图形规律
- 格式:doc
- 大小:302.00 KB
- 文档页数:6
图形规律和概念的关系
图形规律和概念之间存在着紧密的关系。
首先,图形规律是指在一系列图形中存在的某种规律或模式。
它可以是图形中数量、形状、颜色、位置等方面的规律。
通过观察和分析一系列图形,我们可以发现它们之间的共同特征或规律,并据此推测出下一个图形的特征。
图形规律可以帮助我们预测图形的变化趋势,从而应用于解决问题或进行预测。
而概念则是对事物的一种抽象概括。
它是对一类事物的共性特征或规律的总结和归纳。
当我们遇到一系列具有相似特征的图形时,我们可以抽象出一个概念,用来描述这类图形的特征或规律。
这个概念可以被应用于其他类似的图形中,从而更快地识别出它们的特征或规律,解决问题或进行预测。
因此,图形规律是具体的、针对某个系列图形的规律,而概念是抽象的、归纳总结出来的对一类事物的共性特征或规律。
通过发现和应用图形规律,可以帮助我们建立和应用相应的概念,从而更好地理解和处理图形之间的关系。
图形的规律总结图形的规律可以是形状或者图案的重复、变化、对称等。
对于一些特定的图形,我们可以通过观察和推理来找出它们的规律,并用数学的方式描述出来。
在这篇文章中,我将总结一些常见的图形规律,并且介绍如何用数学方法来描述它们。
首先,我们来看一些常见的图形规律。
对于一些简单的几何图形,如正方形、矩形和圆形,它们的规律通常是很明显的。
例如,正方形的四条边相等且相互平行,内角都是直角;矩形的对边相等且相互平行,内角仍然是直角;圆形的周长与直径之间有一个固定的比例关系,即π(pi)。
这些规律可以通过观察和测量来确定。
另一个常见的图形规律是图形的对称性。
对称性是指图形可以被分成两个相互对称的部分。
例如,正方形和圆形都具有对称性,因为它们可以通过某条轴线进行折叠,两边完全一致。
而心形和星形则没有对称性,因为它们无法通过任何轴线折叠成两部分。
对称性是一种十分有趣和重要的图形规律,它不仅存在于几何图形中,也存在于自然界中的很多物体和生物体中。
另一种常见的图形规律是图形的重复性。
重复性是指图形中某些元素的不断重复出现。
例如,螺旋线就是一个具有重复性的图形,其中螺旋的形状和方向不断重复出现。
由于图形的重复性,我们可以用一些简单的数学方法来描述它们。
例如,我们可以用数列来描述螺旋线中每个点的坐标,从而得到一个数学模型。
除了上述的常见图形规律外,还有一些更复杂的图形规律存在。
例如,菲波那切数列中的每个数字都是前两个数字的和。
这个数列正是菲波那切螺旋的边长与半径之比。
这个规律的数学描述为:Fn = Fn-1 + Fn-2,其中n>2,Fi表示第i个菲波那切数。
这个规律不仅在螺旋线中存在,还在数学、自然科学、金融等领域中有广泛的应用。
事实上,这个规律是无穷多级的,即每个数字都是前两个数字的和,这使得这个数列有一些奇特的性质。
除了菲波那切数列,还有其他一些数列和图形规律有着类似的特点。
例如,斐波那契数列中的每个数字都是前两个数字的和。
五年级奥数图形找规律学生版⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化;⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.模块一、图形规律——数量规律【例 1】观察这几个图形的变化规律,在横线上画出适当的图形.【例 2】请找出下面哪个图形与其他图形不一样.(1)(2)(3)(4)(5)【例 3】观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
【例 4】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?例题精讲知识点拨4-1-2.图形找规律【巩固】 观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【巩固】 观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形??【例 5】 观察下面的图形,按规律在“?”处填上适当的图形.(5)(4)(3)(2)(1)?【例 6】 观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【例 7】 观察下图中的点群,请回答:(1) 方框内的点群包含 个点;(2) 推测第10个点群中包含 个点; (3)前10个点群中,所有点的总数是 。
【例 8】观察下面由点组成的图形(点群),请回答:(1)方框内的点群包含个点;(2)第(10)个点群中包含个点;(3)前十个点群中,所有点的总数是。
【例 9】下图表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的.仔细观察后,请回答:(1)五层的“宝塔”的最下层包含多少个小三角形?(2)整个五层“宝塔”一共包含多少个小三角形?【例 10】在纸上画5条直线,最多可有个交点。
模块二、图形规律——旋转、轮换型规律【例 11】相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗?○ □ ☆△ ○ □ ☆△△ ○ □ ☆△ ○ □ ☆☆△ ○ □ ☆△ ○ □()()()()()()()()【例 12】下面的图形是按一定规律排列的,请仔细观察,并在“?”处填上适当的图形.(1)?第1组第3组(2)?第1组第3组(3)★★★★★?第3组第2组第1组【例 13】 观察下图的变化规律,画出丙图.甲D CB A乙DABC丙【例 14】 图中的三个图形都是由A 、B 、C 、D [线段或圆]中的两个组合而成,记为A ★B 、C ★D 、A ★D .请你画出表示A ★C 的图形.A ★BC ★DA ★D【例 15】 [希望杯五年级一试第7题,6分]下列四个图形是由四个简单图形A 、B 、C 、D (线段和正方形)组合(记为*)而成。
几何变化规律1、正方形边长扩大(缩小)a倍,周长扩大(缩小)a倍。
面积扩大(缩小)a×a(a2)倍。
2、长方形长和宽同时扩大(缩小)a倍,周长扩大(缩小)a倍,面积扩大(缩小)a×a(a2)倍。
3、正方体棱长扩大(缩小)a倍,棱长之和扩大(缩小)a倍。
表面积扩大(缩小)a×a(a2)倍。
体积扩大(缩小)a×a×a(a3)倍。
4、长方体长、宽、高同时扩大(缩小)a倍,棱长之和扩大(缩小)a倍。
表面积扩大(缩小)a×a(a2)倍。
体积扩大(缩小)a×a×a(a3)倍。
5、长方形拉成平行四边形周长不变,高变短,面积变小。
平行四边形拉成长方形周长不变,高变长,面积变大。
6、周长一定正方形面积最大,长方形次之,平行四边形面积最小。
7、n个长、正方体拼在一起成为长方体新长方体最大表面积=【单个长、正方体表面积–最小面积(两个最小数的乘积)】×(n-1)×2新长方体最小表面积=【单个长、正方体表面积–最大面积(两个最小数的乘积)】×(n-1)×28、边长1分米的的正方体,体积是1立方分米,能分成体积是1立方厘米的小正方体1000个,把这些小正方体排成一行,新的长方体长是1000厘米、高是1厘米、宽是1厘米。
9、煅造和分割都是体积不变,表面积变。
解题时要抓住体积相等进行解答。
10、正方体棱长=正方体棱长之和÷12 正方体一个面面积=正方体表面积÷6长方体(长+宽+高)=棱长之和÷4 长方体高=长方体体积÷底面积11、有一组对面是正方形的长方体,四个侧面面积相等。
表面积=边长×边长×2+边长×高×4上、下 4个侧面。
方法:①观察变化的规律。
②抓住每次变化的规律与图形次数的关系。
一.照这样摆下去。
(n表示的是图形的个数)除了第1根小棒,观察到每摆一个三角形就多2根小棒,也就1. ……是摆几个这样的三角形,就要用几个2根小棒。
同时别忘了,开头的第1根没算进去。
可得,摆n个三角形就有(2n+1)根小棒。
①照这样摆下去,20个三角形要几根小棒?②154根小棒最多可以摆几个这样的三角形?20×2+1= 41(根)(154-1)÷2=76(个)…… 1(根)答:20个三角形要41根小棒。
答:152根小棒最多可以摆76个这样的三角形。
除了第1根小棒,观察到每摆一个正方形就多3根小棒,也就2. ……是摆几个这样的正方形,就要用几个3根小棒。
同时别忘了,开头的第1根没算进去。
可得,摆n个正方形就有(3n+1)根小棒。
①照这样摆下去,20个正方形要几根小棒?②154根小棒最多可以摆几个这样的三角形?20×3+1= 61(根)(154-1)÷3 = 51(个)答:20个三角形要61根小棒。
答:153根小棒最多可以摆51个这样的正方形。
……规律同上3. ……除了第1根小棒,观察到每摆一个正五边形就多4根小棒,也就是摆几个这样的正五形,就要用几个4根小棒。
同时别忘了,开头的第1根没算进去。
可得,摆n个正方形就有(4n+1)根小棒。
①照这样摆下去,20个正五边形要几根小棒?②154根小棒最多可以摆几个这样的正五边形?20×4+1= 81(根)(154-1)÷4 = 38(个)…… 1(根)答:20个正五边形要81根小棒。
答:153根小棒最多可以摆20个这样的正五边形。
4. ……除了第1根小棒,观察到每摆一个正六边形就多5根小棒,也就是摆几个这样的正六边形,就要用几个5根小棒。
同时别忘了,开头的第1根没算进去。
可得,摆n个正六边形就有(5n+1)根小棒。
①照这样摆下去,20个六边形要几根小棒?②154根小棒最多可以摆几个这样的六边形?20×5+1= 101(根)(154-1)÷5 = 30(个)…… 3(根)答:20个正六边形要101根小棒。
找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题: ⑴图形数量的变化; ⑵图形形状的变化; ⑶图形大小的变化; ⑷图形颜色的变化; ⑸图形位置的变化; ⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.模块一、图形规律——数量规律【例 1】 观察这几个图形的变化规律,在横线上画出适当的图形.【例 2】 请找出下面哪个图形与其他图形不一样.(1)(2)(3)(4)(5)【例 3】 观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
【例 4】 观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【巩固】 观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?例题精讲知识点拨4-1-2.图形找规律【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形??【例5】观察下面的图形,按规律在“?”处填上适当的图形.(4)?【例6】观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【例7】观察下图中的点群,请回答:(1)方框内的点群包含个点;(2)推测第10个点群中包含个点;(3)前10个点群中,所有点的总数是。
【例8】观察下面由点组成的图形(点群),请回答:(1)方框内的点群包含个点;(2)第(10)个点群中包含个点;(3)前十个点群中,所有点的总数是。
【例9】下图表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的.仔细观察后,请回答:(1)五层的“宝塔”的最下层包含多少个小三角形?(2)整个五层“宝塔”一共包含多少个小三角形?【例 10】 在纸上画5条直线,最多可有 个交点。
模块二、图形规律—— 旋转、轮换型规律【例 11】 相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗? ○ □ ☆ △ ○ □ ☆ △ △ ○ □ ☆ △ ○ □ ☆ ☆ △ ○ □ ☆ △ ○ □ ()()()()()()()()【例 12】 下面的图形是按一定规律排列的,请仔细观察,并在“?”处填上适当的图形.(1)(2)(3)【例 13】 观察下图的变化规律,画出丙图.甲DA乙BC丙【例 14】 图中的三个图形都是由A 、B 、C 、D (线段或圆)中的两个组合而成,记为A ★B 、C ★D 、A ★D .请你画出表示A ★C 的图形.A★B C★D A★D【例15】(希望杯五年级一试第7题,6分)下列四个图形是由四个简单图形A、B、C、D(线段和正方形)组合(记为*)而成。
数学篇解题指南图形变化问题就是观察一组由简到繁的图形的变化过程,然后归纳猜想,找出一般规律,进而列出通用的代数式的一类问题.我们在解答这类问题时,需从第1、2、3个甚至更多个简单图形开始,分析其变化规律,然后借助代数式推算出后面更复杂图形的变化形式,从而得出结果.图形规律题通常分为“同增幅”与“变增幅”两大类,下面举例予以说明.一、“同增幅”图形的变化规律“同增幅”图形是指相邻两个图形增加的量是相同的,即增幅相等.我们可以借助“做标记”的方法找出相同增幅,从而将图形变化规律转化为数字变化规律,并将数量关系用代数式表示出来.1.单一增加型单一增加型是指图形的变化是以某一个小整体依次连续不断的增加组成的.解答的策略即先观察分析递增的组合图,然后用作差法确定图形变化的增幅,进而探寻图形的变化规律.例1图1为一组有规律的图案,第1个图案由4个基础图形构成,第2个图案由7个基础图形构成,……,第n(n 为正整数)个图案中由__________个基础图形构成.图1分析:该图案每两个之间增加的图形是相同的,即其增加的“幅度”是相等的.可以通过“做标记”(如图1-1所示)的方法将其增加部分表示出来.这样就可以清楚地看出增加的部分是相同的.然后利用归纳和推理找出其中的规律.图1-1解:通过观察和归纳发现:第1个图案:4个基本图形;第2个图案:4个基本图形+3个基本图形(阴影标注),共4+3个基本图形;第3个图案:4个基本图形+3个基本图形(阴影标注)+3个基本图形(空心标注),共4+3+3=4+2×3个基本图形;……由此可以推理出:第n 个图案:4个基本图形+3个基本图形+…+3个基本图形,共4+3+…+3=4+(n -1)×3=3n +1个基本图形;所以,第n 个图案由(3n +1)个基本图形组成.评注:单一增加型图形的变化规律比较明显,同学们只需要耐心地画出两个相连图案之间的增幅,通过观察、归纳和整理即可解题.2.成倍增加型这类图形不是以图形的整体增加组成,而是图形各部分依次成倍地增加,通常很难快速找出增量,需要仔细观察,慢慢分析才可以找到突破口.解答这类问题应分步思考:第一步,把每次增加的部分表示出来;第二步,各部分相加表示出整体;第三步,确定增幅,找出规律.例2如图2,每个图形都是由若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有n(n ≥2)个棋子,每个图案的棋子总数为S ,按下图的分布规律推断,S 与n之间的关系可以用式子_________去表示.19数学篇数苑纵横图2分析:此题的图案是正方形,仔细观察图形可以发现,第2个图案四条边各增加一个棋子,第3个图案每条边各增加2个棋子,增量构成了边长为“2”的正方形.各图案间的增幅构成规则的正方形,且相邻图形的增量是相等的,因此,此题可以转化为求正方形周长问题.图2-1解:用空心圆标注图案“增幅”如图2-1所示.第1图案:4个棋子第2图案:4个棋子+4棋子(空心),即共4+4个棋子;第3图案:4个棋子+4棋子(空心)+4棋子(空心),即共4+2×4棋子;第4图案:4个棋子+4棋子(空心)+4棋子(空心)+4棋子(空心),即共4+3×4个棋子;……由此可以推算出:第n 图案:4个棋子+4棋子(空心)+…+4棋子(空心),即共4+(n -1)×4=4n 个棋子;所以,S =4n.评注:此类题的增幅虽然是“相同”的,但很容易让人产生增幅不等的错觉,同学们在研究分析图形变化规律时,要准确找出相邻图案间的“增幅”.二、“变增幅”图形的变化规律“变增幅”图形变化规律是指相邻两个图形增加的量是不同的.这类问题比较复杂,我们需要仔细观察图案,首先借助“做标记”的方法找到相邻图形之间的变化,并确定变化的增幅,然后找出增幅的数字变化规律,最后例3将一些半径雷同的小圆按如下图的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有_________个小圆.第n 个图形呢?图3分析:此题图案比较复杂,但细细观察可以发现,每个图案的四个角的小圆数量相等,属于不变量.因此我们只需要找出中间小圆的变化规律即可解题.再次观察图案发现,中间的小球相邻的图案每增加一行,同时增加一列,构成一个矩形,如图3-1所示.图3-1解:第1图案:4个球+2球(中间),即共4+2=4+1×2个球;第2图案:4个球+2×3球(中间矩形),即共4+2×3个球;第3图案:4个球+3×4球(中间矩形),即共4+3×4个球;第4图案:4个球+4×5球(中间矩形),即共4+4×5个球;……由此可以推算出:第6图案:4个球+6×7球(中间矩形),即共4+6×7=46个球……第n 图案:4个球+n ×(n +1)球(中间矩形)4+n ×(n +1)=n 2+n +4个球.评注:“变增幅”图形比较复杂,规律比较难寻,但只要我们仔细观察,找出“变”与“不变”的量,问题便可迎刃而解.在解答图形规律题时,同学们要多罗列出前几个图形的变化情况,找出变化趋势,然。
找规律
一、找规律(图形变化规律)
1. 图形重复出现的规律:一般有2组或
2组以上的循环组才是有规律地排列。
重复出现的每组都和第一组相同。
图形组成的规律题型,通常可以分为两类:单一图形组成,多种图形组成。
2.图形排列规律的方法:
(1
)按照颜色重复的规律。
(
2)按照形状重复的规律。
3.找物体的摆放规律,仔细观察一组图形,并找出这组图形是按什么规律排列的,从而可以接着排列图形;也有图形的排列规律不再是重复出现,而是依次增加或者减少几个图形。
4.图形涂色题,要想好“循环组”,即每组有几个图形,分别涂什么颜色,涂几个这样的循环组。
二、图形规律习题:
4
5.根据规律画出被挡住部分的珠子。
6.划去不符合规律的图形和文字,圈出正确的。
7.找规律,填数。
图形规律的解题技巧(一)固定累加的图形规律解题技巧表现形式:大图案中由一种同类小元素构成,且大图案规律性变化时增加的小元素个数相同。
方法:构造一次函数模型步骤:第一步:设大图案的次数为x,大图案中小元素的个数为y,建立一次函数模型:y=kx+b;第二步:用待定系数法求得解析式;第三步:代入解析式,求值。
例题讲解例1:如图,将图1中的菱形剪开得到图2,图中共有4个菱形;将图2中的一个菱形剪开得到图3,图中共有7个菱形;如此剪下去,第5个图中共有个_______菱形……,第n个图中共有______________个菱形。
解析:设大图案的次数为x,大图案中菱形的个数为y,则y=kx+b将(1,1),(2,4)代入得y=3x-2∴当x=5时,菱形个数为43个,当x=n时,菱形个数为(3n-2)个例2:观察下列图形:它们是按一定规律排列的,依照此规律,第2021个图形共有个★.例3:如图是一组有规律的图案,第①个图案中有4个三角形,第②个图案中有7个三角形,第③个图案中有10个三角形…依此规律,第⑦个图案中有( )个三角形A.19B.21C.22D.2例4:用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n 个图案中正三角形的个数为 (用含n 的代数式表示).例5:按如下规律摆放三角形:则第(4)堆三角形的个数为_____________;第(n)堆三角形的个数为_____________.《固定累加的图形规律解题技巧》演练题1.下列图形都是由面积为1的正方形按一定的规律组成的,其中,第个图形中面积为1的正方形有9个,第2 个图形中面积为1的正方形有14个,……,按此规律,则第几个图形中面积为1的正方形的个数为2019个A.400B.401C.402D.4032.如图是由相同大小的圆圈按照一定规律摆放而成,按此规律,则第n 个图形中圆圈的个数为( )A.n+1B. n n 2C.4n+1D. 2n-13.小明家的窗户上有一些精致花纹,小明对此非常感兴趣,他观察发现窗格的花纹排列呈现一定规律,如图,其中“○”代表的就是精致的花纹,请问有47个精致花纹的是第( )个图。
图形中的规律在数学中,图形中的规律是一个非常重要且有趣的领域。
通过分析图形的形状、线条、角度以及其他特征,我们可以揭示出隐藏在表面之下的数学规律和关系。
本文将探讨不同类型的图形,并研究它们中所蕴含的规律。
一、三角形的规律三角形是最基本的图形之一,其具有丰富的规律性质。
首先,我们来探讨等边三角形。
等边三角形的特点是三条边都相等,且三个角也相等。
这种规律性质使得等边三角形在很多问题中被广泛应用。
另外一个有趣的三角形规律是勾股定理。
勾股定理表明,在一个直角三角形中,直角边的平方等于其他两条边平方的和。
这个定理被广泛应用于测量和几何计算中。
此外,三角形的内角和也具有规律性。
在任意一个三角形中,三个内角的和总是等于180度。
这个规律可以通过角度的补充和角度的外角和内角之和来得到。
二、四边形的规律四边形是指具有四个边的图形。
常见的四边形包括正方形、矩形、菱形和平行四边形。
每种四边形都有其特定的规律。
首先是正方形,它具有四个相等的边和四个相等的角。
正方形的对角线相等且垂直于彼此,这是正方形独特的特征。
矩形是具有四个直角的四边形,其相邻边相等。
矩形的对角线相等且互相平分,这是矩形的特点。
菱形是四边形中另一个有趣的形状,其所有边都相等。
菱形的对角线相互垂直且平分,这是菱形的重要特征。
平行四边形的对边平行且相等,对角线互相平分。
平行四边形的内角和等于360度。
三、圆形的规律圆形是由一个中心点和半径组成的曲线。
圆形具有很多有趣的规律性质。
首先,在一个圆中,半径与圆周上的任意两点连线构成的角均相等。
这个规律被称为圆心角。
其次,在一个圆中,两点连线的垂直平分线必定通过圆心。
这是圆的另一个重要特征。
此外,圆的面积和周长也有规律可循。
圆的面积等于π乘以半径的平方,而周长等于2π乘以半径。
四、图形的递归规律递归规律是指图形中包含了自相似的结构,在不同的尺度上重复出现。
例如,菲波那契数列展示了递归规律。
在菲波那契数列中,每个数都是前两个数之和。
图形规律1.大小变化2.方向旋转3.笔画增减(数字,线条数)4.图形求同5.相同部份去掉6.图形叠加(简单叠加,合并叠加,去同叠加)7.图形组合变化(如:首尾两个图形中都包含中间图形)8.对应位置阴影变化(两图相同或不同则第三图对应位置变阴影或变空白)9.顺时针或逆时针旋转10.总笔画成等差数列11.由内向外逐步包含12.相同部件,上下,左右组合13.类似组合(如平行,图形个数一样等)14.横竖线条之比有规律(如横线3条竖线4条,横线4条竖线5条等)15.缺口相似或变化趋势相似(如逐步远离或靠近)16.图形运动变化(同一个图形从各个角度看的不同样子)17.图形拆分(有三个图构成,后两个图为第一个图的构成部件)18.线条交点数有规律19.方向规律(上,下,左,右)20.相隔一个图形分别对称(如:以第三个图为中心,1和5对称,2和4对称)21.含义依据条件而变(如一个错号,可以表"划",也可以表示"两划")22.图形趋势明显(点或图形从左到右,从上到下变化等)23.图形的上,中,下部分分别变化(求同,重叠,或去同叠加)24.相似类(包含,平行,覆盖,相交,不同图形组成,含同一图形等)25.上,中,下各部分别翻转变化26.角的度数有规律27.阴影重合变空白28.翻转,叠加,再翻转30.与特定线的交点数相同(如:与折线的交点数有规律,有直线的交点数不用考虑)31.图形有多条对称轴,且有共同交点,轴对称图形(如正三角形,正方形)32.平行,上下移动33.图形翻转对称34.图形边上角的个数增多或减少35.不同图形叠加形成新图36.图形中某条线均为长线或短线(寻找共同部分)37.线段间距离共性.(如:直线上有几个点,分成几条线段,上部覆盖有另一个图形,如圆,三角形等,但是上面的图形占的位置都不大于最外面两点间的距离)38.图形外围,内部分别顺或逆时针旋转(内外部变化相反)39.特殊位置变化有规律(如当水平时,垂直时图形有一规律)40.各图形组成部件属于同一类(如:均为三条曲线相交)41.以第几幅图为中心进行变化(如:旋转,走近,相反等)42.求共同部分再加点变化(如:提出共同部分,然后让共同部分都变黑什么的)43.除去共同部分有规律44.数线段出头数,有规律(成等差数列,或有明显规律)45.图形每行空间数相同46.以中间图形为中心,上下,对角分别成对称47.先递增再递减规律48.整套图形横着看,或竖着看,分别有规律.49.注意考虑图形部分变化(如:分别为上下不变中间变化,然后上中下一起变化,左右分别变化,左右一起变化等)50.顺着次序变化.(如:原来在内部的放大变为外部图形,内部图形相应变化.左右组成的图,上一个右边图等于下个左边图,右边再加个新图,如此循环)第三部分、判断推理最关键的地方,看清题目,问的是不能还是能,加强还是削弱(是否有“除了”这个词)一.最多与最少概念之间的关系主要可以分为三大类:一是包含,如“江苏人”与“南京人”;二是交叉,如“江苏人”与“学生”;三是全异,如“江苏人”与“北京人”。
找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题:⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化;⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.模块一、图形规律——数量规律【例 1】观察这几个图形的变化规律,在横线上画出适当的图形.【考点】图形找规律【难度】1星【题型】填空【解析】几个图形的边数依次增加,因此横线上应为一个七边形.【答案】七边形【例 2】请找出下面哪个图形与其他图形不一样.(1)(2)(3)(4)(5)【考点】图形找规律【难度】1星【题型】填空【解析】这组图形的共同特征是,连接各边上一点,组成一个复合图形.所不同的是,第四个图形是一个六边形,而其它几个都是四边形,这样,只有(4)与其它不一样【答案】(4)【例 3】观察图形变化规律,在右边补上一幅,使它成为一个完整系列。
【考点】图形找规律【难度】2星【题型】填空【解析】观察发现,乌龟的顺序是:头、身→一只脚、背上一个点→两只脚、背上两个点→两只脚、一条尾、背上三个点→三只脚、一条尾、背上四个点,根据这个规律,最后一幅图应该是:→四只脚、一条尾、背上五个点.即:【答案】例题精讲知识点拨4-1-2.图形找规律【例 4】 观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【考点】图形找规律 【难度】2星 【题型】填空 【解析】 横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个圆形。
【答案】圆形【巩固】 观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【考点】图形找规律 【难度】2星 【题型】填空 【解析】 (方法一)横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按5、4、3、?、1的顺序变化的,显然“?”处应填一个圆形.(方法二)竖着看,圆形由左而右依次减少,而三角形由左而右依次增加,圆形按照5、4、?、2、1的顺序变化,也可以看出 “?”处应是圆形.【答案】圆形【巩固】 观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形??【考点】图形找规律 【难度】2星 【题型】填空 【解析】 (方法一)横着看,每行三角形的个数依次减少,而正方形的个数依次增加,但每行图形的总个数不变.因为三角形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个三角形△.(方法二)竖着看,三角形由左而右依次减少,而正方形由左而右依次增加,三角形按照4、?、2、1的顺序变化,也可以看出 “?”处应是三角形△.【答案】△【例 5】 观察下面的图形,按规律在“?”处填上适当的图形.(5)(4)(3)(2)(1)?【考点】图形找规律 【难度】2星 【题型】填空 【解析】 本题中,几何图形的变化表现在数量关系上,图中黑三角形的个数从左到右依次增多,从(2)起,每一个格比前面一个格多两个黑三角形,所以,第(4)个方框中应填七个黑三角形.【答案】七个黑三角形【例 6】 观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【考点】图形找规律 【难度】2星 【题型】填空 【解析】 第一格有8个圆圈,第二格有4个圆圈,第三格有2个圆圈,第四格有1个圆圈,第五格有半个圆圈.由此发现,前一格中的图减少一般,正好是后一格的图.所以第六格的图应该是第五格图的一半,即:【答案】【例 7】观察下图中的点群,请回答:(1)方框内的点群包含个点;(2)推测第10个点群中包含个点;(3)前10个点群中,所有点的总数是。
图形规律排序操作方法
图形规律是指一组图形按照某种规律排序的方法。
常见的图形规律包括形状、颜色、大小、方向等方面的变化。
下面是一些常见的图形规律排序操作方法:
1. 观察形状:将图形按照形状进行分类,如圆形、方形、三角形等,然后按照分类顺序进行排序。
2. 观察颜色:将图形按照颜色进行分类,如红色、蓝色、绿色等,然后按照分类顺序进行排序。
3. 观察大小:将图形按照大小进行分类,如大、中、小,然后按照分类顺序进行排序。
4. 观察方向:将图形按照方向进行分类,如垂直、水平、斜向等,然后按照分类顺序进行排序。
5. 综合多个属性:将图形按照多个属性组合进行分类和排序,如先按颜色分类,再按形状分类。
6. 观察重复模式:找出图形之间的重复规律,按照重复的模式进行排序。
以上是常见的图形规律排序操作方法,根据具体的图形规律,可以选择合适的方法进行排序。
图形找规律知识框架找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题:⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化;⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.例题精讲一、图形规律——数量规律【例 1】观察下图中的点群,请回答:(1)方框内的点群包含个点;(2)推测第10个点群中包含个点;(3)前10个点群中,所有点的总数是。
【考点】图形找规律【难度】3星【题型】填空【解析】(1)数一数,前4个点群包含的点数分别是:1,4,9,16.不难发现,1=1×1,4=2×2,9=3×3,16=4×4,按照这个规律,第5个点群(即方框中的点群)包含的点数是:5×5=25(个).(2)按发现的规律推出,第十个点群的点数是:10×10=100(个).(3)前十个点群,所有的点数是:【答案】(1)25,(2)100,(3)385【巩固】观察下面由点组成的图形(点群),请回答:(1)方框内的点群包含个点;(2)第(10)个点群中包含个点;(3)前十个点群中,所有点的总数是。
【考点】图形找规律【难度】3星【题型】填空【解析】(1)数一数可知:前四个点群中包含的点数分别是:1,4,7,10.可以看出,在每相邻的两个数中,后一个数都比前一个数大3.因为方框内应是第(5)个点群,它的点数应该是10+3=13(个).(2)列表,依次写出各点群的点数,可知第(10)个点群包含有28个点.(3)前十个点群,所有点的总数是:1+4+7+10+13+16+19+22+25+28=145(个)【答案】(1)13,(2)28,(3)145【例 2】下图表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的.仔细观察后,请回答:(1)五层的“宝塔”的最下层包含多少个小三角形?(2)整个五层“宝塔”一共包含多少个小三角形?【考点】图形找规律【难度】3星【题型】解答【解析】(1)数一数“宝塔”每层包含的小三角形数:可见1,3,5,7是个奇数列,所以由这个规律猜出第五层应包含的小三角形是9个.(2)整个五层塔共包含的小三角形个数是:1+3+5+7+9=25(个).【答案】(1)9,(2)25二、图形规律——旋转、轮换型规律【例 3】琪琪特别喜欢蝴蝶,她用直尺和圆规在纸上画了9幅蝴蝶图,并用剪刀将它们一一剪下来.她将这9只纸蝴蝶摆在桌上,见下图1,她发现这些纸蝴蝶排列挺有规律,突然一阵风来,吹走了3只纸蝴蝶,见下图2.你能找出蝴蝶的排列规律,将图2的3只蝴蝶放入图1的空缺处吗?【考点】图形找规律 【难度】2星 【题型】填空【解析】 从已摆好的第一行和第一列来看,无论横看或竖看,同一行中3只蝴蝶的翅膀形状各不相同,翅膀上的斑点的形状也各不相同.根据这个规律,剩下的3只蝴蝶图案的排列应该是:6号位置放图案C ;8号位置放图案B ;9号位置放图案A .【答案】A【例 4】 下面的每一个图形都是由△,□,○中的两个构成的。
三年级奥数:图形推理(A)
年级班姓名得分
一、填空题
1.下图是按照一定规律排列起来的,请按这一规律在“?”处画出适当的图形.
2.按照图形的变化规律,在“?”处画出相符的图形.
3.在图中找出与众不同的那个图形( ).
(1) (2) (3) (4) (5) (6)
4.下图看似复杂,实际上只要你找到合适的方法,你就不费吹灰之力就可以解答出来,试试看,好吗?
5.请找一找图形的变化规律,在空格处画出恰当的图形.
6.
.
?
?
?
7.找一下规律,从a ,b ,c ,d ,e 中选入一幅图填入空格内.
8.按照下列图形的变化规律,空白处应是什么样的图形.
9.按规律填图.
如果
变成
那么
应变为
10.下面一组图形的阴影变化是有规律的,请根据这个规律把第四幅图的阴影部分画出来.
二、解答题
11.图中,哪个图形与众不同?
(1) (2) (3) (4) (5)
12.有一个立方体,每个面上分别写上数字1、2、3、4、5、6、,有3个人 从不同的角度观察的结果如下图所示,这个立方体的每一个数字的对面各是什么?
?
数字?
13.一个正锥体(正四面体)各面分别写着1、2、3、4,把它放在一张雪花格上,如果顺时针方向转一圈,回到原地,各面将是什么数字?
14.下面是由几何图形组成的帆船图形,请按照一定的规律,在标序号处画出符合规律的小帆船.
———————————————答 案——————————————————————
1. 这一组图形我们应该从两方面来看:一是旗子的方向,二是旗子上星星的颗数.
首先我们看一下旗子的方向.第1面旗子向右,第2面向上,第4面向下,可以发现,旗子的方向是按逆时针旋转的,并依次旋转︒90,所以第3面旗子应是第2面逆时针旋转︒90得来的,旗子应向下倒立.
其次我们看旗上星星的颗数.第1面是5颗,第2面是4颗,第4面是2颗,可见颗数是依次减少1颗,所以第3面旗上应是3颗星星.所以“?”处的图形应为:
1 2 3 4 5 6 1 3
4 ① ② ③
2. 这组图形的变化只在于正方形中阴影部分的位置.通过观察,我们可以发现阴影部分是按照逆时针方向依次旋转︒
90得到的.所以“?”处的图形应为:
3. 选(4).因为变化规律是从左到右依次逆时针旋转︒
90.
4. 在这组图形中,不变的有以下几点:大小正方形不变,两条对角线不变.所以“?”处也应有大小两个正方形和两条对角线.发生变化的有:一、阴影部分和黑色部分的位置.通过观察,我们可以看出这两部分都是按逆时针方向依次旋转︒
90得到的,所以“?”处的阴影部分应是小正方形的右边,黑色部分应在大正方形的下部.二、小竖线的位置.小竖线是从图形中心到相应的边所作的一条垂线.它的变化规律是按逆时针方向依次旋转︒
90,这样,整个图形我们就分析完了,下面看一看你画出的图形和书上的一样吗?如果一样,就做对了.
5. 因为要填的是第1幅图,我们可以从后往前看.首先三角形的个数是发生变化的,依次是7、5、3.可以发现是从后向前依次减少2个的.所以第1幅图中应有1个三角形.其次三角形的方向也是有变化的,从后面观察,三角形是按逆时针方向依次旋转︒
90,所以第1幅图中的三角形应向上,阴影部分在右边.如下图所示:
6. 横行观察,圆的个数逐次减少1个,所以到第4行,圆的个数应为1,所以“?”处应是“△”.
或者从三角形考虑,三角形的个数为0、1、2,是逐次增加1,所以第4行中三角形的个数应为3,所以“?”处应为“△”
所以最后的图形为:
7. 选a.根据对角图形规律,可知右下角图形是a图.
8. 分析:先看不变的部分.在整个变化过程中,图形中大、小两个圆圈没有变化,因此可以肯定空白处的图形一定也有大、小两个圆圈,位置一里一外.
变化的部分可为两部分:①图形中的直线部分,其变化规律是每次顺时针旋转︒
90,黑色部分交替90;②图形中的阴影部分,其变化规律是每次逆时针旋转︒
出现.
解:根据上面的分析,可画出空白处的图形如图所示.
9. 先应找出变化的规律,然后再依此规律,在空白处填画出所缺的图形.
从第一行可以看到,当左边的图形变成右边的图形时,下部图形移到上面,里面的图形移到下面,上面的外部图形移到里面,各部分的颜色都没有变.根据这一规律,我们可以把下面图形变为:
10. 先看第1行,阴影部分所在的位置是1、2、3.是逐次向后一个,所以第四幅图中第1行的阴影部分应在第4格.同样,第2行是2、3、4.4再向后应是5了,但没有第5个格,所以折回到第1个格.同理可推出第3行的阴影部分在第2格,第4行的阴影部分在第3格.
还可以这样想:在同一行中,阴影部分都不在同一位置,所以第1行已经被占去了第1、2、3格,所以第四幅图的第一行阴影部分一定是第4格,同理推出第2、3、4行中阴影部分的位置.
.
11. ,车轮一致,车底一致,差异就只能在车头、车身部分去寻找.从车身看,(3)与众不同,只用一笔画成,可是它的车头与(1)同;从车头看:(2)与众不同,(因车头(1)与(3)同,(4)与(5)同),但是(2)的车身与(1)、(4)、(5)类似.所以从车头、车身这些特征比较出来的图形,理由不足以说服人.我们把目光转移到笔划多少上,就可以找到与众不一的车辆了.
解:与众不同的汽车是(1).其他四车均是由一个矩形、两个圆以及四条直线段、一段弧线画成,而(1)多一条直线段.
12. 这个题目并不难.但是,推理方法不正确的话,也很难看出答案.直接考虑数字1的对面是什么数,想不出来.不妨换一种思维方式,想一想1的对面不是什么数.从第1个图看出1的对面不是4和6;从第2个图看出1的对面不是2和3,所以1的对面只能是5.同样的方法可以得到,4的对面是2;3的对面是6.
13. 因为正锥体的每个顶点连接三个面.当正锥体在雪花格纸上按顺时针方向旋转时,只有写有1、2、4三面所围出的顶点一直在雪花格的中心,所以只有1、2、4贴纸面旋转,雪花格有6个小格,正好可以转两圈,所以回到原地各面数字仍是原样分布.
14.每一只小帆船都由三部分组成:船体、帆和小旗.这三部分都是变化的,
另外船体的颜色也是变化的.下面我们逐一来分析.
①船体的形状:帆船的船体都是由半圆、梯形、三角形组成,并且每一横行(或竖行)都没有重复.按照这一规律,我们可以确定船体的形状.因为①所在的位置横行、竖行都只有1个图形,所以不能确定,可以先确定②或③.看②所在的横行,
和
所以②的船体形状应为梯形.看①所在的竖行
,有
看③所在的竖行,②船体的颜色.每一横行(或竖行)都由阴影、黑色、白色三色组成,并且在同一行中没有重复颜色,根据这一规律,确定出①号船体为白色,②号船体为黑色, ③号船体为黑色.
③帆船的形状. ④小旗的形状.
最后的答案为:
① ② ③
确定方法和前面一样.。