kx+1,A(x1,y1),B(x2,y2),代入椭圆方程可得(1+4k2)x2+8kx=0,(k≠0),求得点A1,B1,运用两点的距离公式和基本不等式求得最大值,再由圆内的垂径定理,化简整理即可得到所求值.【解答】解:(1)设M(x,y),P(x0,y0),则D(x0,0),=(x﹣x0,y),=(0,y0),由,可得x﹣x0=0,且y=2y0,即为x0=x,y0=y,由P在椭圆上,可得+()2=1,即有曲线C的方程为x2+y2=4;(2)当直线的斜率不存在时,可得|A1B1|=2;当直线的斜率存在时,设直线的方程为y=kx+1,A(x1,y1),B(x2,y2),代入椭圆方程可得(1+4k2)x2+8kx=0,(k≠0),解得x1=﹣,x2=0,即有B1(0,1),A1(﹣,),|A1B1|==•≤•=,当且仅当3k2=1+k2,即k=±时,|A1B1|取得最大值;由>2,可得k=±.当k=时,直线A2B2的方程为y=x+1,即x﹣2y+2=0,圆心O到直线A2B2的距离为d=,由垂径定理可得,()2=r2﹣d2=4﹣=,即|A2B2|=.21.已知函数f (x )=x ﹣﹣alnx (a ∈R ). (1)求f (x )的单调区间;(2)设g (x )=f (x )+2alnx ,且g (x )有两个极值点x l ,x 2,其中x 1∈(0,e],求g (x 1)﹣g (x 2)的最小值.【考点】利用导数研究函数的极值;利用导数研究函数的单调性. 【分析】(1)求函数的定义域和导数,讨论a 的取值范围,利用函数单调性和导数之间的关系进行求解即可.(2)求出函数g (x )的表达式,求出函数g (x )的导数,利用函数极值,最值和导数之间的关系进行求解. 【解答】解:(1)函数f (x )的定义域是(0,+∞),f ′(x )=1+﹣=,①当a ≤0时,f ′(x )≥0恒成立,此时函数f (x )在(0,+∞)上是增函数, ②当a >0时,由f ′(x )=0,得x 2﹣ax+1=0,1)当判别式△=a 2﹣4≤0时,即0<a ≤2时,f ′(x )≥0恒成立,此时函数在(0,+∞)上是增函数,2)当△=a 2﹣4>0时,即a >0时,方程x 2﹣ax+1=0的两个根x 1=,x 2=,当x ∈(0,)时,f ′(x )>0,此时函数f (x )为增函数,当x ∈(,)时,f ′(x )<0,此时函数f (x )为减函数,当x ∈(,+∞)时,f ′(x )>0,此时函数f (x )为增函数,综上当a ≤2时,f (x )的递增区间为(0,+∞),无递减区间.当a >2时,函数的递增区间为(0,),∈(,+∞),单调递减区间为(,).(2)由于g (x )=f (x )+2alnx=x ﹣+alnx ,其定义域为(0,+∞),求导得,g ′(x )=1++=,若g′(x)=0两根分别为x1,x2,则有x1•x2=1,x1+x2=﹣a,∴x2=,从而有a=﹣x1﹣,则g(x1)﹣g(x2)=g(x1)﹣g()=x1﹣+alnx1﹣(﹣x1+aln)=2(x1﹣)+2alnx1=2(x1﹣)﹣2(x1+)lnx1,令h(x)=2(x﹣)﹣2(x+)lnx,x∈(0,e],则[g(x1)﹣g(x2)]min=h(x)min,h′(x)=2(1+)﹣2[(1﹣)lnx+(x+)]=,当x∈(0,1]时,h′(x)<0,∴h(x)在(0,1]上单调递减,x∈(1,e]时,h′(x)<0,∴h(x)在(0,e]上单调递减,则h(x)min=h(e)=﹣,∴g(x1)﹣g(x2)的最小值为﹣.[选修4-1:几何证明选讲](共1小题,满分10分)22.如图,点A在⊙O上,过点O的割线PBC交⊙O于点B,C,且PA=4,PB=2,OB=3,∠APC的平分线分别交AB,AC于D,E.(1)证明:∠ADE=∠AED;(2)证明:AD•AE=BD•CE.【考点】与圆有关的比例线段.【分析】(1)由弦切角定理得∠BAP=∠C,从而∠BAP+∠APD=∠C+∠CPE,由此能证明∠ADE=∠AED.(2)利用角平分线的性质得到比值相等,即可证明结论.【解答】证明:(1)连接OA,∵AP2+OA2=16+9=25=(OB+BP)2,∴OA⊥AP,∴PA为⊙O的切线,∴∠PAB=∠C,∵∠AEP=∠C+∠BPE,∠ADE=∠PAB+∠APE,∵PE平分∠APC,∴∠BPE=∠APE∴∠ADE=∠AED;(2)∵PE是∠APC的平分线,∴==,=,∴=,∴AD•AE=BD•CE.[选修4-4:坐标系与参数选讲]23.已知曲线C的极坐标方程是ρ﹣4sinθ=0.以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l过点M(1,0),倾斜角为.(1)求曲线C的直角坐标方程与直线l的参数方程;(2)设直线l与曲线C交于A、B两点,求|MA|+|MB|.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)根据极坐标和参数方程的定义进行求解即可.(2)设A,B对应的参数分别为t1,t2,联立方程求出结合|MA|+|MB|=|t1|+|t2|进行计算即可.【解答】解:(1)由ρ﹣4sinθ=0得ρ=4sinθ⇒ρ2=4ρsinθ⇒x2+y2﹣4y=0⇒x2+(y﹣2)2=4,即曲线C的直角坐标方程为x2+(y﹣2)2=4,∵直线l过点M(1,0),倾斜角为.∴直线l的参数方程为,(t是参数),(2)设A,B对应的参数分别为t1,t2,把直线的参数方程代入曲线方程得(1﹣t)2+(t ﹣2)2=4,整理得t2﹣3t+1=0,则t1+t2=3,t1t2=1,∴t1>0,t2>0,则|MA|+|MB|=|t1|+|t2|=|t1|+|t2|=3.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣2|.(1)解不等式f(x)+f(x+1)≥5;(2)若|a|>1且,证明:|b|>2.【考点】绝对值不等式的解法.【分析】(1)通过讨论x的范围,去掉绝对值号,解不等式即可;(2)求出f(ab)和f(),代入不等式,问题转化为|ab﹣2|>|b﹣2a|,平方证明即可.【解答】(1)解:原不等式等价于|x﹣2|+|x﹣1|≥5,当x>2时,不等式可化为:(x﹣2)+(x﹣1)≥5,解得:x≥4,当1≤x≤2时,不等式可化为(2﹣x)+(x﹣1)≥5,1≥5,无解,x<1时,不等式可化为:(2﹣x)+(1﹣x)≥5,解得:x≤﹣1,综上,不等式的解集是{x|x≥4或x≤﹣1};(2)证明:⇔|ab﹣2|>|a||﹣2|⇔|ab﹣2|>|b﹣2a|⇔(ab﹣2)2>(b﹣2a)2⇔a2b2+4﹣b2﹣4a2>0⇔(a2﹣1)(b2﹣4)>0,∵|a|>1,∴a2﹣1>0,∴b2﹣4>0,∴|b|>2,证毕.若要功夫深,铁杵磨成针!2016年9月7日。
第一节集合A组2019高考针对性练习之基础题型1. (2014 课标1,1,5 分)已知集合M二{x|・1vxv3},N二{x|・2vxC},则MnN=( )A. (-2,1)B.(-1,1)C.(1,3)D.(-2,3)2. (2016 天津,1,5 分)已知集合A={1,2,3},B={y|y=2x-1,XGA},则AnB=( )A.{1,3}B.{1,2}C.{2,3}D.{1,2,3}3. 已知集合A={y|y=|x|-1 ,XG R},B={X|X>2},则下列结论正确的是()A.-3wAB.3^BC.AnB=BD.AuB=B4. (2016 陕西西安模拟)设集合M={x|x2=x},N={x|lg xSO},则MuN=( )A.[0,1]B.(0,1]C.[0,1)D.(-,1]5. 已知集合A={X|XG Z,且三弍},则集合A中的元素个数为()A.2B.3C.4D.56. (2016 山东,1,5 分)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则Cu(AuB)=(A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}7. (2017 山东临沂期中)设集合M二{・1,0,1,2},N=glg(x+1)>0},则MnN=( )A.{0,1}B.{0,1,2}C.{1,2}D.{-1,0,1}8. (2016 辽宁沈阳模拟)设集合A={5^,a-b},B={b,a+b,-1},若AnB二{2,邛},则AuB=(B. {-2,2,5} C・{2,3,5} D.{-1,2,3,5}A・{2,3}9. ___________________________________________ 已知A={0,m,2},B={x|x3-4x=0},若A二B,则m= _________________________________________ .10. ________________________________________________ 已知集合A={x|-1 <x<1 },B={x|x2-2x<0},则A U(C R B)= __________________________________ ."•已知集合A={x| 1 <x<5},C={x|-a<x<a+3},若CnA二C,则a的取值范围为________ ・B组2019高考针对性练习之提高题型12. (2017 山西大同模拟)已知全集为R,集合M={-1,0,1,5},N={x|x2-x-2>0},则M"C R N)=()A.{0,1}B.{-1,0,1}C.{0,1,5}D.{-1,1}13. 若集合A二{xwR|ax2+ax+仁0}中只有一个元素,贝U a=( )A.4B.2C.OD.0 或414. 设集合M二{x|■仁xv2},N 二{y|yva},若MnNH0,则实数a的取值范围是( )A.[-1,2)B.(-oo,2]C.[-1,+oc)D.(・1,+©15. (2016 广西南宁模拟)已知全集U={XG Z|0<X<8},集合M={2,3,5},N={x|x2-8x+12=0},则集合{1,4,7}为()A.Mn(CuN)B.Cu(MnN)C. Cu(MuN)D.(CuM)nN16. (2016辽宁沈阳模拟)已知集合A={xeN|x2-2x-3<0},B={1>3},定义集合A,B之间的运算M*,,:A*B={X|X=X I+X2,X IG A,X2G B},则A*B 中的所有元素之和为( )A.15B.16C.20D.2117. 设集合A={x|y=lg(-x2+x+2)},B={x|x-a>0},若AGB,则实数a 的取值范围是( )A.(-oo r1)B.(-00,-1]C.(・8,・2)D.(-OO,-2]18. (2016辽宁沈阳二中月考)设[x]表示不大于x的最大整数,集合A={x|x2-2[x]=3},B={x| i < 2X < 8},则AnB=答案全解全析A 组 基础A 组2019高考针对性练习之基础题型MnN={x|-1<x<3}n{x|-2<x<1}={x|-1<x<1}.2. A 由题意可得 B={1,3,5},.\AnB={1,3},故选 A.3. C 化简 A={y|y>-1},因此 AnB={x|x>2}=B.4. A 由题意知 M 二{0,1},N 二{x|0vxG},所以 MuN 二[0,1].故选 A.5. C •.子wZ,.2x 的取值有-3,-1,1,3,又.*Z,.・.x 的值分别为故集合A 中的元素个数为4.2-X6. A 由题意知 AuB={1,3,4,5},又 U={1,2,3,4,5,6},.\Cu(AuB)={2,6},故选 A.7. C vM={-1,0,1,2},N={x|lg(x+1)>0}=(0,+oo),AMnN41,2}.9.家答案-2玄解析 由题意知B 二{0,・2,2},若A 二B,则m=-2.曲答案(-co,1]U[2+oo)童解析 由题意知 B={X |X 2-2X <0}={X |0<X <2},.-.C R B=(-OO ,0]U [2,+OO ),X A=[-1,1],/.A U (C R B)=K1]U [2,+OO ).答案a<-1 代解析因为CnA 二C,所以CcA.①当C 二0R 寸,满足CGA,此时-a>a+3,解得a< ②当O0时,要使CCA,a < a + 3,_a > 1,解得-|<a ^1-a + 3 V 5,由①②,得a<-1. 8.D 2, ;'此时 B={2,3,-1},所以 AuB={-1,2,3,5}; 匕=2 由AnB 二{2円},可得* 'a-b = -1rb 当a-b = -1时 当7=' ,a-b = 2 1;此时不符合题意,舍去. •1/B组提升B组2019高考针对性练习之提高题型19高考针对性练习之提高题型全集为R,N={x|x2-x-2>0}={x|x<-1 或x>2},.•,C R N={X|-1<X<2},又集合M={-1,0,1,5},.\M A(C R N)={0,1}.故选 A.13. A •.•集合A={xeR|ax2+ax+1 =0}中只有一个元素,即ax2+ax+1=0只有一个解,..当a*0时,A=a2-4a=0,解之得a=0(舍)或a=4・当a=0时,A=0,不合题意.:.a=4.14. D借助数轴可知a>-1,故选D.15. C 由已知得U二{1,2,3,4,5,6,7},N二{2,6},又M={2,3,5},所以CuN={1,3,4,5,7},3皿二{1,4,6,7},皿山二{2,3,5,6},1\/1论二{2},所以Mn(CuN)={3,5},Cu(MnN)={1,3,4,5,6,7},(CuM)nN={6},Cu(MuN)={1,4,7},故选C.16. D 由x2-2x-3<0,得(x+1)(x・3)s0,则•仁XS3,又xwN,故集合A二{0,1,2,3}.由题意知A*B中的元素有0+1=1,0+3=3,1+1 =2,1 +3=4,2+1 =3(舍去),2+3=5,3+1 =4(舍去),3+3=6,/.A*B={1,2,3,4,5,6},/.A*B 中的所有元素之和为1+2+3+4+5+6=21.17. B A={x|y=lg(-x2+x+2)}={x|-1<x<2},B={x|x>a}.因为AGB,所以a<-1.18«答案{-1,77}家解析vx2-2[x]=3,.-.[x]=^,又[x]^x<[x]+1,.忙・2x・3 < 或1+匹VXS3,tx2-2x-l > 0,.-.[x]=-1 或[x]二2 或[x]=3.结合x2=2[x]+3, R J得x=-1 或x=V7或x=3. /.A={-1,V7,3}.由i<2^<8 得・3vxv3,「.B二{x|・3vxv3}.,-.AnB={-1,V7}.。
2019-2020学年度最新数学高考一轮复习(文科)训练题:天天练 25 Word 版含解析一、选择题 1.(2018·山东临汾一中月考)不等式y (x +y -2)≥0在平面直角坐标系中表示的区域(用阴影部分表示)是( )答案:C解析:由y ·(x +y -2)≥0,得⎩⎨⎧y ≥0,x +y -2≥0或⎩⎨⎧y ≤0,x +y -2≤0,所以不等式y ·(x +y -2)≥0在平面直角坐标系中表示的区域是C 项,故选C.2.(2018·河北卓越联盟联考)已知点(-3,-1)和(4,-6)在直线3x -2y -a =0的两侧,则实数a 的取值范围为( )A .(-7,24)B .(-∞,-7)∪(24,+∞)C .(-24,7)D .(-∞,-24)∪(7,+∞) 答案:A解析:由题意可知(-9+2-a )(12+12-a )<0,所以(a +7)(a -24)<0,所以-7<a <24.故选A.3.(2018·阜阳一模)下列正确的是( )A .若a ,b ∈R ,则b a +ab ≥2B .若x <0,则x +4x ≥-2x ×4x =-4C .若ab ≠0,则b 2a +a 2b ≥a +b D .若x <0,则2x +2-x >2答案:D解析:对于A ,当ab <0时不成立;对于B ,若x <0,则x +4x =-⎝ ⎛⎭⎪⎪⎫-x +4-x ≤-2(-x )·4-x =-4,当且仅当x =-2时,等号成立,因此B 选项不成立;对于C ,取a =-1,b =-2,b 2a +a 2b =-92<a +b =-3,所以C 选项不成立;对于D ,若x <0,则2x +2-x >2成立.故选D.4.(2018·河北张家口上学期模拟)已知向量a =(1,x -1),b =(y,2),其中x >0,y >0.若a ⊥b ,则xy 的最大值为( )A.14B.12 C .1 D .2 答案:B解析:因为a =(1,x -1),b =(y,2),a ⊥b ,所以a ·b =y +2(x -1)=0,即2x +y =2.又因为x >0,y >0,所以2x +y ≥22xy ,当且仅当x =12,y =1时等号成立,即22xy ≤2,所以xy ≤12,所以当且仅当x =12,y =1时,xy 取到最大值,最大值为12.故选B.5.(2018·河南八市重点高中联考)函数y =x 2+7x +10x +1(x >-1)的最小值为( )A .2B .7C .9D .10 答案:C解析:因为x >-1,所以x +1>0,所以y =x 2+7x +10x +1=(x +1)2+5(x +1)+4x +1=(x +1)+4x +1+5≥2(x +1)·4x +1+5=9,当且仅当(x +1)2=4,即x =1时等号成立,所以要求函数的最小值在x=1处取到,最小值为9.故选C.6.(2018·河南郑州一中模拟)已知正数a ,b 满足4a +b =3,则e 1a ·e 1b的最小值为( )A .3B .e 3C .4D .e 4 答案:B解析:因为正数a ,b 满足4a +b =3,所以1a +1b =13⎝ ⎛⎭⎪⎫1a +1b (4a +b )=13⎝ ⎛⎭⎪⎫4+1+b a +4a b ≥13⎝⎛⎭⎪⎫5+2b a ·4a b =3(当且仅当⎩⎪⎨⎪⎧b a =4a b ,4a +b =3,即2a =b =1时取等号),所以e 1a ·e 1b =e 11a b+≥e 3,即当2a =b =1时,e 1a·e1b的最小值为e 3.故选B.7.已知x ,y 满足⎩⎨⎧y ≥12x ,x +y ≤3,x ≥a ,z =3x +y 的最大值比最小值大14,则a 的值是( )A .-2B .-1C .1D .2 答案:A解析:如图,不等式组所表示的可行域为△ABC 及其内部,作出目标函数z =3x +y 对应的直线l .因为z 的几何意义为直线l 在y 轴上的截距.显然,当直线l 过点B 时,z 取得最大值;当直线l 过点A 时,z 取得最小值.由⎩⎨⎧x -2y =0,x +y =3,解得B (2,1);由⎩⎨⎧x -2y =0,x =a ,解得A ⎝ ⎛⎭⎪⎫a ,a 2.所以目标函数的最大值为z max =3×2+1=7,最小值为z min =3×a+a 2=72a .由题意可得7-72a =14,解得a =-2.故选A.8.(2018·山西运城上学期期中)某工厂生产甲、乙两种产品,生产甲产品1件需消耗A 原料1千克,B 原料2千克;生产乙产品1件需消耗A 原料2千克,B 原料1千克;每件甲产品的利润是300元,每件乙产品的利润是400元,公司在生产这两种产品的计划中,要求每天消耗A ,B 原料都不超过12千克,通过合理安排计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A .1 800元B .2 400元C .2 800元D .3 100元 答案:C解析:设生产甲产品x 件,乙产品y 件,依题意有⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ,y ∈N ,目标函数z =300x +400y ,作出⎩⎨⎧x +2y ≤12,2x +y ≤12的可行域,其中A (0,6),B (4,4),C (6,0),如图所示.由图可知,目标函数在点B (4,4)取得最大值,最大值为2 800.所以公司共可获得的最大利润是2 800元.故选C.二、填空题9.设a ,b ∈R ,且a 2+b 2=10,则a +b 的取值范围是________. 答案:[-25,25]解析:∵a 2+b 2=10,a 2+b 2≥2ab ,∴2(a 2+b 2)≥2ab +a 2+b 2=(a +b )2,当且仅当a =b 时取等号,即(a +b )2≤2(a 2+b 2)=20,∴-25≤a +b ≤25,所以a +b 的取值范围是[-25,25].10.(2018·广东清远模拟)若x >0,y >0,且1x +9y =1,则x +y 的最小值是________.答案:16解析:因为x >0,y >0,且1x +9y =1,所以x +y =(x +y )⎝ ⎛⎭⎪⎫1x +9y =10+9x y +y x ≥10+29x y ·y x =16,当且仅当9x 2=y 2,即y =3x =12时等号成立.故x +y 的最小值是16.11.(2018·河北保定联考)若点(x ,y )所在的平面区域满足不等式组⎩⎪⎨⎪⎧x +4y -8≤0,x ≥0,y >0,在区域内任取一点P ,则点P 落在圆x 2+y 2=2内的概率为________________________________________________________________________.答案:π16解析:不等式组对应的平面区域为△OAB (不包括线段OA ),其中A (8,0),B (0,2),如图所示,对应的面积为S =12×2×8=8.x 2+y 2=2表示的区域为半径为2的圆O .圆O 在△OAB 内的部分对应的面积为14×π×(2)2=π2,所以根据几何概型的概率公式,得到所求概率P =π28=π16.三、解答题 12.(2018·河北唐山一模)已知x ,y ∈(0,+∞),x 2+y 2=x +y .(1)求1x +1y 的最小值.(2)是否存在x ,y 满足(x +1)(y +1)=5?并说明理由.解析:(1)因为1x +1y =x +y xy =x 2+y 2xy ≥2xyxy =2,当且仅当x =y =1时,等号成立,所以1x +1y 的最小值为2.(2)不存在.理由如下:因为x 2+y 2≥2xy ,所以(x +y )2≤2(x 2+y 2)=2(x +y ).又x ,y ∈(0,+∞),所以x +y ≤2.从而有(x +1)(y +1)≤⎣⎢⎢⎡⎦⎥⎥⎤(x +1)+(y +1)22≤4,因此不存在x ,y 满足(x +1)(y +1)=5.。
高三文科数学一轮复习滚动检测卷滚动检测一第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={1,2,3,4,5},集合A ={1,2,3},集合B ={3,4},则(∁U A )∪B 等于( ) A .{4} B .{2,3,4} C .{3,4,5}D .{2,3,4,5}2.“x <0”是“xx +1<0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.已知命题p 与命题q ,若命题(綈p )∨q 为假命题,则下列说法正确的是( ) A .p 真,q 真 B .p 假,q 真 C .p 真,q 假D .p 假,q 假4.当x ∈(0,+∞)时,幂函数y =(m 2-m -1)x -m -1为减函数,则实数m 的取值集合为( )A .{2}B .{-1}C .{2,-1}D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m ≠1+52 5.若函数f (x )=⎩⎪⎨⎪⎧x -3,x ≥5,f (x +2),x <5,则f (2)的值为( )A .2B .3C .4D .56.函数f (x )=ln x -2x 的零点所在的大致区间为( )A .(1,2)B .(2,3)C .(e,3)D .(e ,+∞)7.已知函数f (x )的定义域为R ,对任意x 都有f (x +2)=-f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (2 015)+f (2 018)的值为( ) A .-2 B .-1 C .1D .28.函数f (x )=ln(x 2+1)的图象大致是( )9.若a>0,b>0,ab>1,log12a=ln 2,则log a b与log12a的关系是()A.log a b<log12aB.log a b=log12aC.log a b>log12aD.log a b≤log12a10.已知f(x)是偶函数,x∈R,若将f(x)的图象向右平移一个单位得到一个奇函数,若f(2)=-1,则f(1)+f(2)+f(3)+…+f(2 018)等于()A.-1 003 B.1 003C.1 D.-111.(2017·天津市河西区模拟)已知命题p :∀x ∈[1,2],e x -a ≥0.若綈p 是假命题,则实数a 的取值范围为( ) A .(-∞,e 2] B .(-∞,e] C .[e ,+∞)D .[e 2,+∞)12.函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≤1,lg x ,x >1,g (x )=3-x ,则函数h (x )=f (x )-g (x )的零点个数是( )A .2B .3C .4D .0第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知g (x )是定义在[-2,2]上的偶函数,当x ≥0时,函数g (x )单调递减,当g (1-m )-g (m )<0时,实数m 的取值范围为________.14.(2018·保定模拟)已知命题p :函数y =log a (ax +2a )(a >0且a ≠1)的图象必过定点(-1,1);命题q :如果函数y =f (x -3)的图象关于原点对称,那么函数y =f (x )的图象关于点(3,0)对称,则命题p ∨q 为________(填“真”或“假”)命题.15.如果函数f (x )对任意的实数x ,都有f (1+x )=f (-x ),且当x ≥12时,f (x )=log 2(3x -1),那么函数f (x )在[-2,0]上的最大值与最小值之和为________.16.设f (x )是定义在R 上的奇函数,且f (x )=2x+m2x ,设g (x )=⎩⎪⎨⎪⎧f (x ),x >1,f (-x ),x ≤1,若函数y =g (x )-t 有且只有一个零点,则实数t 的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)(2018届衡水市武邑中学月考)已知集合P ={x |a +1≤x ≤2a +1},Q ={x |x 2-3x ≤10}.(1)若a =3,求(∁R P )∩Q ;(2)若P ⊆Q ,求实数a 的取值范围.18.(12分)已知p :函数f (x )=x 2-2mx +4在[2,+∞)上单调递增;q :关于x 的不等式mx 2+4(m-2)x+4>0的解集为R.若p∨q为真命题,p∧q为假命题,求m的取值范围.19.(12分)已知函数f (x )=ax 2+bx -a -ab (a ≠0),当x ∈(-1,3)时,f (x )>0;当x ∈(-∞,-1)∪(3,+∞)时,f (x )<0.(1)求f (x )在(-1,2)内的值域;(2)若方程f (x )=c 在[0,3]上有两个不相等实根,求c 的取值范围.20.(12分)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式可以近似地表示为y =x 25-48x +8 000,已知此生产线年产量最大为210吨.(1)求当年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?21.(12分)已知函数f (x )=22x -52·2x +1-6.(1)当x ∈[0,4]时,求f (x )的最大值和最小值;(2)若存在x ∈[0,4],使f (x )+12-a ·2x ≥0成立,求实数a 的取值范围.22.(12分)(2017·广东深圳一模)已知函数f(x)满足f(log a x)=aa2-1(x-x-1)(其中a>0,a≠1).(1)求f(x)的表达式;(2)对于函数f(x),当x∈(-1,1)时,f(1-m)+f(1-m2)<0,求实数m的取值范围;(3)当x∈(-∞,2)时,f(x)-4的值为负数,求a的取值范围.答案精析1.C 2.B 3.C 4.A 5.B 6.B7.B [根据f (x +2)=-f (x )可知,函数的最小正周期为4,故f (2 015)+f (2 018)=f (3)+f (2)=-f (1)-f (0)=-1.]8.A [因为f (-x )=f (x ),所以函数图象关于y 轴对称,排除C ;又f (x )=ln(x 2+1)≥ln 1=0,所以排除B ,D ,故选A.]9.A [由log 12a =ln 2>0,得0<a <1,b >1,log a b <0.]10.D [f (x -1)是奇函数,而f (x )是偶函数,∴f (x )的最小正周期是4, f (-1)=f (1)=f (3)=0,f (0)=-f (2)=1,∴f (1)+f (2)+f (3)+…+f (2 018)=f (1)+f (2)=-1.] 11.B [由命题p :∀x ∈[1,2],使得e x -a ≥0, ∴a ≤(e x )min =e ,若綈p 是假命题,∴p 是真命题,∴a ≤e. 则实数a 的取值范围为(-∞,e].]12.A [函数h (x )的零点满足f (x )-g (x )=0,即f (x )=g (x ),绘制函数f (x )与g (x )的图象,如图 所示,交点的个数即函数h (x )零点的个数,观察可得,函数h (x )=f (x )-g (x )的零点个数是2.故选A.] 13.⎣⎡⎭⎫-1,12 解析 根据题意, 由g (1-m )<g (m ),得⎩⎪⎨⎪⎧|1-m |>|m |,1-m ∈[-2,2],m ∈[-2,2],解得⎩⎪⎨⎪⎧m <12,-1≤m ≤3,-2≤m ≤2,即-1≤m <12.14.真解析 ∵y =log a []a ×(-1)+2a =1,∴命题p 为真;∵y =f (x -3)的图象关于原点对称,则函数y =f (x )的图象关于点(-3,0)对称,∴命题q 为假,因此命题p ∨q 为真. 15.4解析 根据f (1+x )=f (-x ),可知函数f (x )的图象关于直线x =12对称.又函数f (x )在⎣⎡⎭⎫12,+∞上单调递增,故f (x )在⎝⎛⎦⎤-∞,12上单调递减, 则函数f (x )在[-2,0]上的最大值与最小值之和为f (-2)+f (0)=f (1+2)+f (1+0)=f (3)+f (1)=log 28+log 22=4. 16.⎣⎡⎦⎤-32,32 解析 因为f (x )为奇函数,所以f (-x )=-f (x ),即2-x +m ·2x =-(2x +m ·2-x ),解得m =-1,故g (x )=⎩⎪⎨⎪⎧2x -2-x ,x >1,2-x -2x ,x ≤1,作出函数g (x )的图象(如图所示).当x >1时,g (x )单调递增,此时g (x )>32;当x ≤1时,g (x )单调递减,此时g (x )≥-32,所以当t ∈⎣⎡⎦⎤-32,32时,y =g (x )-t 有且只有一个零点. 17.解 (1)因为a =3,所以P ={x |4≤x ≤7},∁R P ={x |x <4或x >7}.又Q ={x |x 2-3x ≤10}={x |-2≤x ≤5},所以(∁R P )∩Q ={x |-2≤x <4}.(2)当P ≠∅时,由P ⊆Q ,得⎩⎪⎨⎪⎧a +1≥-2,2a +1≤5,2a +1≥a +1.解得0≤a ≤2;当P =∅时,2a +1<a +1,解得a <0,此时有P =∅⊆Q , 综上,实数a 的取值范围是(-∞,2].18.解 若命题p 为真,因为函数f (x )的图象的对称轴为x =m ,则m ≤2;若命题q 为真,当m =0时,原不等式为-8x +4>0,显然不成立.当m ≠0时,则有⎩⎪⎨⎪⎧m >0,Δ=16(m -2)2-16m <0,解得1<m <4. 由题意知,命题p ,q 一真一假,故⎩⎪⎨⎪⎧ m ≤2,m ≤1或m ≥4或⎩⎪⎨⎪⎧m >2,1<m <4, 解得m ≤1或2<m <4.19.解 (1)由题意知,-1,3是方程ax 2+bx -a -ab =0的两根, 可得a =-1,b =2,则f (x )=-x 2+2x +3在(-1,2)内的值域为(0,4].(2)方程-x 2+2x +3=c ,即x 2-2x +c -3=0在[0,3]上有两个不相等实根, 设g (x )=x 2-2x +c -3,则⎩⎪⎨⎪⎧g (1)<0,g (0)≥0,g (3)≥0,解得3≤c <4.20.解 (1)每吨平均成本为yx (万元).则y x =x 5+8 000x-48≥2x 5·8 000x-48=32, 当且仅当x 5=8 000x,即x =200时取等号.所以当年产量为200吨时,每吨平均成本最低为32万元. (2)设年获得总利润为R (x )万元, 则R (x )=40x -y =40x -x 25+48x -8 000=-x 25+88x -8 000=-15(x -220)2+1 680(0≤x ≤210).因为R (x )在[0,210]上是增函数,所以当x =210时,R (x )有最大值为-15(210-220)2+1 680=1660.所以当年产量为210吨时,可获得最大利润1 660万元. 21.解 (1)f (x )=(2x )2-5·2x -6,设2x =t ,∵x ∈[0,4],则t ∈[1,16],∴h (t )=t 2-5t -6,t ∈[1,16]. ∵当t ∈⎝⎛⎦⎤1,52时函数h (t )单调递减; 当t ∈⎝⎛⎦⎤52,16时函数h (t )单调递增, ∴f (x )min =h ⎝⎛⎭⎫52=-494,f (x )max =h (16)=170. (2)∵存在x ∈[0,4],使f (x )+12-a ·2x ≥0成立,而t =2x >0, ∴存在t ∈[1,16],使得a ≤t +6t-5成立.令g (t )=t +6t -5,则g (t )在[1,6]上单调递减,在[6,16]上单调递增,而g (1)=2<g (16)=918,∴g (t )max =g (16)=918, ∴a ≤g (t )max =g (16)=918, ∴实数a 的取值范围是⎝⎛⎦⎤-∞,918. 22.解 (1)设log a x =t ,则x =a t , 代入原函数,得f (t )=a a 2-1(a t -a -t ), 则f (x )=a a 2-1(a x -a -x )(其中a >0,a ≠1).(2)当a >1时,a x 是增函数,a -x 是减函数,且a a 2-1>0,所以f (x )是定义域R 上的增函数,同理,当0<a <1时,f (x )也是R 上的增函数, 又f (-x )=a a 2-1(a -x -a x )=-f (x ),所以f (x )为奇函数. 由f (1-m )+f (1-m 2)<0得f (1-m )<-f (1-m 2)=f (m 2-1), 所以⎩⎪⎨⎪⎧-1<1-m <1,-1<1-m 2<1,1-m <m 2-1,解得1<m < 2.则实数m 的取值范围是(1,2). (3)因为f (x )是增函数,所以当x ∈(-∞,2)时,f (x )-4∈(-∞,f (2)-4), 又当x ∈(-∞,2)时,f (x )-4的值为负数, 所以f (2)-4≤0,则f (2)-4=a a 2-1(a 2-a -2)-4=a a 2-1·a 4-1a 2-4=a 2+1a -4≤0,解得2-3≤a ≤2+3且a ≠1,所以a 的取值范围是{a |2-3≤a ≤2+3且a ≠1}.滚动检测二考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分. 4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )=x -1+lg(x +1)的定义域是( ) A .(-1,1] B .(-1,1) C .[-1,1]D .[1,+∞)2.设集合A ,B ,则“A ⊆B ”是“A ∪B =B ”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.(2018·大同调研)给定函数:①y =x 12,②y =1x ,③y =|x |-1,④y =cos ⎝⎛⎭⎫π2-x ,其中既是奇函数又在区间(0,1)上是增函数的是( ) A .① B .② C .③ D .④4.设f (x )是定义在实数集R 上的函数,满足条件y =f (x +1)是偶函数,且当x ≥1时,f (x )=⎝⎛⎭⎫12x-1,则f ⎝⎛⎭⎫23,f ⎝⎛⎭⎫32,f ⎝⎛⎭⎫13的大小关系是( )A .f ⎝⎛⎭⎫23>f ⎝⎛⎭⎫32>f ⎝⎛⎭⎫13B .f ⎝⎛⎭⎫23>f ⎝⎛⎭⎫13>f ⎝⎛⎭⎫32C .f ⎝⎛⎭⎫32>f ⎝⎛⎭⎫23>f ⎝⎛⎭⎫13D .f ⎝⎛⎭⎫13>f ⎝⎛⎭⎫32>f ⎝⎛⎭⎫235.定义域为R 的函数f (x )满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x 2-x ,则当x ∈(-2,-1]时,f (x )的最小值为( ) A .-116 B .-18 C .-14D .06.在f (x )=x 3+3x 2+6x -10的切线中,斜率最小的切线方程为( ) A .3x +y -11=0 B .3x -y +6=0 C .x -3y -11=0D .3x -y -11=07.(2017·哈尔滨市九中二模)函数f (x )=2x -4sin x ,x ∈⎣⎡⎦⎤-π2,π2的图象大致是( )8.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足(4a -3c )cos B =3b cos C ,a ,b ,c 成等差数列,若b =22,则△ABC 的面积为( ) A.677 B.72 C.776 D.4759.将函数y =cos ⎝⎛⎭⎫π6-2x 的图象向右平移π12个单位长度后所得图象的一条对称轴的方程是( ) A .x =π6B .x =π4C .x =π3D .x =π1210.(2018届大庆实验中学期中)将函数f (x )=sin(2x +φ)的图象向右平移π8个单位长度,得到的图象关于原点对称,则φ的一个可能取值为( ) A.3π4 B.π4 C .0D .-π411.己知函数f (x )是定义在R 上的偶函数,且函数y =f (x )的图象关于直线x =1对称,已知当x ∈[-1,0]时,f (x )=-(x +1)2+1,函数y 1=f (x )的图象和函数y 2=lg|x |的图象的交点个数为( )A .8B .9C .16D .1812.已知函数f (x )=ln x -ax 2+ax 恰有两个零点,则实数a 的取值范围为( ) A .(-∞,0) B .(0,+∞) C .(0,1)∪(1,+∞)D .(-∞,0)∪{1} 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.(2017·安徽皖西教学联盟)命题“若ab =0,则a =0或b =0”的否定为____________________.14.(2017·揭阳联考)已知cos ⎝⎛⎭⎫α+2π3=45,-π2<α<0,则sin ⎝⎛⎭⎫α+π3+sin α=________. 15.(2017·唐山一模)将函数f (x )=cos ωx 的图象向右平移π2个单位长度后得到函数g (x )=sin ⎝⎛⎭⎫ωx -π4的图象,则正数ω的最小值为________. 16.定义:如果函数f (x )在[m ,n ]上存在x 1,x 2(m <x 1<x 2<n )满足f ′(x 1)=f (n )-f (m )n -m ,f ′(x 2)=f (n )-f (m )n -m.则称函数f (x )是[m ,n ]上的“双中值函数”,已知函数f (x )=x 3-x 2+a 是[0,a ]上的“双中值函数”,则实数a 的取值范围是________________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪18≤2x -2≤16,B ={x |2m +1≤x ≤3m -1}. (1)求集合A ;(2)若B ⊆A ,求实数m 的取值范围.18.(12分)(2018届重庆一中月考)已知函数f (x )=sin ⎝⎛⎭⎫2x +φ+π3(0<φ<2π),若f (x )-f ⎝⎛⎭⎫π4-x =0对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f (0). (1)求y =f (x )的解析式和单调递增区间; (2)当x ∈⎣⎡⎦⎤-π12,π2时,求y =f (x )的值域.19.(12分)(2018·葫芦岛调研)某公司生产一种产品,每年需投入固定成本25万元,此外每生产1件这样的产品,还需增加投入0.5万元,经市场调查知这种产品年需求量为500件,产品销售数量为t 件时,销售所得的收入为⎝⎛⎭⎫5t -1200t 2 万元. (1)设该公司这种产品的年生产量为x 件,生产并销售这种产品所得到的利润关于当年产量x 的函数为f (x ),求f (x );(2)当该公司的年产量为多少件时,当年所获得的利润最大.20.(12分)已知函数f (x )=(ax -1)e x ,a ∈R ,e 是自然对数的底数. (1)当a =1时,求函数f (x )的极值;(2)若函数f (x )在区间(0,1)上是单调递增函数,求实数a 的取值范围.21.(12分)在△ABC 中,设边a ,b ,c 所对的角分别为A ,B ,C .A ,B ,C 都不是直角,且ac cos B +bc cos A =a 2-b 2+8cos A . (1)若sin B =2sin C ,求b ,c 的值; (2)若a =6,求△ABC 面积的最大值.22.(12分)(2017·沈阳大东区质检)已知函数f(x)=2x-1x-a ln x(a∈R).(1)当a=3时,求f(x)的单调区间;(2)设g(x)=f(x)-x+2a ln x,且g(x)有两个极值点x1,x2,其中x1<x2,若g(x1)-g(x2)>t恒成立,求t的取值范围.答案精析1.D 2.C 3.D 4.A 5.A6.D [由题意得,f ′(x )=3x 2+6x +6=3(x +1)2+3,则当x =-1时,f ′(x )min =3.又f (-1)=-14,则曲线y =f (x )在x =-1处的切线方程为y -(-14)=3(x +1),即3x -y -11=0.] 7.D [∵函数f (x )=2x -4sin x ,∴f (-x )=-2x -4sin(-x )=-(2x -4sin x )=-f (x ),故函数f (x )为奇函数,所以函数f (x )=2x -4sin x 的图象关于原点对称,排除A ,B ;函数f ′(x )=2-4cos x ,由f ′(x )=0,得cos x =12,故x =2k π±π3(k ∈Z ),所以当x =±π3时函数取得极值,排除C ,故选D.]8.A [由题意可知,4sin A cos B -3sin C cos B =3sin B cos C , 可得4sin A cos B =3sin(B +C )=3sin A ,∵sin A ≠0,∴cos B =34,∴sin B =1-cos 2B =74.∵a ,b ,c 成等差数列,∴2b =a +c , 由余弦定理,得cos B =a 2+c 2-b 22ac =(a +c )2-b 2-2ac 2ac =34,∴ac =487,则S △ABC =12ac sin B =677.]9.A [将函数y =cos ⎝⎛⎭⎫π6-2x 的图象向右平移π12个单位长度后所得图象的函数解析式为 y =cos ⎣⎡⎦⎤π6-2⎝⎛⎭⎫x -π12=cos ⎝⎛⎭⎫π3-2x =cos ⎝⎛⎭⎫2x -π3. 因为函数在函数图象的对称轴处取得最值,经检验x =π6成立,故选A.]10.B [将函数f (x )=sin(2x +φ)的图象向右平移π8个单位长度,可得sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π8+φ=sin ⎝⎛⎭⎫2x -π4+φ. ∵图象关于原点对称,∴-π4+φ=k π,k ∈Z .解得φ=k π+π4.当k =0时,可得φ=π4.]11.D [函数y 1=f (x )的图象关于直线x =1对称, 故f (1+x )=f (1-x ).函数f (x )是定义在R 上的偶函数,故f (1-x )=f (x -1), 因此f (x +1)=f (x -1),从而函数f (x )是周期为2的函数.可根据函数性质作出函数y 1=f (x )的图象和函数y 2=lg|x |的图象,因为函数f (x )的值域为[0,1],所以只需要考虑区间[-10,10],数形结合可得交点个数为18.故选D.]12.C [函数f (x )的定义域为(0,+∞),f (x )恰有两个零点,转化为ln x -ax 2+ax =0,即方程ln x x =a (x -1)恰有两解,设g (x )=ln xx ,则g ′(x )=1-ln x x 2,当0<x <e 时,g ′(x )>0,当x >e 时,g ′(x )<0,所以g (x )在(0,e)上是增函数, 在(e ,+∞)上是减函数,且g (1)=0,当x >e 时,g (x )>0,g ′(1)=1,作出函数y 1=g (x )和函数y 2=a (x -1)的图象如图所示,由图可知,两个函数有两个交点的充要条件是0<a <1或a >1,故选C.] 13.若ab =0,则a ≠0且b ≠0解析 若“ab =0,则a =0或b =0”的否定为“若ab =0,则a ≠0且b ≠0”. 14.-435解析 ∵cos ⎝⎛⎭⎫α+2π3=45,-π2<α<0, ∴sin ⎝⎛⎭⎫α+2π3= 1-cos 2⎝⎛⎭⎫α+2π3=35, 而sin ⎝⎛⎭⎫α+π3=sin ⎣⎡⎦⎤⎝⎛⎭⎫α+2π3-π3 =sin ⎝⎛⎭⎫α+2π3· cos π3-cos ⎝⎛⎭⎫α+2π3sin π3=3-4310, ∴sin α=sin ⎣⎡⎦⎤⎝⎛⎭⎫α+2π3-2π3 =sin ⎝⎛⎭⎫α+2π3cos 2π3-cos ⎝⎛⎭⎫α+2π3sin 2π3=-3-4310, sin ⎝⎛⎭⎫α+π3+sin α=3-4310+-3-4310=-435. 15.32解析 f (x )向右平移π2个单位长度后得g (x )=cos ⎣⎡⎦⎤ω⎝⎛⎭⎫x -π2=cos ⎝⎛⎭⎫ωx -π2ω. ∵sin ⎝⎛⎭⎫ωx -π4=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫ωx -π4=cos ⎝⎛⎭⎫ωx -3π4, ∴ωx -π2ω=ωx -3π4+2k π(k ∈Z ),∴ω=32-4k (k ∈Z ),∴正数ω的最小值为32.16.⎝⎛⎭⎫12,1解析 因为f (x )=x 3-x 2+a ,所以由题意可知,f ′(x )=3x 2-2x 在区间[0,a ]上存在x 1,x 2(0<x 1<x 2<a ),满足f ′(x 1)=f ′(x 2)=f (a )-f (0)a -0=a 2-a ,所以方程3x 2-2x =a 2-a 在区间(0,a )上有两个不相等的实根. 令g (x )=3x 2-2x -a 2+a (0<x <a ), 则⎩⎪⎨⎪⎧Δ=4-12(-a 2+a )>0,g (0)=-a 2+a >0,g (a )=2a 2-a >0,解得12<a <1.17.解 (1)18≤2x -2≤16,2-3≤2x -2≤24,∴-3≤x -2≤4,∴-1≤x ≤6,∴A ={x |-1≤x ≤6}. (2)若B =∅,则2m +1>3m -1,解得m <2,此时满足题意;若B ≠∅且B ⊆A ,∴必有⎩⎪⎨⎪⎧2m +1≤3m -1,-1≤2m +1,3m -1≤6,解得2≤m ≤73.综上所述,m 的取值范围为⎩⎨⎧⎭⎬⎫m ⎪⎪m ≤73. 18.解 (1)f (x )=sin ⎝⎛⎭⎫2x +φ+π3, 由f (x )-f ⎝⎛⎭⎫π4-x =0可知,x =π8为函数的对称轴, 则2×π8+φ+π3=k π+π2,φ=-π12+k π,k ∈Z ,由0<φ<2π可知,φ=11π12或φ=23π12.又由f ⎝⎛⎭⎫π2>f (0)可知,-sin ⎝⎛⎭⎫φ+π3>sin ⎝⎛⎭⎫φ+π3, 则sin ⎝⎛⎭⎫φ+π3<0, 验证φ=11π12和φ=23π12,则φ=11π12符合,所以y =f (x )=sin ⎝⎛⎭⎫2x +5π4=-sin ⎝⎛⎭⎫2x +π4. 由π2+2k π≤2x +π4≤3π2+2k π, 得π8+k π≤x ≤5π8+k π,k ∈Z , 所以f (x )的单调递增区间为⎣⎡⎦⎤π8+k π,5π8+k π,k ∈Z . (2)因为x ∈⎣⎡⎦⎤-π12,π2,所以2x +π4∈⎣⎡⎦⎤π12,5π4, 则f (x )=-sin ⎝⎛⎭⎫2x +π4∈⎣⎡⎦⎤-1,22. 所以f (x )的值域为⎣⎡⎦⎤-1,22. 19.解 (1)当0<x ≤500时,f (x )=5x -1200x 2-x2-25;当x >500时,f (x )=5×500-1200×5002-x2-25,故f (x )=⎩⎨⎧-1200x 2+92x -25,0<x ≤500,-12x +1 225,x >500.(2)当0<x ≤500时,f (x )=-1200(x -450)2+19752. 故当x =450时,f (x )max =1 9752=987.5; 当x >500时,f (x )<-12×500+1 225=975,故当该公司的年产量为450件时,当年获得的利润最大. 20.解 (1)因为f ′(x )=(ax +a -1)e x , 所以当a =1时,f ′(x )=x e x , 令f ′(x )=0,解得x =0,所以当x 变化时f (x ),f ′(x )的变化情况如下表:↘↗所以当x =0时,f (x )取得极小值f (0)=-1.(2)因为f ′(x )=(ax +a -1)e x ,函数f (x )在区间(0,1)上是单调递增函数, 所以f ′(x )≥0对x ∈(0,1)恒成立,又e x >0,所以只要ax +a -1≥0对x ∈(0,1)恒成立, 要使ax +a -1≥0对x ∈(0,1)恒成立, 因为x >0,所以a ≥1x +1对x ∈(0,1)恒成立,因为函数g (x )=1x +1在(0,1)上单调递减,所以只要a ≥g (0)=10+1=1,所以a 的取值范围是[1,+∞).21.解 (1)∵ac ·a 2+c 2-b 22ac +bc ·b 2+c 2-a 22bc=a 2-b 2+8cos A ,∴b 2+c 2-a 2=8cos A ,∴2bc cos A =8cos A , ∵cos A ≠0,∴bc =4. 又∵sin B =2sin C ,由正弦定理,得b =2c ,∴b =22,c = 2. (2)a 2=b 2+c 2-2bc cos A ≥2bc -2bc cos A , 即6≥8-8cos A ,∴cos A ≥14,当且仅当b =c 时取等号.∴sin A ≤154,∴S =12bc sin A ≤152, ∴△ABC 面积的最大值为152. 22.解 (1)易知f (x )的定义域为(0,+∞), 当a =3时,f (x )=2x -1x -3ln x ,f ′(x )=2+1x 2-3x =2x 2-3x +1x 2,令f ′(x )>0,得0<x <12或x >1,令f ′(x )<0,得12<x <1.∴f (x )的单调递增区间是⎝⎛⎭⎫0,12和(1,+∞), 单调递减区间是⎝⎛⎭⎫12,1.(2)由已知得g (x )=x -1x +a ln x ,x ∈(0,+∞),g ′(x )=1+1x 2+a x =x 2+ax +1x 2,令g ′(x )=0,得x 2+ax +1=0, ∵g (x )有两个极值点x 1,x 2, ∴⎩⎪⎨⎪⎧Δ=a 2-4>0,x 1+x 2=-a >0,x 1x 2=1>0,∴⎩⎪⎨⎪⎧a <-2,x 2=1x 1,a =-(x 1+x 2).又∵x 1<x 2,∴x 1∈(0,1), ∴g (x 1)-g (x 2)=g (x 1)-g ⎝⎛⎭⎫1x 1=x 1-1x 1+a ln x 1-⎝⎛⎭⎫1x 1-x 1+a ln 1x 1 =2⎝⎛⎭⎫x 1-1x 1+2a ln x 1=2⎝⎛⎭⎫x 1-1x 1-2⎝⎛⎭⎫x 1+1x 1ln x 1. 设h (x )=2⎝⎛⎭⎫x -1x -2⎝⎛⎭⎫x +1x ln x ,x ∈(0,1), ∵h ′(x )=2⎝⎛⎭⎫1+1x 2-2⎣⎡⎦⎤⎝⎛⎭⎫1-1x 2ln x +⎝⎛⎭⎫x +1x 1x=2(1+x )(1-x )ln xx 2,当x ∈(0,1)时,恒有h ′(x )<0,∴h (x )在(0,1)上单调递减, ∴h (x )>h (1)=0,∴g (x 1)-g (x 2)>0,又∵g (x 1)-g (x 2)>t 恒成立,∴t ≤0.滚动检测三考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分. 4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017·云南河州统一检测)已知集合A ={x |x 2≤1},B ={x |0<x <1},则A ∩B 等于( ) A .(0,1) B .[-1,1) C .[-1,1]D .(-1,1)2.(2018届中原名校质量考评)函数y =-sin ⎝⎛⎭⎫12x +π3在x ∈[-2π,2π]上的单调递减区间为( ) A.⎣⎡⎦⎤-5π3,π3 B.⎣⎡⎦⎤-2π,5π3 C.⎣⎡⎦⎤π3,2πD.⎣⎡⎦⎤-2π,5π3和⎣⎡⎦⎤π3,2π 3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知b -c =14a,2sin B =3sin C ,则cos A 等于( ) A .-14B.14C.78D.11164.(2018·新余模拟)在△ABC 中,若B =30°,AB =23,AC =2.则满足条件的三角形的个数为( )A .3B .2C .1D .05.已知定义在R 上的函数f (x )=⎝⎛⎭⎫12|x -m |-1(m 为实数)为偶函数,记a =f ⎝⎛⎭⎫log 123,b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( ) A .b <a <c B .b <c <a C .a <b <cD .a <c <b6.已知f (x )=x 3-ax 在(-∞,-1]上是单调函数,则a 的取值范围是( ) A .(3,+∞) B .[3,+∞) C .(-∞,3)D .(-∞,3]7.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A .y =1xB .y =lg|x |C .y =cos xD .y =x 2+2x8.(2017·重庆三诊)已知a =(2,1),b =(m ,-1),且a ⊥(a -b ),则实数m 等于( ) A .1 B .2 C .3 D .49.(2018届洛阳联考)已知点O 是锐角△ABC 的外心,若OC →=mOA →+nOB →(m ,n ∈R ),则( ) A .m +n ≤-2 B .-2≤m +n <-1 C .m +n <-1D .-1<m +n <010.(2017·河南第一高级中学适应性测试)已知向量a =(1,0),b =(0,1),c =a +λb (λ∈R ),向量d 如图所示,则( )A .∃λ0>0,使得c ⊥dB .∃λ0>0,使得〈c ,d 〉=60°C .∃λ0<0,使得〈c ,d 〉=30°D .∃λ0>0,使得c =m d (m 是不为0的常数)11.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,若f (x )满足f (x +π)=-f (x ),且f (0)=12,则函数h (x )=2cos(ωx +φ)在区间⎣⎡⎦⎤0,π2上的值域为( ) A .[-1,3] B .[-2,3] C .[-3,2]D .[1,3]12.对任意的正数x ,都存在两个不同的正数y ,使x 2(ln y -ln x )-ay 2=0成立,则实数a 的取值范围为( ) A.⎝⎛⎭⎫0,12e B.⎝⎛⎭⎫-∞,12e C.⎝⎛⎭⎫12e ,+∞D.⎝⎛⎭⎫12e ,1第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.(2018届四川绵阳丰谷中学月考)已知f (x )=⎩⎪⎨⎪⎧3e x -1,x <3,log 3(x 2-6),x ≥3,则f (f (3))的值为________.14.在△ABC 中,AB =3,AC =2,∠BAC =120°,BM →=λBC →.若AM →·BC →=-173,则实数λ的值为______.15.(2017·石嘴山三模)给出下列命题: ①已知a ,b 都是正数,且a +1b +1>a b,则a <b ;②已知f ′(x )是f (x )的导函数,若∀x ∈R ,f ′(x )≥0,则f (1)<f (2)一定成立;③命题“∃x 0∈R ,使得x 20-2x 0+1<0”的否定是真命题; ④“x ≤1且y ≤1”是“x +y ≤2”的充要条件. 其中正确的命题的序号是________.16.(2018·九江模拟)已知f (x )=x 3-3x +m ,若在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则实数m 的取值范围为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)(2018届河南信阳高级中学考试)已知a ,b ,c 分别为锐角△ABC 三个内角A ,B ,C 的对边,且(a +b )(sin A -sin B )=(c -b )sin C . (1)求∠A 的大小;(2)若f (x )=3sin x 2·cos x 2+cos 2x2,求f (B )的取值范围.18.(12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2(sin C -sin A )=sin B . (1)求bc -a的值; (2)若b =2,BA →·BC →=32,求△ABC 的面积.19.(12分)已知函数f (x )=x 21+x 2.(1)分别求f (2)+f ⎝⎛⎭⎫12,f (3)+f ⎝⎛⎭⎫13, f (4)+f ⎝⎛⎭⎫14的值; (2)归纳猜想一般性结论,并给出证明;(3)求值:f (1)+f (2)+…+f (2 011)+f ⎝⎛⎭⎫12 011+f ⎝⎛⎭⎫12 010+…+f ⎝⎛⎭⎫12+f (1).20.(12分)已知x ∈⎣⎡⎦⎤0,π3,设向量m =(sin x ,cos x ),n =⎝⎛⎭⎫32,12. (1)若m ∥n ,求x 的值;(2)若m·n =35,求sin ⎝⎛⎭⎫x -π12的值.21.(12分)某河道中过度滋长一种藻类,环保部门决定投入生物净化剂净化水体. 因技术原因,第t 分钟内投放净化剂的路径长度p (t )=140-|t -40|(单位:m),净化剂净化水体的宽度q (单位:m)是时间t (单位:分钟)的函数:q (t )=1+a 2t (a 由单位时间投放的净化剂数量确定,设a为常数,且a ∈N *).(1)试写出投放净化剂的第t 分钟内净化水体面积S (t )(1≤t ≤60,t ∈N *)的表达式; (2)求S (t )的最小值.22.(12分)已知函数f(x)=e x-ax-1(a∈R).(1)若f(x)有极值0,求实数a,并确定该极值为极大值还是极小值;(2)在(1)的条件下,当x∈[0,+∞)时,f(x)≥mx ln(x+1)恒成立,求实数m的取值范围.答案精析1.A 2.A 3.A 4.B 5.A 6.D 7.B8.C [由a ⊥(a -b ),所以a ·(a -b )=0,6-2m =0,解得m =3,故选C.] 9.C [∵O 是锐角△ABC 的外心,∴O 在三角形内部,不妨设锐角△ABC 的外接圆的半径为1, 又OC →=mOA →+nOB →,∴|OC →|=|mOA →+nOB →|, 可得OC →2=m 2OA →2+n 2OB →2+2mnOA →·OB →, 而OA →·OB →=|OA →|·|OB →|cos ∠AOB <|OA →|·|OB →|=1. ∴1=m 2+n 2+2mnOA →·OB →<m 2+n 2+2mn ,∴m +n <-1或m +n >1,如果m +n >1则O 在三角形外部,三角形不是锐角三角形, ∴m +n <-1,故选C.]10.D [由图知d =(5,5)-(1,2)=(4,3),则c =a +λb =(1,λ),若c ⊥d ,则4+3λ=0,得λ=-43,故A 错;若夹角为60°,则有4+3λ=51+λ2cos 60°,即11λ2+96λ+39=0,有两个负根,故B 错;若夹角为30°,则有4+3λ=51+λ2cos 30°,即39λ2-96λ+11=0有两个正根,故C 错;若两个向量共线,则有4λ=3,解得λ=34,故D 对.]11.A [因为f (x +π)=-f (x ),所以函数f (x )的周期为2π,ω=1,由f (0)=sin φ=12且|φ|<π2,得φ=π6,所以h (x )=2cos ⎝⎛⎭⎫x +π6, 由x ∈⎣⎡⎦⎤0,π2知π6≤x +π6≤2π3, 所以-12≤cos ⎝⎛⎭⎫x +π6≤32,h (x )∈[-1,3], 故选A.]12.A [由x 2(ln y -ln x )-ay 2=0(x >0,y >0),得a =x 2(ln y -ln x )y 2=ln y x⎝⎛⎭⎫y x 2,令t =yx (t >0),所以a =ln t t 2.设g (t )=ln tt 2(t >0),g ′(t )=1t ·t 2-(ln t )2t t 4=1-2ln t t 3,令g ′(t )>0,得0<t <e ,g (t )单调递增;令g ′(t )<0,得t >e ,g (t )单调递减.所以g (t )最大值为g (e)=12e.又当t >1时,g (t )>0;当0<t <1时,g (t )<0,故当a ∈⎝⎛⎭⎫0,12e 时,存在两个正数t ,使a =ln tt 2成立,即对任意的正数x ,都存在两个不同的正数y ,使x 2(ln y -ln x )-ay 2=0成立,故选A.] 13.3解析 因为f (3)=log 3(32-6)=log 33=1, 所以f (f (3))=f (1)=3e 1-1=3. 14.13解析 ∵AB =3,AC =2,∠BAC =120°,∴由余弦定理可得BC =19,又根据余弦定理可得cos ∠ABC =419,AM →·BC →=(BM →-BA →)·BC →=λBC →2-BA →·BC →=19λ-3×19×419=-173,解得λ=13.15.①③解析 ①已知a ,b 都是正数,a +1b +1>ab ,ab +b >ab +a ,则a <b 正确;②若f (x )是常函数,则f (1)<f (2)不成立,③命题“∃x 0∈R ,使得x 20-2x 0+1<0”是假命题,则它的否定是真命题;④“x ≤1且y ≤1”⇒“x +y ≤2”,反之不成立,则“x ≤1且y ≤1”是“x +y ≤2”的充分不必要条件.正确的命题序号为①③. 16.(6,+∞)解析 三角形的边长为正数,而且任意两边之和大于第三边才能构成三角形,故只需求出函数在区间[0,2]上的最小值与最大值,从而可得不等式,即可求解. 令f ′(x )=3x 2-3=3(x +1)(x -1)=0, 则x 1=1,x 2=-1(舍去),∵函数的定义域为[0,2],∴当x ∈[0,1)时,f ′(x )<0, 当x ∈(1,2]时,f ′(x )>0,∴函数f (x )在区间[0,1)上单调递减,在区间(1,2]上单调递增, 则f (x )min =f (1)=m -2,f (x )max =f (2)=m +2,f (0)=m , 由题意知,f (1)=m -2>0;①由f (1)+f (1)>f (2),得-4+2m >2+m ,② 由①②得m >6.17.解 (1)由(a +b )(sin A -sin B )=(c -b )sin C 及正弦定理,可得(a +b )(a -b )=(c -b )c , 化为b 2+c 2-a 2=bc . 由余弦定理,可得cos A =b 2+c 2-a 22bc =bc 2bc =12,又∵A ∈(0,π),∴A =π3.(2)f (x )=3sin x 2·cos x 2+cos 2x2=32sin x +1+cos x 2=sin ⎝⎛⎭⎫x +π6+12, 在锐角△ABC 中,由A =π3,知π6<B <π2,∴π3<B +π6<2π3, ∴sin ⎝⎛⎭⎫B +π6∈⎝⎛⎦⎤32,1, ∴f (B )的取值范围是⎝⎛⎦⎥⎤1+32,32.18.解 (1)由正弦定理,得2(c -a )=b ,即bc -a =2;(2)由题意,得⎩⎪⎨⎪⎧2(c -a )=b ,b =2,BA →·BC →=ca cos B =32,即⎩⎪⎨⎪⎧c -a =1,ca ·a 2+c 2-b 22ac =32,解得⎩⎪⎨⎪⎧a =1,c =2,所以cos B =34,所以sin B =74,所以S =12ac sin B =74. 19.解 (1)∵f (x )=x 21+x 2,∴f (2)+f ⎝⎛⎭⎫12=221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=221+22+122+1=1, 同理可得f (3)+f ⎝⎛⎭⎫13=1,f (4)+f ⎝⎛⎭⎫14=1. (2)由(1)猜想f (x )+f ⎝⎛⎭⎫1x =1.证明:f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+1x 2+1=1. (3)令S =f (1)+f (2)+…+f (2 011)+f ⎝⎛⎭⎫12 011+f ⎝⎛⎭⎫12 010+…+f ⎝⎛⎭⎫12+f (1), 则S =f (1)+f ⎝⎛⎭⎫12+…+f ⎝⎛⎭⎫12 011+f (2 011)+f (2 010)+…+f (2)+f (1), 则2S =4 022,故S =2 011.20.解 (1)因为m =(sin x ,cos x ),n =⎝⎛⎭⎫32,12,且m ∥n ,所以sin x ·12=cos x ·32,即tan x =3,又x ∈⎣⎡⎦⎤0,π3,所以x =π3. (2)因为m =(sin x ,cos x ),n =⎝⎛⎭⎫32,12,且m·n =35, 所以32sin x +12cos x =35, 即sin ⎝⎛⎭⎫x +π6=35,令θ=x +π6, 则x =θ-π6,且sin θ=35,因为x ∈⎣⎡⎦⎤0,π3,故θ∈⎣⎡⎦⎤π6,π2, 所以cos θ=1-sin 2θ=1-⎝⎛⎭⎫352=45,所以sin ⎝⎛⎭⎫x -π12=sin ⎝⎛⎭⎫θ-π6-π12 =sin ⎝⎛⎭⎫θ-π4=sin θcos π4-cos θsin π4 =35×22-45×22=-210.21.解 (1)由题意, 得S (t )=p (t )·q (t )=(140-|t -40|)⎝⎛⎭⎫1+a 2t =⎩⎨⎧100+a 2+t +100a 2t,1≤t <40,t ∈N *,180-a 2-t +180a2t,40≤t ≤60,t ∈N *.(2)当40≤t ≤60且t ∈N *时,S (t )=180-a 2-t +180a 2t, 当t 增加时180a 2t 减小,所以S (t )在40≤t ≤60上单调递减,所以当t =60时,S (t )有最小值2a 2+120. 当1≤t <40且t ∈N *时,S (t )=100+a 2+t +100a 2t≥100+a 2+20a (当且仅当t =10a 时,等号成立),①若a =1或2或3;当t =10a 时,上述不等式中的等号成立, S (t )在1≤t <40范围中有最小值a 2+20a +100. 又在40≤t ≤60时S (t )有最小值2a 2+120.当a =1时,100+a 2+20a =121<122=2a 2+120, 故S (t )有最小值121;当a =2或a =3时,100+a 2+20a >2a 2+120, 故S (t )有最小值2a 2+120. ②若a ≥4且1≤t <40时,因为S (t +1)-S (t )=1+100a 2t +1-100a 2t =1-100a 2t (t +1)<0,所以S (t +1)<S (t ),故S (t )在1≤t <40时单调递减;又S (t )在40≤t ≤60时单调递减,且100+a 2+40+100a 240=180-a 2-40+180a 240, 所以S (t )在1≤t ≤60时单调递减. 所以,当t =60时,S (t )有最小值2a 2+120. 综上,若a =1,当t =10时,S (t )有最小值121; 若a ≥2且a ∈N *,当t =60时,S (t )有最小值2a 2+120. 22.解 (1)f ′(x )=e x -a .①若a ≤0,f ′(x )>0,f (x )在(-∞,+∞)上单调递增,无极值,不符合题意; ②若a >0,令f ′(x )=0,得x =ln a ,当x ∈(-∞,ln a )时,f ′(x )<0,f (x )在(-∞,ln a )上单调递减;当x ∈(ln a ,+∞)时, f ′(x )>0,f (x )在(ln a ,+∞)上单调递增.所以,当x =ln a 时,f (x )取到极小值,f (ln a )=e ln a -a ln a -1=0,即a ln a -a +1=0. 令φ(a )=a ln a -a +1(a >0), 则φ′(a )=ln a +a ·1a-1=ln a ,当0<a <1时,φ′(a )<0,φ(a )单调递减; 当a >1时,φ′(a )>0,φ(a )单调递增. 又φ(1)=0,所以a ln a -a +1=0有唯一解a =1. (2)由(1)知,f (x )=e x -x -1, 当x ≥0时,f (x )≥mx ln(x +1)恒成立,即e x -x -mx ln(x +1)-1≥0(x ∈[0,+∞))恒成立. 令g (x )=e x -x -mx ln(x +1)-1(x ∈[0,+∞)), 则g ′(x )=e x -1-m ln(x +1)-mxx +1(x ∈[0,+∞)),令h (x )=e x -1-m ln(x +1)-mxx +1(x ∈[0,+∞)), 则h ′(x )=e x -m ⎣⎡⎦⎤1(x +1)2+1x +1,h ′(0)=1-2m,0<1(x +1)2+1x +1≤2(当且仅当x =0时取“=”).①当m ≤0时,h ′(x )>0,h (x )在[0,+∞)上单调递增, 所以h (x )min =h (0)=0,即h (x )≥0,即g ′(x )≥0,所以g (x )在[0,+∞)上单调递增, 所以g (x )min =g (0)=0,所以g (x )≥0, 所以e x -x -mx ln(x +1)-1≥0, 即f (x )≥mx ln(x +1)恒成立.②当0<m ≤12时,h ′(x )是增函数,h ′(x )min =h ′(0)=1-2m ≥0,所以h ′(x )>0,故h (x )在[0,+∞)上单调递增, 所以h (x )min =h (0)=0,即g ′(x )≥0,所以g (x )在[0,+∞)上单调递增,所以g (x )min =g (0)=0, 所以g (x )≥0,即f (x )≥mx ln(x +1)恒成立. ③当m >12时,h ′(x )是增函数,h ′(x )min =h ′(0)=1-2m <0,当x →+∞时,e x →+∞,-m ⎣⎡⎦⎤1(x +1)2+1x +1→0,所以h ′(x )→+∞,则∃x 0>0,使得h ′(x 0)=0, 当x ∈(0,x 0)时,h ′(x )<0,h (x )在(0,x 0)上单调递减, 此时h (x 0)<h (0)=0,即g ′(x )<0,x ∈(0,x 0),所以g (x )在(0,x 0)上单调递减,g (x 0)<g (0)=0,不符合题意. 综上所述,m 的取值范围是⎝⎛⎦⎤-∞,12.滚动检测四考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分. 4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={x |lg x <1},N ={x |-3x 2+5x +12<0},则( ) A .N ⊆M B .∁R N ⊆MC .M ∩N =⎝⎛⎭⎫-∞,-43∪(3,10) D .M ∩(∁R N )=(0,3]2.已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线y =2x 上,则cos 2θ-sin 2θ等于( ) A .-45B .-35C. 35D. 453.已知函数f (x )=12x ,则( ) A .∃x 0∈R ,使得f (x 0)<0 B .∀x ∈[0,+∞),f (x )≥0C .∃x 1,x 2∈[0,+∞),使得f (x 1)-f (x 2)x 1-x 2<0D .∀x 1∈[0,+∞),∃x 2∈[0,+∞),使得f (x 1)>f (x 2)4.(2018·济宁模拟)曲线y =3ln x +x +2在点P 处的切线方程为4x -y -1=0,则点P 的坐标是( ) A .(0,1) B .(1,0) C .(1,-1)D .(1,3)5.设向量a =(1,2),b =(2,1),若向量a -λb 与向量c =(5,-2)共线,则λ的值为( ) A.43 B.413 C .-49D .46.(2017·贵阳适应性考试)设命题p :若y =f (x )的定义域为R ,且函数y =f (x -2)图象关于点(2,0)对称,则函数y =f (x )是奇函数,命题q :∀x ≥0,x 12≥x 13,则下列命题中为真命题的是( ) A .p ∧q B .(綈p )∨q C .p ∧(綈q )D .(綈p )∧(綈q )7.已知a =⎝⎛⎭⎫1312,b =log 1213,c =log 312,则( ) A .c >b >a B .b >c >a C .a >b >cD .b >a >c8.在△ABC 中,a ,b ,c 分别为A ,B ,C 的对边,如果a ,b ,c 成等差数列,B =30°,△ABC 的面积为32,则b 等于( )A.1+32B .1+ 3 C.2+32D .2+ 39.(2017·大连模拟)设向量a ,b 满足|a |=2,|b |=|a +b |=3,则|a +2b |等于( ) A .6 B .3 2 C .10 D .4 210.已知{a n }是等差数列,其公差为非零常数d ,前n 项和为S n ,设数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和为T n ,当且仅当n =6时,T n 有最大值,则a 1d 的取值范围是( )A.⎝⎛⎭⎫-∞,-52B .(-3,+∞) C.⎝⎛⎭⎫-3,-52 D .(-∞,-3)∪⎝⎛⎭⎫-52,+∞ 11.(2017·河北衡水中学摸底)若以2为公比的等比数列{b n }满足log 2b n ·log 2b n +1-2=n 2+3n ,则数列{b n }的首项为( ) A.12 B .1 C .2D .412.对任意的n ∈N *,数列{a n }满足|a n -cos 2n |≤13且|a n +sin 2n |≤23,则a n 等于( )A.23-sin 2n B .sin 2n -23C.13-cos 2n D .cos 2n +13第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.函数f (x )=1-2x 的定义域为________.14.设数列{a n }的前n 项和为S n ,且a n =4+⎝⎛⎭⎫-12n -1,若对于任意的n ∈N *都有1≤x (S n -4n )≤3恒成立,则实数x 的取值范围是________.15. (2017·佛山质检)某沿海四个城市A ,B ,C ,D 的位置如图所示,其中∠ABC =60°,∠BCD =135°,AB =80 n mile ,BC =(40+303) n mile ,CD 现在有一艘轮船从A 出发以50 n mile/h 的速度向D 直线航行, 60 min 因收到指令改向城市C 直线航行,则收到指令时该轮船到城市C 的距离是16.(2017·陆川二模)已知函数f (x )=ln x -14x +34x -1,g (x )=x 2-2bx +4,若对任意x 1∈(0,2),存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数b 的取值范围是______.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知A ={x |x 2-2x -3<0},B ={x |x 2-5x +6>0}. (1)求A ∩B ;(2)若不等式x 2+ax +b <0的解集是A ∩B ,求ax 2+x -b <0的解集.18.(12分)已知函数f (x )=4cos x ·cos ⎝⎛⎭⎫x +2π3+1. (1)求f ⎝⎛⎭⎫π6的值;(2)求f (x )的最小正周期及单调递增区间.19.(12分)(2018届山西五校联考)△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,已知a sin B +3b cos A =3c . (1)求B ;(2)若△ABC 的面积为332,b =7,a >c ,求a ,c .。
天天练抛物线的定义、方程及性质一、选择题.抛物线=的准线方程为( ).=.=-.=-.=答案:解析:将=化为标准形式为=,所以=,=,开口向右,所以抛物线的准线方程为=-..若抛物线=(>)上一点到焦点和到抛物线对称轴的距离分别为和,则抛物线的方程为( ).=.=.=或=.=或=答案:解析:因为抛物线=(>)上一点到抛物线的对称轴的距离为,所以若设该点为,则(,±).因为到抛物线的焦点的距离为,所以由抛物线的定义得+=①.因为在抛物线上,所以=②.由①②解得=,=或=,=,则抛物线的方程为=或=..(·广东广州天河区实验中学月考)抛物线=上一点到焦点的距离为,则点到轴的距离为( ) ....答案:解析:根据抛物线方程可求得焦点坐标为(),准线方程为=-.根据抛物线定义,得+=,解得=,代入抛物线方程求得=±,∴点到轴的距离为.故选..(·天水一模)过抛物线=的焦点的直线交抛物线于,两点,点是坐标原点,若=,则△的面积为( ).答案:解析:由题意得>>.设∠=θ(<θ<π),=,则由点到准线:=-的距离为,得=+θ⇔θ=.又=+(π-θ),得==,所以△的面积=×××θ=×××=..直线-+=与抛物线=的对称轴及准线相交于同一点,则该直线与抛物线的交点的横坐标为( ).-...答案:解析:由题意可得,直线-+=与抛物线=的对称轴及准线交点的坐标为,代入-+=,得-+=,即=,故抛物线的方程为=.将=与直线方程-+=联立可得交点的坐标为().故选..(·广东中山一中第一次统测)过抛物线=的焦点作直线交抛物线于(,),(,)两点.如果+=, 那么=( )....答案:解析:由题意知,抛物线=的准线方程是=-.∵过抛物线=的焦点作直线交抛物线于(,),(,)两点,∴=++.又∵+=,∴=++=.故选..(·湖南长沙模拟)是抛物线=(>)上的一点,为抛物线的焦点,为坐标原点.当=时,∠=°,则抛物线的准线方程是( ).=-.=-.=-.=-答案:解析:过点作准线的垂线,过点作的垂线,垂足分别为,,如图.由题意知∠=∠-°=°,又因为=,所以=.点到准线的距离=+=+=,解得=,则抛物线=的准线方程是=-.故选..(·福建厦门杏南中学期中)已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点(,).若点到该抛物线焦点的距离为,则=( )....答案:解析:由题意,抛物线关于轴对称,开口向右,设其方程为=(>).∵点(,)到该抛物线焦点的距离为,∴+=,∴=.。
天天练不等式的性质及一元二次不等式一、选择题.若>>,<<,则一定有( ).> .<.< .>答案:解析:根据<<,有->->,由于>>,故->-,<,故选..若<,<,并且(-)(-)<,(-)(-)>,则,,,的大小关系为( ).<<< .<<<.<<< .<<<答案:解析:因为<,(-)(-)<,所以<<,因为(-)(-)>,所以<<或<<,又<,所以<<.综上,<<<..(·河南信阳月考)对于任意实数,,,,以下四个命题:①若>,则>;②若>,>,则+>+;③若>,>,则>;④若>,则>.其中正确的有( ).个.个.个.个答案:解析:因为>,可见≠,所以>,所以>,故①正确.因为>,>,所以根据不等式的可加性得到+>+,故②正确.对于③和④,用特殊值法:若=,=,=-,=-,则=,故③错误;若=,=,则无意义,故④错误.综上,正确的只有①②,故选..(·辽宁阜新实验中学月考)已知命题:+->,命题:>,若綈的一个充分不必要条件是綈,则实数的取值范围是( ).[,+∞) .(-∞,].[-,+∞) .(-∞,-]答案:解析:将+->化为(-)(+)>,所以命题:>或<-.因为綈的一个充分不必要条件是綈,所以的一个充分不必要条件是,所以(,+∞)是(-∞,-)∪(,+∞)的真子集,所以≥.故选..(·南昌一模)已知,,∈,++=,>,=++,则( ).> .<.=.≥答案:解析:通解由++=,>,知三个数中一正两负,不妨设>,<,<,则=++===,因为<,-<,>,所以<,故选.优解取特殊值=,==-,则=-<,排除,,,可知选..不等式>的解集为( ).(-∞,)∪(,+∞)答案:解析:原不等式等价于->,即>,整理得<,不等式等价于(-)(-)<,解得<<.故选..(·河南洛阳诊断)若不等式+->在区间[]上有解,则的取值范围是( ).(,+∞)答案:解析:由Δ=+>知方程恒有两个不等实根,又因为=-<,所以方程必有一正根,一负根,对应二次函数图象的示意图如图.所以不等式在区间[]上有解的充要条件是(\\(((≥,((≤,))解得-≤≤,故选..不等式-+>对一切实数恒成立的必要不充分条件是( ).> .<<.> .>答案:解析:当不等式-+>对一切实数恒成立时,对于方程-+=,Δ=-<,解得>,所以>是不等式-+>对一切实数恒成立的充要条件;>是不等式-+>对一切实数恒成立的充分不必要条件;<<是不等式-+>对一切实数恒成立的既不充分也不必要条件;>是不等式-+>对一切实数恒成立的必要不充分条件.故选.二、填空题.已知函数()=+<()<,-<(-)<,则-的取值范围是.答案:解析:设-=()+(-)=(-)·+(+),则(\\(-=,+=-,))解得=,=-,∴-=()-(-),∵<()<,-<(-)<,∴<()<,-<-(-)<,则-<-<.。
重点强化训练(一) 函数的图像与性质A 组 基础达标 (建议用时:30分钟)一、选择题1.设函数f (x )为偶函数,当x ∈(0,+∞)时,f (x )=log 2x ,则f (-2)=( ) A .-12B.12 C .2D .-2B [因为函数f (x )是偶函数,所以f (-2)=f (2)=log 22=12.]2.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( ) A .-3 B .-1 C .1D .3C [用“-x ”代替“x ”,得f (-x )-g (-x )=(-x )3+(-x )2+1,化简得f (x )+g (x )=-x 3+x 2+1,令x =1,得f (1)+g (1)=1,故选C.]3.函数f (x )=3x+12x -2的零点所在的一个区间是( ) 【导学号:00090050】A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)C [因为函数f (x )在定义域上单调递增, 又f (-2)=3-2-1-2=-269<0,f (-1)=3-1-12-2=-136<0, f (0)=30+0-2=-1<0,f (1)=3+12-2=32>0,所以f (0)f (1)<0,所以函数f (x )的零点所在区间是(0,1).]4.已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log12a )≤2f (1),则a 的取值范围是( )A .[1,2]B.⎝ ⎛⎦⎥⎤0,12 C.⎣⎢⎡⎦⎥⎤12,2 D .(0,2]C [∵f (log 12a )=f (-log 2a )=f (log 2a ),∴原不等式可化为f (log 2a )≤f (1).又∵f (x )在区间[0,+∞)上是增加的,∴0≤log 2a ≤1,即1≤a ≤2.∵f (x )是偶函数,∴f (log 2a )≤f (-1).又f (x )在区间(-∞,0]上是减少的,∴-1≤log 2a ≤0,∴12≤a ≤1.综上可知12≤a ≤2.]5.(2017·陕西质检(二))若f (x )是定义在(-∞,+∞)上的偶函数,任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f x 2-f x 1x 2-x 1<0,则( )A .f (3)<f (1)<f (-2)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (-2)<f (1)D [由对任意的x 1,x 2∈[0,+∞),f x 2-f x 1x 2-x 1<0得函数f (x )为[0,+∞)上的减函数,又因为函数f (x )为偶函数,所以f (3)<f (2)=f (-2)<f (1),故选D.] 二、填空题6.函数y =f (x )在x ∈[-2,2]上的图像如图2所示,则当x ∈[-2,2]时,f (x )+f (-x )=________.图20 [由题图可知,函数f (x )为奇函数, 所以f (x )+f (-x )=0.]7.若函数y =log 2(ax 2+2x +1)的值域为R ,则a 的取值范围为______________.【导学号:00090051】[0,1] [设f (x )=ax 2+2x +1,由题意知,f (x )取遍所有的正实数.当a =0时,f (x )=2x +1符合条件;当a ≠0时,则⎩⎪⎨⎪⎧a >0,Δ=4-4a ≥0,解得0<a ≤1,所以0≤a ≤1.]8.(2017·银川质检)已知y =f (x )是定义在R 上的奇函数,在(0,+∞)上是增函数,且f (2)=0,则满足f (x -1)<0的x 的取值范围是________.(-∞,-1)∪(1,3) [依题意当x ∈(1,+∞)时,f (x -1)<0=f (2)的解集为x <3,即1<x <3;当x ∈(-∞,1)时,f (x -1)<0=f (-2)的解集为x <-1,即x <-1.综上所述,满足f (x -1)<0的x的取值范围是(-∞,-1)∪(1,3).] 三、解答题9.已知函数f (x )=2x,当m 取何值时方程|f (x )-2|=m 有一个解,两个解? [解] 令F (x )=|f (x )-2|=|2x-2|,G (x )=m ,画出F (x )的图像如图所示.由图像看出,当m =0或m ≥2时,函数F (x )与G (x )的图像只有一个交点,原方程有一个解; 当0<m <2时,函数F (x )与G (x )的图像有两个交点,原方程有两个解. 10.函数f (x )=m +log a x (a >0且a ≠1)的图像过点(8,2)和(1,-1). (1)求函数f (x )的解析式;(2)令g (x )=2f (x )-f (x -1),求g (x )的最小值及取得最小值时x 的值.【导学号:00090052】[解] (1)由⎩⎪⎨⎪⎧f =2,f=-1,得⎩⎪⎨⎪⎧m +log a 8=2,m +log a 1=-1,3分解得m =-1,a =2,故函数解析式为f (x )=-1+log 2x .5分(2)g (x )=2f (x )-f (x -1)=2(-1+log 2x )-[-1+log 2(x -1)] =log 2x 2x -1-1(x >1).7分∵x 2x -1=x -2+x -+1x -1=(x -1)+1x -1+2≥2x -1x -1+2=4.9分当且仅当x -1=1x -1,即x =2时,等号成立. 而函数y =log 2x 在(0,+∞)上单调递增, 则log 2x 2x -1-1≥log 24-1=1,故当x =2时,函数g (x )取得最小值1.12分B 组 能力提升 (建议用时:15分钟)1.(2017·东北三省四市二联)已知函数f (x )是定义在R 上的奇函数,且在[0,+∞)上是增函数,则不等式⎪⎪⎪⎪⎪⎪f x -f ⎝ ⎛⎭⎪⎫ln 1x 2<f (1)的解集为( )A.⎝ ⎛⎭⎪⎫0,1e B .(0,e) C.⎝ ⎛⎭⎪⎫1e ,e D .(e ,+∞)C [f (x )为R 上的奇函数,则f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=-f (ln x ),所以⎪⎪⎪⎪⎪⎪fx -f ⎝ ⎛⎭⎪⎫ln 1x 2=|fx +fx2=|f (ln x )|,即原不等式可化为|f (ln x )|<f (1),所以-f (1)<f (ln x )<f (1),即f (-1)<f (ln x )<f (1).又由已知可得f (x )在R 上单调递增,所以-1<ln x <1,解得1e<x<e ,故选C.]2.已知函数f (x ),g (x )分别是定义在R 上的偶函数与奇函数,且g (x )=f (x -1),则f (2 019)的值为________.0 [g (-x )=f (-x -1),由f (x ),g (x )分别是偶函数与奇函数,得g (x )=-f (x +1),∴f (x -1)=-f (x +1),即f (x +2)=-f (x ),∴f (x +4)=f (x ),故函数f (x )是以4为周期的周期函数,则 f (2 019)=f (505×4-1)=f (-1)=g (0)=0.]3.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围. 【导学号:00090053】 [解] (1)∵对于任意x 1,x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2), ∴令x 1=x 2=1,得f (1)=2f (1), ∴f (1)=0. 3分 (2)f (x )为偶函数.4分证明如下:令x 1=x 2=-1, 有f (1)=f (-1)+f (-1), ∴f (-1)=12f (1)=0.令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ), ∴f (x )为偶函数.7分(3)依题设有f (4×4)=f (4)+f (4)=2, 由(2)知,f (x )是偶函数, ∴f (x -1)<2⇔f (|x -1|)<f (16). 9分又f (x )在(0,+∞)上是增加的, ∴0<|x -1|<16, 解得-15<x <17且x ≠1,11分∴x 的取值范围是{x |-15<x <17且x ≠1}. 12分重点强化训练(二) 平面向量A 组 基础达标 (建议用时:30分钟)一、选择题1.(2017·石家庄模拟)已知a ,b 是两个非零向量,且|a +b |=|a |+|b |,则下列说法正确的是 ( ) A .a +b =0 B .a =bC .a 与b 共线反向D .存在正实数λ,使a =λbD [因为a ,b 是两个非零向量,且|a +b |=|a |+|b |.则a 与b 共线同向,故D 正确.]2.若a ,b ,c 均为单位向量,且a·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( ) A .2-1 B .1 C . 2D .2B [因为|a |=|b |=|c |=1,a·b =0,所以|a +b |2=a 2+b 2+2a·b =2,故|a +b |= 2. 展开(a -c )·(b -c )≤0,得a·b -(a +b )·c +c 2≤0, 即0-(a +b )·c +1≤0,整理,得(a +b )·c ≥1.而|a +b -c |2=(a +b )2-2(a +b )·c +c 2=3-2(a +b )·c , 所以3-2(a +b )·c ≤3-2×1=1. 所以|a +b -c |2≤1,即|a +b -c |≤1.]3.(2016·北京高考)设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件D [若|a |=|b |成立,则以a ,b 为邻边的平行四边形为菱形.a +b ,a -b 表示的是该菱形的对角线,而菱形的两条对角线长度不一定相等,所以|a +b |=|a -b |不一定成立,从而不是充分条件;反之,若|a +b |=|a -b |成立,则以a ,b 为邻边的平行四边形为矩形,而矩形的邻边长度不一定相等,所以|a |=|b |不一定成立,从而不是必要条件.故“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件.]4.在平面直角坐标系中,已知O 是坐标原点,A (3,0),B (0,3),C (cos α,sin α),若|OA →+OC →|=13,α∈(0,π),则OB →与OC →的夹角为( )A .π6B .π3C .23π D .56π A [由题意,得OA →+OC →=(3+cos α,sin α), 所以|OA →+OC →|=+cos α2+sin 2α=10+6cos α=13, 即cos α=12,因为α∈(0,π),所以α=π3,C ⎝ ⎛⎭⎪⎫12,32.设OB →与OC →的夹角为θ,则cos θ=OB →·OC →|OB →|·|OC →|=3233×1=32.因为θ∈[0,π],所以θ=π6.]5.已知直线ax +by +c =0与圆O :x 2+y 2=1相交于A ,B 两点,且AB =3,则OA →·OB →的值是 ( ) A .-12B .12C .-34D .0A [取AB的中点C ,连接OC ,AB =3,则AC =32,又因为OA =1, 所以sin ⎝ ⎛⎭⎪⎫12∠AOB =sin ∠AOC =AC OA =32, 所以∠AOB =120°,则OA →·OB →=1×1×cos 120°=-12.]二、填空题6.设O 是坐标原点,已知OA →=(k,12),OB →=(10,k ),OC →=(4,5),若A ,B ,C 三点共线,则实数k 的值为________.11或-2 [由题意得CA →=OA →-OC →=(k -4,7),CB →=OB →-OC →=(6,k -5),所以(k -4)(k -5)=6×7,k -4=7或k -4=-6,即k =11或k =-2.]7.(2018·黄冈模拟)已知两个平面向量a ,b 满足|a |=1,|a -2b |=21,且a 与b 的夹角为120°,则|b |=________. 【导学号:00090150】 2 [由|a -2b |=21得a 2-4a·b +4b 2=21.即1+2|b |+4|b |2=21,解得|b |=2或|b |=-52(舍).]8.已知点A ,B ,C 满足|AB →|=3,|BC →|=4,|CA →|=5,则AB →·BC →+BC →·CA →+CA →·AB →=________. -25 [由|AB →|2+|BC →|2=|CA →|2得∠B =90°,cos C =45,cos A =35,AB →·BC →=0,BC →·CA →=4×5×⎝ ⎛⎭⎪⎫-45=-16,CA →·AB →=5×3×⎝ ⎛⎭⎪⎫-35=-9,所以AB →·BC →+BC →·CA →+CA →·AB →=-25.]三、解答题9.在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上,且OP →=mAB →+nAC →(m ,n ∈R ). (1)若m =n =23,求|OP →|;(2)用x ,y 表示m -n ,并求m -n 的最大值. [解] (1)∵m =n =23,AB →=(1,2),AC →=(2,1),∴OP →=23(1,2)+23(2,1)=(2,2),3分 ∴|OP →|=22+22=2 2.5分(2)∵OP →=m (1,2)+n (2,1)=(m +2n,2m +n ),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n , 8分两式相减,得m -n =y -x .令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.10.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎢⎡⎦⎥⎤0,π2.(1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值.【导学号:00090151】[解] (1)由|a |2=(3sin x )2+(sin x )2=4sin 2x , |b |2=(cos x )2+(sin x )2=1, 及|a |=|b |,得4sin 2x =1.3分 又x ∈⎣⎢⎡⎦⎥⎤0,π2,从而sin x =12,所以x =π6.5分(2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin ⎝⎛⎭⎪⎫2x -π6+12,8分当x =π3∈⎣⎢⎡⎦⎥⎤0,π2时,sin ⎝ ⎛⎭⎪⎫2x -π6取最大值1.所以f (x )的最大值为32.12分B 组 能力提升 (建议用时:15分钟)1.(2018·兰州模拟)已知向量a ,b 的夹角为60°,且|a |=2,|b |=3,设OA →=a ,OB →=b ,OC →=m a -2b ,若△ABC 是以BC 为斜边的直角三角形,则m =( )【导学号:00090152】A .-4B .3C .-11D .10C [a ·b =2×3×cos 60°=3,AB →=OB →-OA →=b -a ,AC →=OC →-OA =(m -1)a -2B .∵AB ⊥AC ,∴AB →·AC →=0, 即(b -a )·[(m -1)a -2b ]=0,∴(1-m )a 2-2b 2+(m -1)a ·b +2a ·b =0, 即4(1-m )-18+3(m -1)+6=0,解得m =-11.故选C .]2.如图2,菱形ABCD 的边长为2,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM →·AN →的最大值为________.图29 [由平面向量的数量积的几何意义知,AM →·AN →等于AM →与AN →在AM →方向上的投影 之积,所以(AM →·AN →)max =AM →·AC →=⎝ ⎛⎭⎪⎫12AB →+AD →·(AB →+AD →)=12AB →2+AD →2+32AB →·AD →=9.]3.已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1),x ∈R . (1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值.[解] (1)f (x )=a ·b =2cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos ⎝ ⎛⎭⎪⎫2x +π3,令2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),∴f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).5分(2)∵f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1, ∴cos ⎝ ⎛⎭⎪⎫2A +π3=-1.7分 又π3<2A +π3<7π3,∴2A +π3=π,即A =π3. 9分 ∵a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.① ∵向量m =(3,sin B )与n =(2,sin C )共线, ∴2sin B =3sin C .由正弦定理得2b =3c ,② 由①②可得b =3,c =2.12分重点强化训练(三) 不等式及其应用A 组 基础达标(建议用时:30分钟)一、选择题1.下列不等式一定成立的是( )A .lg ⎝⎛⎭⎪⎫x 2+14>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D .1x 2+1>1(x ∈R ) C [取x =12,则lg ⎝ ⎛⎭⎪⎫x 2+14=lg x ,故排除A ;取x =32π,则sin x =-1,故排除B ;取x =0,则1x 2+1=1,排除D .]2.(2016·天津高考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0,则目标函数z =2x +5y 的最小值为( ) 【导学号:00090208】 A .-4 B .6 C .10D .17B [由约束条件作出可行域如图所示,目标函数可化为y =-25x +15z ,在图中画出直线y =-25x ,平移该直线,易知经过点A 时z 最小. 又知点A 的坐标为(3,0), ∴z min =2×3+5×0=6.故选B .]3.(2016·浙江高考)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=( )A .2 2B .4C .3 2D .6C [由不等式组画出可行域,如图中的阴影部分所示.因为直线x +y -2=0与直线x +y =0平行,所以可行域内的点在直线x +y -2=0上的投影构成的线段的长|AB |即为|CD |.易得C (2,-2),D (-1,1),所以|AB |=|CD |=+2+-2-2=3 2.故选C .] 4.不等式4x -2≤x -2的解集是( ) A .(-∞,0)∪(2,4] B .[0,2)∪[4,+∞) C .[2,4)D .(-∞,2]∪(4,+∞)B [①当x -2>0,即x >2时,不等式可化为(x -2)2≥4,解得x ≥4; ②当x -2<0,即x <2时,不等式可化为(x -2)2≤4, 解得0≤x <2.综上,解集为[0,2)∪[4,+∞).]5.(2015·山东高考)若函数f (x )=2x+12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)C [因为函数y =f (x )为奇函数,所以f (-x )=-f (x ),即2-x+12-x -a =-2x +12x -a .化简可得a =1,则2x+12x -1>3,即2x+12x -1-3>0,即2x+1-x-2x-1>0,故不等式可化为2x-22x -1<0,即1<2x<2,解得0<x <1,故选C .] 二、填空题6.(2016·全国卷Ⅲ)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________.-10 [画出不等式组表示的平面区域如图中阴影部分所示.由题意可知,当直线y =-23x +53+z3过点A (-1,-1)时,z 取得最小值,即z min =2×(-1)+3×(-1)-5=-10.]7.(2016·安徽安庆二模)已知a >0,b >0,a +b =1a +1b ,则1a +2b的最小值为________. 【导学号:00090209】22 [由a >0,b >0,a +b =1a +1b =a +b ab,得ab =1, 则1a +2b≥21a ·2b =2 2.当且仅当1a =2b ,即a =22,b =2时等号成立.] 8.(2018·苏州模拟)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.⎝ ⎛⎭⎪⎫-22,0 [由题可得f (x )<0对于x ∈[m ,m +1]恒成立,即⎩⎪⎨⎪⎧f m =2m 2-1<0,f m +=2m 2+3m <0,解得-22<m <0.] 三、解答题 9.已知不等式ax -1x +1>0(a ∈R ). (1)解这个关于x 的不等式;(2)若x =-a 时不等式成立,求a 的取值范围. [解] (1)原不等式等价于(ax -1)(x +1)>0. 1分①当a =0时,由-(x +1)>0,得x <-1;②当a >0时,不等式化为⎝⎛⎭⎪⎫x -1a (x +1)>0.解得x <-1或x >1a;3分③当a <0时,不等式化为⎝⎛⎭⎪⎫x -1a (x +1)<0;若1a <-1,即-1<a <0,则1a<x <-1;若1a =-1,即a =-1,则不等式解集为空集; 若1a>-1,即a <-1,则 -1<x <1a.5分综上所述,当a <-1时,解集为⎩⎨⎧⎭⎬⎫x | -1<x <1a ;当a =-1时,原不等式无解;当-1<a <0时,解集为⎩⎨⎧⎭⎬⎫x | 1a<x <-1;当a =0时,解集为{x |x <-1};当a >0时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >1a . 6分(2)∵x =-a 时不等式成立, ∴-a 2-1-a +1>0,即-a +1<0, 10分∴a >1,即a 的取值范围为(1,+∞).12分10.某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每辆车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆? [解] 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1 600x +2 400y . 由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作出可行域如图阴影部分所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上的截距z2 400最小,即z 取得最小值. 故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小.B 组 能力提升(建议用时:15分钟)1.已知a ,b 为正实数,且ab =1,若不等式(x +y )·⎝ ⎛⎭⎪⎫a x +b y >m 对任意正实数x ,y 恒成立,则实数m的取值范围是( ) A .[4,+∞) B .(-∞,1] C .(-∞,4]D .(-∞,4)D [因为a ,b ,x ,y 为正实数,所以(x +y )⎝ ⎛⎭⎪⎫a x +b y =a +b +ay x +bx y≥a +b +2≥2ab +2=4,当且仅当a =b ,ay x =bxy,即a =b ,x =y 时等号成立,故只要m <4即可.]2. 若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值是__________.-52[法一:由于x >0, 则由已知可得a ≥-x -1x 在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立, 而当x ∈⎝ ⎛⎦⎥⎤0,12时,⎝ ⎛⎭⎪⎫-x -1x max =-52, ∴a ≥-52,故a 的最小值为-52.法二:设f (x )=x 2+ax +1,则其对称轴为x =-a2.①若-a 2≥12,即a ≤-1时,f (x )在⎝ ⎛⎦⎥⎤0,12上单调递减,此时应有f ⎝ ⎛⎭⎪⎫12≥0,从而-52≤a ≤-1. ②若-a 2<0,即a >0时,f (x )在⎝ ⎛⎦⎥⎤0,12上单调递增,此时应有f (0)=1>0恒成立,故a >0.③若0≤-a 2<12,即-1<a ≤0时,则应有f ⎝ ⎛⎭⎪⎫-a 2=a 24-a22+1=1-a 24≥0恒成立,故-1<a ≤0.综上可知a ≥-52,故a 的最小值为-52.]3.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m ,n ∈[-1,1],m +n ≠0时,f m +f nm +n>0.(1)用定义证明f (x )在[-1,1]上是增函数;(2)解不等式f ⎝ ⎛⎭⎪⎫x +12<f ⎝ ⎛⎭⎪⎫1x -1;(3)若f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求实数t 的取值范围. [解] (1)证明:任取x 1<x 2,且x 1,x 2∈[-1,1],则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f x 1+f -x 2x 1-x 2·(x 1-x 2).2分∵-1≤x 1<x 2≤1,∴x 1-x 2<0. 又已知f x 1+f -x 2x 1-x 2>0,∴f (x 1)-f (x 2)<0,即f (x )在[-1,1]上为增函数,4分(2)∵f (x )在[-1,1]上为增函数,∴⎩⎪⎨⎪⎧-1≤x +12≤1,-1≤1x -1≤1,x +12<1x -1,解得⎩⎨⎧⎭⎬⎫x | -32≤x <-1.8分(3)由(1)可知f (x )在[-1,1]上为增函数,且f (1)=1,故对x ∈[-1,1],恒有f (x )≤1, ∴要f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,即要t 2-2at +1≥1成立, 故t 2-2at ≥0,记g (a )=-2ta +t 2.10分对a ∈[-1,1],g (a )≥0恒成立,只需g (a )在[-1,1]上的最小值大于等于0, ∴g (-1)≥0,g (1)≥0,解得t ≤-2或t =0或t ≥2. ∴t 的取值范围是{t |t ≤-2或t =0或t ≥2}.12分重点强化训练(四) 直线与圆A 组 基础达标 (建议用时:30分钟)一、选择题1.(2018·西安五校联考)命题p :“a =-2”是命题q :“直线ax +3y -1=0与直线6x +4y -3=0垂直”成立的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件A [两直线垂直的充要条件是6a +3×4=0,解得a =-2,命题p 是命题q 成立的充要条件.] 2.(2018·深圳模拟)已知直线l :x +my +4=0,若曲线x 2+y 2+2x -6y +1=0上存在两点P ,Q 关于直线l 对称,则m 的值为( ) 【导学号:00090287】 A .2B .-2C .1D .-1D [因为曲线x 2+y 2+2x -6y +1=0是圆(x +1)2+(y -3)2=9,若圆(x +1)2+(y -3)2=9上存在两点P ,Q 关于直线l 对称,则直线l :x +my +4=0过圆心(-1,3),所以-1+3m +4=0,解得m =-1.]3.圆x 2+2x +y 2+4y -3=0上到直线x +y +1=0的距离为2的点共有( ) A .1个 B .2个 C .3个D .4个C [圆的方程化为(x +1)2+(y +2)2=8,圆心(-1,-2)到直线距离d =|-1-2+1|2=2,半径是22,结合图形可知有3个符合条件的点.]4.过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A .⎝ ⎛⎦⎥⎤0,π6B .⎝ ⎛⎦⎥⎤0,π3C .⎣⎢⎡⎦⎥⎤0,π6 D .⎣⎢⎡⎦⎥⎤0,π3 D [因为l 与圆x 2+y 2=1有公共点,则l 的斜率存在,设斜率为k ,所以直线l 的方程为y +1=k (x +3),即kx -y +3k -1=0, 则圆心到l 的距离d =|3k -1|1+k2. 依题意,得|3k -1|1+k2≤1,解得0≤k ≤ 3. 故直线l 的倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π3.]5.(2017·重庆一中模拟)已知圆C :(x -1)2+(y -2)2=2,y 轴被圆C 截得的弦长与直线y =2x +b 被圆C 截得的弦长相等,则b =( ) A .- 6 B .± 6 C .- 5D .± 5D [在(x -1)2+(y -2)2=2中,令x =0,得(y -2)2=1,解得y 1=3,y 2=1,则y 轴被圆C 截得的弦长为2,所以直线y =2x +b 被圆C 截得的弦长为2,所以圆心C (1,2)到直线y =2x +b 的距离为1, 即|2×1-2+b |5=1,解得b =± 5.] 二、填空题6.经过两条直线3x +4y -5=0和3x -4y -13=0的交点,且斜率为2的直线方程是__________.2x -y -7=0 [由⎩⎪⎨⎪⎧3x +4y -5=0,3x -4y -13=0,得⎩⎪⎨⎪⎧x =3,y =-1,即两直线的交点坐标为(3,-1),又所求直线的斜率k =2.则所求直线的方程为y +1=2(x -3),即2x -y -7=0.]7.已知过点P (2,2)的直线与圆(x -1)2+y 2=5相切,且与直线ax -y +1=0垂直,则a =__________. 2 [因为点P (2,2)为圆(x -1)2+y 2=5上的点,由圆的切线性质可知,圆心(1,0)与点P (2,2)的连线与过点P (2,2)的切线垂直. 因为圆心(1,0)与点P (2,2)的连线的斜率k =2,故过点P (2,2)的切线斜率为-12,所以直线ax -y +1=0的斜率为2,因此a =2.]8.已知直线x -y +a =0与圆心为C 的圆x 2+y 2+2x -4y -4=0相交于A ,B 两点,且AC ⊥BC ,则实数a 的值为__________.0或6 [由x 2+y 2+2x -4y -4=0得(x +1)2+(y -2)2=9,所以圆C 的圆心坐标为C (-1,2),半径为3,由AC ⊥BC 可知△ABC 是直角边长为3的等腰直角三角形.故可得圆心C 到直线x -y +a =0的距离为322.由点到直线的距离得|-1-2+a |2=322,解得a =0或a =6.] 三、解答题9.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程.【导学号:00090289】[解] 将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.2分 (1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2,解得a =-34.5分(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎩⎪⎨⎪⎧|CD |=|4+2a |a 2+1,|CD |2+|DA |2=|AC |2=22,|DA |=12|AB |=2,8分解得a =-7或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.12分10.在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程. [解] 曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3,-22,0),设圆的方程是x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则有⎩⎨⎧1+E +F =0,+222+D+22+F =0,-222+D-22+F =0,解得⎩⎪⎨⎪⎧D =-6,E =-2,F =1,故圆的方程是x 2+y 2-6x -2y +1=0.6分所以x 2=x 0-32,y 2=y 0+42,整理得⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又点N (x +3,y -4)在圆x 2+y 2=4上, 10分所以(x +3)2+(y -4)2=4.所以点P 的轨迹是以(-3,4)为圆心,2为半径的圆(因为O ,M ,P 三点不共线,所以应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285. 12分B 组 能力提升 (建议用时:15分钟)1.直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [将直线l 的方程化为一般式得kx -y +1=0, 所以圆O :x 2+y 2=1的圆心到该直线的距离d =1k 2+1.又弦长为21-1k 2+1=2|k |k 2+1, 所以S △OAB =12·1k 2+1·2|k |k 2+1=|k |k 2+1=12,解得k =±1.因此可知“k =1”是“△OAB 的面积为12”的充分不必要条件.]2.过点P (1,1)的直线将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为__________.x +y -2=0 [设过P 点的直线为l ,当OP ⊥l 时,过P 点的弦最短,所对的劣弧最短,此时,得到的两部分的面积之差最大. 由点P (1,1)知k OP =1, 所以所求直线的斜率k =-1.由点斜式得,所求直线方程为y -1=-(x -1),即x +y -2=0.]3.已知圆C :x 2+y 2-6x -4y +4=0,直线l 1被圆所截得的弦的中点为P (5,3). (1)求直线l 1的方程;(2)若直线l 2:x +y +b =0与圆C 相交,求b 的取值范围;(3)是否存在常数b ,使得直线l 2被圆C 所截得的弦的中点落在直线l 1上?若存在,求出b 的值;若不存在,说明理由.[解] (1)圆C 的方程化为标准方程为(x -3)2+(y -2)2=9,于是圆心C (3,2),半径r =3. 若设直线l 1的斜率为k ,则k =-1k PC =-112=-2. 所以直线l 1的方程为y -3=-2(x -5),即2x +y -13=0.3分(2)因为圆的半径r =3,所以要使直线l 2与圆C 相交,则有|3+2+b |2<3,5分所以|b +5|<32,于是b 的取值范围是-32-5<b <32-5. 8分(3)设直线l 2被圆C 截得的弦的中点为M (x 0,y 0),则直线l 2与CM 垂直, 于是有y 0-2x 0-3=1, 整理可得x 0-y 0-1=0.又因为点M (x 0,y 0)在直线l 2上,所以x 0+y 0+b =0.所以由⎩⎪⎨⎪⎧x 0-y 0-1=0,x 0+y 0+b =0,解得⎩⎪⎨⎪⎧x 0=1-b 2,y 0=-1+b2. 10分代入直线l 1的方程得1-b -1+b2-13=0, 于是b =-253∈(-32-5,32-5),故存在满足条件的常数B . 12分重点强化训练(五) 统计与统计案例A 组 基础达标 (建议用时:30分钟)一、选择题1.(2017·石家庄模拟)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( ) 【导学号:00090343】A .101B .808C .1 212D .2 012B [由题意知抽样比为1296,而四个社区一共抽取的驾驶员人数为12+21+25+43=101,故有1296=101N ,解得N =808.]2.设某大学的女生体重y (单位:kg)写身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x -85.71,则下列结论中不正确的是( ) A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg D [∵0.85>0,∴y 与x 正相关,∴A 正确; ∵回归直线经过样本点的中心(x ,y ),∴B 正确; ∵Δy =0.85(x +1)-85.71-(0.85x -85.71)=0.85, ∴C 正确.]3.亚冠联赛前某参赛队准备在甲、乙两名球员中选一人参加比赛.如图9所示的茎叶图记录了一段时间内甲、乙两人训练过程中的成绩,若甲、乙两名球员的平均成绩分别是x 1,x 2,则下列结论正确的是( )图9A.x1>x2,选甲参加更合适B.x1>x2,选乙参加更合适C.x1=x2,选甲参加更合适D.x1=x2,选乙参加更合适A[根据茎叶图可得甲、乙两人的平均成绩分别为x1≈31.67,x2≈24.17,从茎叶图来看,甲的成绩比较集中,而乙的成绩比较分散,因此甲发挥得更稳定,选甲参加比赛更合适.]4.(2018·黄山模拟)某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:若x,y( )【导学号:00090344】A.8.1万盒B.8.2万盒C.8.9万盒D.8.6万盒A[由题意知x=3,y=6,则a=y-0.7x=3.9,∴x=6时,y=8.1.]5.(2018·郑州模拟)利用如图10所示算法在平面直角坐标系上打印一系列点,则打印的点在圆x2+y2=10内的个数为( )图10A.2 B.3C.4 D.5B[执行题中的程序框图,打印的点的坐标依次为(-3,6),(-2,5),(-1,4),(0,3),(1,2),(2,1),其中点(0,3),(1,2),(2,1)位于圆x2+y2=10内,因此打印的点位于圆x2+y2=10内的共有3个.] 二、填空题6.在某市“创建文明城市”活动中,对800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图11),但是年龄组为[25,30)的数据不慎丢失,据此估计这800名志愿者年龄在[25,30)内的人数为________.图11160 [设年龄在[25,30)内的志愿者的频率是P,则有5×0.01+P+5×0.07+5×0.06+5×0.02=1,解得P=0.2.故估计这800名志愿者年龄在[25,30)内的人数是800×0.2=160.]7.某新闻媒体为了了解观众对央视《开门大吉》节目的喜爱与性别是否有关系,随机调查了观看该节目的观众110名,得到如下的列联表:参考附表:99% [假设喜爱该节目和性别无关,分析列联表中数据,可得χ2=-2 60×50×60×50≈7.822>6.635,所以有99%的把握认为“喜爱《开门大吉》节目与否和性别有关”.]8.(2017·太原模拟)数列{a n}满足a n=n,阅读如图12所示的算法框图,运行相应的程序,若输入n=5,a n =n ,x =2的值,则输出的结果v =________.图12129 [该算法框图循环4次,各次v 的值分别是14,31,64,129,故输出结果v =129.] 三、解答题9.(2018·合肥模拟)全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续n 天监测空气质量指数(AQI),数据统计如下表:(1)图13(2)由频率分布直方图,求该组数据的平均数与中位数;(3)在空气质量指数分别为(50,100]和(150,200]的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件A “两天空气质量等级都为良”发生的概率. [解] (1)∵0.004×50=20n,∴n =100,∵20+40+m +10+5=100,∴m =25.40100×50=0.008;25100×50=0.005;10100×50=0.002;5100×50=0.001.2分由此完成频率分布直方图,如图:4分(2)由频率分布直方图得该组数据的平均数为25×0.004×50+75×0.008×50+125×0.005×50+175×0.002×50+225×0.001×50=95, 6分∵[0,50)的频率为0.004×50=0.2,[50,100)的频率为0.008×50=0.4, ∴中位数为50+0.5-0.20.4×50=87.5.8分(3)由题意知在空气质量指数为(50,100]和(150,200]的监测天数中分别抽取4天和1天, 在所抽取的5天中,将空气质量指数为(50,100]的4天分别记为a ,b ,c ,d ;将空气质量指数为(150,200]的1天记为e ,从中任取2天的基本事件为(a ,b ),(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),(c ,d ),(c ,e ),(d ,e ),共10个,10分其中事件A “两天空气质量等级都为良”包含的基本事件为 (a ,b ),(a ,c ),(a ,d ),(b ,c ),(b ,d ),(c ,d ),共6个. 11分 所以P (A )=610=35.12分10.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:(1)求y 关于t (2)用所求回归方程预测该地区2015年(t =6)的人民币储蓄存款.附:回归方程y =bt +a 中,b =∑i =1nt i y i -n t y∑i =1nt 2i -n t 2,a =y -b t .[解] (1)列表计算如下:这里n =5,t =1n ∑i =1n t i =155=3,y =1n ∑i =1n y i =365=7.2.2分又l tt =∑i =1nt 2i -n t 2=55-5×32=10,l ty =∑i =1nt i y i -n t -y -=120-5×3×7.2=12,从而b =l ty l tt =1210=1.2, a =y -b t =7.2-1.2×3=3.6,故所求回归方程为y =1.2t +3.6.7分(2)将t =6代入回归方程可预测该地区2015年的人民币储蓄存款为y =1.2×6+3.6=10.8(千亿元).B 组 能力提升 (建议用时:15分钟)1. 如图14所示的算法框图,若输出k 的值为6,则判断框内可填入的条件是( ) 【导学号:00090345】图14A .s >12B .s >35C .s >710D .s >45C [第一次执行循环:s =1×910=910,k =8,s =910应满足条件;第二次执行循环:s =910×89=810,k =7,s =810应满足条件,排除选项D ;第三次执行循环:s =810×78=710,k =6,不再满足条件,结束循环.因此判断框中的条件为s >710.]2.(2017·西安调研)已知某产品连续4个月的广告费用x 1(千元)与销售额y 1(万元),经过对这些数据的处理,得到如下数据信息:①∑i =14x i =18,∑i =14y i =14;②广告费用x 和销售额y 之间具有较强的线性相关关系;③回归直线方程y =bx +a 中的b =0.8(用最小二乘法求得).那么,广告费用为6千元时,可预测销售额约为________万元.4.7 [因为∑i =14x i =18,∑i =14y i =14,所以x =4.5,y =3.5,因为回归直线方程y =bx +a 中的b =0.8, 所以3.5=0.8×4.5+a ,所以a =-0.1,所以y =0.8x -0.1.x =6时,可预测销售额约为4.7万元.]3.某工厂36名工人的年龄数据如下表.(1)44,列出样本的年龄数据;(2)计算(1)中样本的均值x 和方差s 2;(3)36名工人中年龄在x -s 与x +s 之间有多少人?所占的百分比是多少(精确到0.01%)? [解] (1)36人分成9组,每组4人,其中第一组的工人年龄为44,所以它在组中的编号为2, 所以所有样本数据的编号为4n -2(n =1,2,…,9), 其年龄数据为:44,40,36,43,36,37,44,43,37. 5分(2)由均值公式知:x =44+40+…+379=40,由方差公式知:s 2=19[(44-40)2+(40-40)2+…+(37-40)2]=1009.8分 (3)因为s 2=1009,s =103,所以36名工人中年龄在x -s 和x +s 之间的人数等于年龄在区间[37,43]上的人数, 即40,40,41,…,39,共23人.所以36名工人中年龄在x -s 和x +s 之间的人数所占的百分比为2336×100%≈63.89%.。
2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.若非空集合A,B,C 满足A ∪B=C ,且B 不是A 的子集,则 A .“x ∈C ”是“x ∈A ”的充分条件但不是必要条件 B . “x ∈C ”是“x ∈A ”的必要条件但不是充分条件 C . “x ∈C ”是“x ∈A ”的充分条件D . “x ∈C ”是“x ∈A ”的充分条件也不是“x ∈A ”必要条件(2008湖北理)2.集合A= {x ∣12x -≤≤},B={x ∣x<1},则()R AB ð= (D )(A ){x ∣x>1} (B) {x ∣x ≥ 1} (C) {x ∣12x <≤ } (D) {x ∣12x ≤≤} (2007)3.若实数,a b 满足0,0a b ≥≥,且0ab =,则称a 与b 互补,记(,),a b a b ϕ-那么(,)0a b ϕ=是a 与b 互补的A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件4.设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的 A. 充分而不必要条件 B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件5.已知数列{an }满足a1=3,an+1 - an + 1=0 (n ∈N* ), 则数列{an }的通项公式为 A. an= n 2 +2 B. an= n +2 C. an=4-n D. an= 2 n +16.lgx,lgy,lgz 成等差数列是y2=xz 成立的 A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件二、填空题7.函数2)1(log )(++=x x f a ,0(>a 且)1≠a 必过定点 ▲ ;8.已知函数()f x 是偶函数,并且对于定义域内任意的x ,满足()()12f x f x +=-, 若当23x <<时,()f x x =,则)5.2007(f =__________ _9.已知当椭圆的长半轴长为a ,短半轴长为b 时,椭圆的面积是πab .请针对椭圆2212516x y +=,求解下列问题: (1)若m ,n 是实数,且|m |≤5,|n |≤4.求点P (m ,n )落在椭圆内的概率;(2)若m ,n 是整数,且|m |≤5,|n |≤4.求点P (m ,n )落在椭圆外的概率以及点P 落在椭圆上的概率。