最新单回路控制系统原理
- 格式:doc
- 大小:44.00 KB
- 文档页数:7
单回路控制系统原理单回路控制系统原理一、过程控制的特点与其它自动控制系统相比,过程控制的主要特点是:1、系统由工业上系列生产的过程检测控制仪表组成。
一个简单的过程控制系统是由控制对象和过程检测控制仪表(包括测量元件,变送器、调节器和调节阀)两部分组成。
Q2 x (t)如图1 :液位控制系统K C:调节器的静态放大系数QK V:调节阀的静态放大系数1K0:被控对象的静态放大系数Km :变送器的静态放大系数2、被控对象的设备是已知的,对象的型式不少,它们的动态特性是未知的或者是不十分活楚的,但普通具有惯性大,滞后大,而且多数具有非线性特性。
3、控制方案的多样性。
有单变量控制系统、多变量控制系统;有线性系统、有非线性系统、;有摹拟量控制系统、有数字量控制系统,等等。
这是其它自动控制系统所不能比拟的。
4、控制过程届慢过程,多半届参量控制。
即需对表征生产过程的温度、流量、压力、液位、成份、PH 等进行控制。
5、在过程控制系统中,其给定值是包定的 (定值控制) ,或者是已知时间的函数 (程序控制) 。
控制的主要目的是在丁如何减少或者消除外界扰动对被控量的影响。
y (t〕工业生产要实现生产过程自动化,首先必须熟悉生产过程,掌握对象特点;同时要熟悉过程参数的主要测量方法,了解仪表性能、特点,根据生产工艺要求和反馈控制理论的分析方法,合理正确地构建过程控制系统;并且通过改变调节仪表的特性参数,使系统运行在最佳状态,过程控制系统的品质是由组成系统的对象和过程检测仪表各环节的特性和系统的结构所决定的。
二、单回路控制系统原理如图所示单回路控制系统由对象、测量变送器,调节器,调节阀等环节组成。
由于系统结构简单,投资少,易于调整、投运,又能满足普通生产过程的控制要求, 所以应用十分广泛。
单回路控制系统的设计原则同样合用于复杂控制系统的设计,控制方案的设计和调节器整定参数值的确定,是系统设计中的两个重要内容,如果控制方案设计不正确,仅凭调节器参数的整定是不可能获得较好的控制质量的;反之,如果控制方案设计很好,但是调节器参数整定不合适,也不能使系统运行在最佳状态,、选择被控参数对于一个生产过程来说,影响正常操作的因素是不少的,但是,并非对所有影响因素都需要加以控制“选择被控参数的普通原则为:作用的、可直接测量的工艺参数为被控参数,当不能用直接参数(如测量滞后过大)作为被控参数时,应选择一个与直接参数有单值函数关系的间接参数作为被控参数,被控参数必须具有足够大的灵敏度⑥若生产工艺有几种控制参数可供选择,普通希翼控制通道克服扰动的校正能力要强,动态响应应比扰动通道快。
单回路控制系统的结构及基本原理单回路控制系统,听起来是不是有点高深?别担心,咱们慢慢来,把它说得简单明了。
想象一下,你家里的空调,夏天一开,立马变成了清凉的避风港。
这个过程背后,就是单回路控制系统在默默发挥作用。
它就像是一位调皮的管家,专门负责调节室内温度。
你觉得怎么样?挺酷吧?单回路控制系统到底是什么呢?其实就是一个简单的控制机制。
就像你在厨房里做饭,火候掌握得当,菜才能好吃。
系统通过传感器感知环境,像是人的“感觉器官”,然后根据设定的目标进行调整。
如果室温太高,控制系统就会给空调发信号,让它开起来。
这样一来,家里瞬间凉快。
是不是感觉有点像魔法?咱们再深入一下,单回路控制系统的基本原理其实就是反馈控制。
反馈控制就像是你骑自行车时的平衡,往左偏了就稍微向右打方向,保持稳定。
系统通过不断获取反馈数据,进行调整,保证温度不会过高或者过低。
要是没有这个反馈,空调就会像个无头苍蝇,根本不知道该怎么调节。
想象一下,如果空调开得太冷,你可能就得裹着毛毯看电视了,真是太折磨人了。
再说说控制环路,单回路控制系统的“主角”。
控制环路里有三个重要角色:传感器、控制器和执行器。
传感器就像你家里的眼睛,负责监测环境。
控制器是大脑,分析数据并做出决策。
执行器则是肌肉,负责实际操作。
三者协同合作,像是一场默契的舞蹈,缺一不可。
要是哪个环节出了问题,整个系统就会陷入混乱,真是让人无奈。
举个例子,想象一下你在夏天的炎热中,开着空调,舒舒服服地看着电视。
突然空调出问题,室内温度一下子飙升。
那种感觉就像是被烈日暴晒,简直要人命。
这个时候,如果控制系统能够及时反馈,让空调赶紧调整,那就完美了。
可一旦反馈失灵,你就得忍受那种汗流浃背的折磨,真是心烦意乱。
说到这里,咱们还得提一下这个系统的稳定性。
单回路控制系统就像是一道题,解出来才能得到最终答案。
假如反馈不准确,系统就可能过度反应,导致温度忽冷忽热,就像过山车一样刺激。
这样的结果可不是你想要的,毕竟生活需要一些“稳定感”,对吧?有了稳定的控制系统,大家才能安心享受生活。
单回路控制系统原理一、过程控制的特点与其它自动控制系统相比,过程控制的主要特点是:1、系统由工业上系列生产的过程检测控制仪表组成。
一个简单的过程控制系统是由控制对象和过程检测控制仪表(包括测量元件,变送器、调节器和调节阀)两部分组成。
如图1:液位控制系统Q2t)z(t)K C:调节器的静态放大系数K V:调节阀的静态放大系数K0:被控对象的静态放大系数K m:变送器的静态放大系数2、被控对象的设备是已知的,对象的型式很多,它们的动态特性是未知的或者是不十分清楚的,但一般具有惯性大,滞后大,而且多数具有非线性特性。
3、控制方案的多样性。
有单变量控制系统、多变量控制系统;有线性系统、有非线性系统、;有模拟量控制系统、有数字量控制系统,等等。
这是其它自动控制系统所不能比拟的。
4、控制过程属慢过程,多半属参量控制。
即需对表征生产过程的温度、流量、压力、液位、成分、PH等进行控制。
5、在过程控制系统中,其给定值是恒定的(定值控制),或是已知时间的函数(程序控制)。
控制的主要目的是在于如何减少或消除外界扰动对被控量的影响。
工业生产要实现生产过程自动化,首先必须熟悉生产过程,掌握对象特点;同时要熟悉过程参数的主要测量方法,了解仪表性能、特点,根据生产工艺要求和反馈控制理论的分析方法,合理正确地构建过程控制系统;并且通过改变调节仪表的PID 特性参数,使系统运行在最佳状态。
过程控制系统的品质是由组成系统的对象和过程检测仪表各环节的特性和系统的结构所决定的。
二、单回路控制系统原理如图1所示单回路控制系统由对象、测量变送器、调节器、调节阀等环节组成。
由于系统结构简单,投资少,易于调整、投运,又能满足一般生产过程的控制要求,所以应用十分广泛。
单回路控制系统的设计原则同样适用于复杂控制系统的设计,控制方案的设计和调节器整定参数值的确定,是系统设计中的两个重要内容。
如果控制方案设计不正确,仅凭调节器参数的整定是不可能获得较好的控制质量的;反之,如果控制方案设计很好,但是调节器参数整定不合适,也不能使系统运行在最佳状态。
一、单回路控制系统1. 画出图示系统的方框图:2. 一个简单控制系统总的开环增益(放大系数)应是正值还是负值?仪表行业定义的控制器增益与控制系统中定义的控制器的增益在符号上有什么关系?为什么?3. 试确定习题1中控制器的正反作用。
若加热变成冷却,且控制阀由气开变为气关,控制器的正反作用是否需要4. 什么是对象的控制通道和扰动通道?若它们可用一阶加时滞环节来近似,试述K P 、K f 、τp 、τf 对控制系统质量的影响。
5. 已知广义对象的传递函数为1)S (T e K P SτP P +-,若P P T τ的比值一定时,T P 大小对控制质量有什么影响?为什么?6. 一个简单控制系统的变送器量程变化后,对控制质量有什么影响?举例说明。
7. 试述控制阀流量特性的选择原则,并举例加以说明。
8. 对图示控制系统采用线性控制阀。
当负荷G 增加后,系统的响应趋于非周期函数,而G 减少时,系统响应震9. 一个简单控制系统中,控制阀口径变化后,对系统质量有何影响?10. 已知蒸汽加热器如图所示,该系统热量平衡式为:G 1C 1(θ0-θi )=G 2λ(λ为蒸汽的冷凝潜热)。
(1)主要扰动为θi 时,选择控制阀的流量特性。
(2)主要扰动为G 1时,量特性。
(3特性。
11.作用后,对系统质量有什么影响?为了保持同样的衰减比,比例度δ要增加,为什么?12. 试写出正微分和反微分单元的传递函数和微分方程;画出它们的阶跃响应,并简述它们的应用场合。
13. 什么叫积分饱和?产生积分饱和的条件是什么?14. 采用响应曲线法整定控制器参数,选用单比例控制时,δ=K P τP /T P ×100%,即δ∝K P ,δ∝τP /T P ,为什么?而选择比例积分控制时,δ=1.44K P τP /T P ×100%,即比例度增加,为什么?15. 采用临界比例度法整定控制器参数,在单比例控制时,δ=2δK (临界比例度),为什么?16. 在一个简单控制系统中,若对象的传递函数为)1T )(1S 1)(T S (T K W P V P +-+S ,进行控制器参数整定时,应注意什么? 17. 已知广义对象的传递函数为1)S (T e K P SτP P +-,采用比例控制,当系统达到稳定边缘时,K C =K CK ,临界周期为T K 。
单回路控制系统实验报告实验名称:单回路控制系统实验实验目的:掌握单回路控制系统的基本原理和调节方法,熟悉控制系统的建模、分析和设计过程。
实验设备:计算机、控制系统实验仪器、数据采集卡、传感器、执行器等。
实验原理:单回路控制系统是由闭环反馈控制器、过程装置和传感器组成的反馈控制系统。
其基本原理是根据反馈信号来调节输出信号,使得系统输出达到期望值或稳定在某个给定值上。
单回路控制系统可用于控制温度、压力、速度等各种物理量。
实验步骤:1. 搭建单回路控制系统:将闭环反馈控制器、过程装置和传感器按照实验要求连接起来,确保各个设备之间的信号传输正常。
2. 设定控制目标:根据实验需求,设定控制系统的目标值,如温度控制系统中的目标温度。
3. 进行系统建模:将控制系统中的各个元件抽象为数学模型,如控制器的传递函数、过程装置的传递函数等。
4. 参数调整:选择合适的控制器参数,如比例增益、积分时间和微分时间,并通过试控实验进行参数调整。
5. 进行闭环控制实验:将控制系统闭合,即将输出信号作为反馈信号输入到控制器中,通过控制器输出调节过程装置的输入信号,控制系统达到期望值或稳定在给定值上。
6. 实验数据采集与分析:利用数据采集卡采集实验过程中的各个信号数据,并进行数据分析,如误差分析、系统响应时间等。
7. 评价控制效果:根据实验数据分析结果,评价控制系统的性能,并对控制系统进行改进或优化。
实验结果:根据实验数据采集与分析结果,可以得到控制系统的性能指标,如超调量、调节时间等。
根据实验结果,评价控制系统的性能,并对控制器参数进行调整和优化,以达到更好的控制效果。
实验总结:通过本实验,掌握了单回路控制系统的基本原理和调节方法,了解了控制系统的建模、分析和设计过程。
实验中还发现了控制系统中可能存在的问题,并进行相应的改进措施。
在今后的工作中,将进一步研究和应用控制系统技术,提高控制系统的性能和稳定性。
第四节单回路控制系统在热工生产过程控制中,最基本的且应用最多的单回路控制系统,其他各种复杂控制系统都是在单回路系统的基础上发展起来的,而且许多复杂控制系统的整定都利用了单回路控制系统的整定方法,可以说单回路控制系统是过程控制系统的基础。
一、单回路控制系统的组成及初步设计单回路控制系统的组成原理方框图如图3-44所示,它是仅有一个测量变送器,一个调节器和一个执行器(包括调节阀),连同被控对象组成的闭环负反馈控制系统。
图1-26 单回路控制系统组成原理方框图1、被调量的选择在图1-26中,被调量是表征生产过程是否符合工艺要求的物理量,在热工生产过程中主要是温度、压力、流量、化学成分等。
一般情况下,欲维持的工艺参数就是系统的被调量,如火力发电厂锅炉过热蒸汽温度控制系统的任务就是维持锅炉过热器出口蒸汽温度,所以汽温控制系统的被调量就是过热器出口汽温。
但是生产过程中,有些工艺参数目前还没有获得直接的快速测量手段,如火电厂进入磨煤机的原煤干燥程度的测量。
这种情况下往往采用间接测量手段,如采用磨煤机入口介质的温度来代表原煤的干燥程度。
以间接参数作为系统的被调量,要求被调量与实际所需维持的工艺参数之间为单值函数关系,否则要采取相应的补偿措施。
对于那些虽有直接测量手段,但所测得的信号过于微弱或迟延较大的情况,不如选用间接参数作为系统的被调量。
为提高测量的灵敏度,减小迟延,应采用先进的测量方法,选择合理的取样点,正确合理地安装检测元件。
2、控制量的选择选择什么样的控制量去克服扰动对被调量的影响呢?原则上是选择工艺上允许作为控制手段的变量作为控制量,一般不应选择工艺上的主要物料或不可控制的变量作为控制量。
例如:火力发电厂锅炉负荷控制系统,其被调量是主蒸汽压力,而影响主蒸汽压力的主要因素是汽轮机进汽量和锅炉燃料量,前者是电力生产要求所确定的,因而不能作为控制量,而只能选择燃料量作为控制量。
给定值 调节器 对象被调量 - μ 扰动 扰动 图1-28 单回路调节系统 3、控制通道和扰动通道单回路控制系统的组成如图1-27所示,图中W 01(s )为对象的传递函数,它是包括了检测元件、测量变送器、执行机构和调节阀在内的广义对象特性;W c (s )为调节器的传递函数,D 为扰动信号,W 02(s )为被调量与扰动信号间的传递函数。
单回路控制系统原理一、过程控制的特点与其它自动控制系统相比,过程控制的主要特点是:1、系统由工业上系列生产的过程检测控制仪表组成。
一个简单的过程控制系统是由控制对象和过程检测控制仪表(包括测量元件,变送器、调节器和调节阀)两部分组成。
如图1Q2y(t)K C:调节器的静态放大系数K V:调节阀的静态放大系数K0:被控对象的静态放大系数K m:变送器的静态放大系数2、被控对象的设备是已知的,对象的型式很多,它们的动态特性是未知的或者是不十分清楚的,但一般具有惯性大,滞后大,而且多数具有非线性特性。
3、控制方案的多样性。
有单变量控制系统、多变量控制系统;有线性系统、有非线性系统、;有模拟量控制系统、有数字量控制系统,等等。
这是其它自动控制系统所不能比拟的。
4、控制过程属慢过程,多半属参量控制。
即需对表征生产过程的温度、流量、压力、液位、成分、PH等进行控制。
5、在过程控制系统中,其给定值是恒定的(定值控制),或是已知时间的函数(程序控制)。
控制的主要目的是在于如何减少或消除外界扰动对被控量的影响。
工业生产要实现生产过程自动化,首先必须熟悉生产过程,掌握对象特点;同时要熟悉过程参数的主要测量方法,了解仪表性能、特点,根据生产工艺要求和反馈控制理论的分析方法,合理正确地构建过程控制系统;并且通过改变调节仪表的PID特性参数,使系统运行在最佳状态。
过程控制系统的品质是由组成系统的对象和过程检测仪表各环节的特性和系统的结构所决定的。
二、单回路控制系统原理如图1所示单回路控制系统由对象、测量变送器、调节器、调节阀等环节组成。
由于系统结构简单,投资少,易于调整、投运,又能满足一般生产过程的控制要求,所以应用十分广泛。
单回路控制系统的设计原则同样适用于复杂控制系统的设计,控制方案的设计和调节器整定参数值的确定,是系统设计中的两个重要内容。
如果控制方案设计不正确,仅凭调节器参数的整定是不可能获得较好的控制质量的;反之,如果控制方案设计很好,但是调节器参数整定不合适,也不能使系统运行在最佳状态。
1、选择被控参数对于一个生产过程来说,影响正常操作的因素是很多的,但是,并非对所有影响因素都需要加以控制。
选择被控参数的一般原则为:[1]、选择对产品的产量和质量、安全生产、经济运行和环境保护等具有决定性作用的、可直接测量的工艺参数为被控参数。
[2]、当不能用直接参数(如测量滞后过大)作为被控参数时,应选择一个与直接参数有单值函数关系的间接参数作为被控参数。
[3]、被控参数必须具有足够大的灵敏度。
[4]、被控参数的选取,必须考虑工艺过程的合理性和所采用仪表的性能。
2、选择控制参数若生产工艺有几种控制参数可供选择,一般希望控制通道克服扰动的校正能力要强,动态响应应比扰动通道快。
控制通道:是指调节作用与被控参数之间的信号联系。
即P(t)到y(t)。
扰动通道:是指扰动作用与被控参数之间的信号联系。
即f(t)到y(t)。
扰动作用是由扰动通道对对象的被控参数产生影响的,使被控参数偏离给定值。
引入控制作用的目的是为了克服扰动作用的影响,使被控参数恢复和保持在给定值上。
而控制作用是由控制通道对对象的被控参数施加影响,抵消扰动作用。
选择控制参数的一般原则为:[1]、选择控制通道的静态放大系数K0要适当大一些,时间常数T0应适当小一些,纯滞后时间τ0则越小越好。
[2]、选择扰动通道的静态放大系数K f应尽可能小,时间常数T f应大些,扰动引入系统的位置离被控参数越远,即越靠近调节阀,控制质量越好。
[3]、当控制通道由几个一阶惯性环节组成时,为了提高系统的性能,应尽量拉开各个时间常数。
[4]、应注意工艺上的合理性。
3、系统中的测量及信号传递问题在过程控制系统中,测量变送环节起着信息获取和传送作用。
在具体分析测量变送环节对控制质量的影响时,经常碰到测量、变送和信息传送中的滞后问题。
因为它会引起控制指标的下降,系统失调,甚至产生事故。
测量变送中的滞后包括测量滞后,纯滞后和信息传送滞后等,这些滞后均与测量元件本身的特性、元件安装位置的选择和信息传送的方法有关。
A、测量滞后测量滞后是测量元件本身的特性所引起的动态误差。
例如用热电偶或热电阻测量温度时,由于其保护套管存在着热阻和热容,因而具有一定的时间常数,测温元件的输出信号总是滞后于被控参数的变化,引起被控参数的测量值与真实值之间产生动态误差,从而造成控制质量下降。
为了克服测量滞后的不良影响,在系统可以采用以下措施:[1]、合理选择快速测量元件。
[2]、正确使用微分环节。
B、纯滞后纯滞后往往是由测量元件的安装位置不当而引入的。
在生产过程中,温度测量和成分分析最容易引入纯滞后。
微分作用对于纯滞后是无能为力的。
为了克服纯滞后的影响,只有合理选择测量元件的安装位置,尽量减小纯滞后。
当过程参数测量引起的纯滞后较大时,单回路控制系统很难满足生产工艺要求,应考虑其它控制方案。
C、信息传送滞后测量信息传送滞后,主要是指气动单元组合仪表的输出信号在管路中传送所造成的滞后。
为了克服信号传送滞后,可采用以下措施:[1]、用气—电和电—气转换器,将气压信号转换为电信号再传送。
[2]、在气压信号管路上设置气动继动器或气动阀门定位器,以增大输出功率,减少传送滞后。
4、控制规律的选择调节器的控制规律有比例(P)、积分(I)、微分(D)这三种基本规律及其各种组合。
比例调节(P):依据偏差的大小来动作,其输出与输入偏差的大小成正比。
比例调节及时、有力、但有余差。
积分调节(Ti):依据偏差是否存在来动作,它的输出与偏差对时间的积分成比例,只有当余差消失时,积分作用才会停止。
积分的作用是消除余差,但积分作用使最大动偏差增大,延长了调节时间。
积分时间越小表明积分作用越强,积分作用太强时会引起震荡。
积分控制通常与比例控制或微分控制联合作用,构成PI或PID 控制。
积分控制能消除系统的稳态误差,提高控制系统的控制精度。
但积分控制通常使系统的稳定性下降。
Ti太小系统将不稳定;Ti偏小,震荡次数较多;Ti太大对系统性能的影响减少。
微分调节(T d):依据偏差变化速度来动作,它的输出与输入偏差变化的速度成比例,其作用是阻止被调参数的一切变化,有超前调节的作用,对滞后大的对象有很好的效果。
它可以克服调节对象的惯性滞后、容量滞后,但不能克服调节对象的纯滞后。
常用控制系统温度控制系统:时间常数一般较大,为几分钟到几十分钟。
温度控制系统的纯滞后一般也较大。
为了改善温度控制系统的品质,测量元件应选用时间常数小的元件,并尽可能的安装在测量纯滞后小的地方,调节器一般选用PID调节器,适当引入微分作用,可以加快调节作用,改善因系统时间常数较大对控制系统造成的影响。
压力控制系统:气体压力对象基本上是单容的,时间常数与系统容积成正比,一般为几秒钟到几分钟,调节器常选用PI调节器,积分时间一般为几十秒到几分钟;液体压力对象具有不可压缩性,时间常数很小,通常为几秒钟,同时对象的纯滞后时间很小,调节过程中被控变量的振荡周期很短。
调节器常选用PI调节器。
流量控制系统:流量对象时间常数很小,一般为几秒,对象的纯滞后时间也很小,调节过程中被控变量的振荡周期也很短。
调节器常选用PI调节器。
液位控制系统:一个设备或储罐的液位,代表了其流入量和流出量差的累积。
调节器常选用P或PI调节器。
调节器的参数整定调节器参数的工程整定方法有响应曲线法、临界比例度法、衰减曲线法和现场经验法。
在现场我们使用的是现场经验法来进行调节器的参数整定。
对于由比例调节器构成的过程控制系统,其整定参数只有一个比例度δ,此时只需将比例度δ由大逐渐调小,观察系统过渡过程曲线,直到认为其曲线达到最佳为止。
对于由比例积分调节器构成的过程控制系统,其整定参数有比例度δ和积分时间Ti。
此时,首先将Ti→∞,按纯比例作用整定调节器的比例度,使其得到较好的过渡过程曲线。
然后,把比例度放大约1.2倍,再引入积分作用并将积分时间从大到小进行调整,使其得到较好的过渡过程曲线。
最后,在这个积分时间下,再改变比例度,观察其曲线变化情况,如曲线变化,就按此方向再整定比例度;如曲线无变化,可将比例度再减小一点,改变积分时间,观察曲线是否变化。
这样反复多次,直到认为其曲线达到最佳为止。
对于由比例积分微分调节器构成的过程控制系统,先使微分时间T d=0,再按上述比例积分调节器的整定方法,得到较满意的过渡过程曲线,然后引入微分作用,使微分时间由小到大进行调整,逐步凑试,直到得到最佳整定参数值5、调节阀特性的选择调节阀是过程控制系统中的一个重要组成环节。
调节阀的选择主要是流量特性的选择、流通能力的选择、结构形式的选择和开关形式的选择。
应根据对象特性、负荷变化情况和生产工艺的要求出发,来确定所需要的调节阀。
主要介绍气动调节阀,正确选用气动调节阀应考虑工艺操作条件(温度、压力、流量、介质特性等)和过程控制系统的质量要求。
调节阀对通过的流体流量的控制是基于改变阀芯与阀座之间的流通截面大小,即改变其阻力大小来达到的。
所以,从流体力学的观点来看,调节阀是一个局部阻力可以变化的节流元件。
A、调节阀的尺寸选择调节阀的尺寸通常用公称直径D和阀座直径d来表示。
D和d是根据计算出来的流通能力C来选择。
流通能力C表示调节阀的容量,其定义为:调节阀全开,阀前、阀后压差为0.1MPa流体重度为1g/cm3时,每小时通过阀门的流体流量m3数。
C = Q r /(p1-p2)式中:r —流体重度;Q —流体的体积流量p1-p2——调节阀前后压差根据调节所需的物料量Qmax、Qmin,流体重度r及调节阀上的压降p1-p2可以求得最大流量、最小流量时的Cmax和Cmin值。
根据Cmax,在所选用产品型式的标准系列中,选取大于Cmax值,并最接近一级的C值。
B、气开、气关的选择气动调节阀分气开、气关两种。
有控制气压信号(即有输出信号)时阀开、无控制气压信号时阀关叫气开式;有控制气压信号(即有输出信号)时阀关、无控制气压信号时阀开叫气关式。
在具体选用调节阀气开、气关形式时,应考虑以下情况[1]、考虑事故状态时人身和工艺设备的安全[2]、在事故状态下减少生产原料或动力的消耗浪费,以及保证产品质量。
[3]、考虑介质的性质(防止物料结晶、凝固和堵塞)C、调节阀流量特性的选择调节阀的流量特性是指介质流过阀门的相对流量与阀门相对开度之间的关系。
从过程控制的角度来看,调节阀最重要的特性是它的流量特性。
因为调节阀的特性对整个过程控制系统的品质有很大的影响。
不少控制系统工作不正常,往往是由于调节阀的特性选择不合适,或者是阀芯在使用中受腐蚀、磨损使特性变坏引起的。
调节阀的理想流量特性,就是在调节阀前后压差一定的情况下得到的流量特性。
它取决于阀芯的形状,阀芯的形状有快开、直线、抛物线和等百分比四种。