3.思考: 观察下图,当t=t0时高度h最大,
那么函数 h(t)在此点的导数是多少呢? 此点附近的图象有什么特点?相应地,导数 的符号有什么变化规律?
关注用导数本质及其几何意义解决问题
二、新课讲解——函数的极值:
1. 观察右下图为函数y=2x3-6x2+7的图象,
从图象我们可以看出下面的结论: 函数在X=0的函数值比它附 近所有各点的函数值都大,我 们说f(0)是函数的一个极大值; 函数在X=2的函数值比它附近 所有各点的函数值都小,我们 说f(2)是函数的一个极小值。
又f(1)=10,故1+a+b+a2=10.②
a4 a 3 . 由①、②解得 或 b 11 b 3 2 当a=-3,b=3时, f ( x) 3( x 1) 0 ,此时f(x)在x=1处无
极值,不合题意. f ( x) 3 x 2 8 x 11 (3 x 11)( x 1). 当a=4,b=-11时, -3/11<x<1时, f ( x ) 0 ;x>1时, f ( x ) 0 ,此时x=1是极 值点. 从而所求的解为a=4,b=-11.
b 11 b 3 2 当a=-3,b=3时, f ( x) 3( x 1) 0 ,此时f(x)在x=1处无
-3/11<x<1时, f ( x ) 0 ;x>1时, f ( x ) 0 ,此时x=1是极 值点. 从而所求的解为a=4,b=-11.
例3:已知函数f(x)=-x3+ax2+b.
因此导数为零的点仅是该点为极值点的必 要条件,其充分条件是在这点两侧的导数异号.
一般地,求函数y=f(x)的极值的方法是: 解方程f/(x)=0.当f/(x)=0时: