四壳程低温换热器的设计
- 格式:pdf
- 大小:520.50 KB
- 文档页数:4
(1)计算定性温度,确定物理常数:管程t ,壳程T 。
密度ρ,比热c p ,粘度µ,导热系数λ,T 壳程 , t 管程(2)计算对数平均温差,R=1221T T t t -- S=2111t t T t --,Q=W S C PS (T 1-T 2)= W I C Pi (t 2-t 1) 求出冷流体的流量W i (3)修正温差系数t m t t ε∆∆=∆假定总传热系数K, 列管式换热器中的总传热系数K 的经验值(4)下标i、o、m分别表示管内、管外和平均计算所需传热面积,根据传热面积选管径,管长,管心距,确定管根数N t 。
管径和管内流速 选用Φ25×2.5较高级冷拔传热管(碳钢),取管内流速管程数和传热管数 可依据传热管内径和流速确定单程传热管数Ns=24i Vd u π按单程管计算,所需的传热管长度为 L=po sA d n π按单程管设计,传热管长l ,宜采用多管程结构。
根据设计实际情况,采用非标设计,则换热器的管程数为Np=Ll传热管总根数 Nt=Ns*Np(5)计算壳程直径D s ,算出后根据具体情况决定直径D s 。
(6)分别计算管程与壳程的传热系数1.管程传热系数每程管侧的流路面积为A t =πdi2NT/4ntpassG i =Wt/atRe= di GI/µi查壳程传热系数与折流板圆缺关系图查出JH ,计算出hIh i = JHGICPi(cpµ/λ)-2/3(µ/µw)-0.14忽略粘度矫正µ/µw=12.壳程传热系数A.计算理想的管排传热系数hcB.计算JcC.计算JlD.计算JbE.计算JsF.计算hh 0=hcJcJlJbJsJr计算总传热系数核算总传热系数(7)1.计算管程与壳程的压力降p T =pt+pr+pn+pce= Gi 2/2ρ(1.5/ntpass+4FlS/di*1/Φtr+KC+KE+K)ntpassKC =0.3 KE=0.2 K=4 Φtr黏度校正系数Ret﹥2100,为(µ/µw)-0.14;Ret <2100,为(µ/µw)0.25 f为摩擦系数Ret﹥2100,为16/Ret;Ret <2100,为0.04/Ret0.162.计算壳程压力降BELL法管束中错流部分压力降+折流板缺口窗中压力降+进出口压力降。
换热器壳程数-概述说明以及解释1.引言1.1 概述换热器是一种常用的热交换设备,广泛应用于工业生产和生活中。
它通过传递热量来实现两种介质之间的能量转移,以满足不同系统的热平衡需求。
在换热器的设计和运行中,壳程数作为一个重要的参数起着关键作用。
壳程数是指换热器中流体流动的通道数量。
换热器根据介质流动的路径分为壳程和管程,通常壳程是相对较大的流道,而管程则是用于通过壳程流动的管道。
壳程数指的是壳程中的流体通道数量。
换热器的壳程数的选择和设计直接影响到换热器的性能和效果。
壳程数的选择需要考虑多种因素,如换热介质的性质、换热器的工作条件、换热效率的要求等。
壳程数的不同选择会影响到介质流动的速度、温度场分布以及传热系数等参数,从而影响到换热器的热交换效果。
在本文中,我们将探讨壳程数对换热器性能的影响因素和重要性。
我们将分析壳程数的定义与意义,深入了解壳程数对换热器传热效果的影响机理。
此外,我们还将展望未来对壳程数的研究和应用前景,以期为优化换热器设计和提高热交换效率提供新的思路和方法。
通过深入研究和分析壳程数相关的理论和实践,我们可以更加全面地认识到换热器壳程数在换热过程中的重要性。
相信本文的探讨将对换热器设计和优化提供有益的参考。
1.2 文章结构文章结构部分的内容可以写成以下形式:文章结构:本文包括引言、正文和结论三个部分。
引言部分概述了文章的背景和目的。
首先,引言中将简要说明换热器的基本原理以及其在工业中的应用广泛。
同时,介绍了本文将要探讨的主题——换热器的壳程数。
正文部分将深入探讨壳程数的定义与意义以及其影响因素。
首先,我们将详细介绍壳程数的定义,包括其涵义和计算方法。
其次,我们将探讨壳程数在换热器设计和性能评估中的重要性。
最后,我们会分析壳程数的影响因素,包括流体性质、换热器结构和工艺要求等方面。
结论部分将对本文的主要观点进行总结和展望。
首先,我们将总结出壳程数对换热器的重要性,并强调其在工业应用中的价值。
四管程固定管板式换热器设计一、引言固定管板式换热器是一种常见的换热设备,广泛应用于化工、石油、冶金等工业领域。
它由固定管板和流板组成,通过管壳两端的进出口与流体进行热交换。
本文将设计一个四管程固定管板式换热器,并详细介绍其设计过程。
二、设计要求1.换热介质:水2.进口温度:70°C3.出口温度:40°C4.换热面积:根据流量计算得出5.板式换热器型号:根据换热面积选取三、设计过程1.换热面积的计算换热面积的计算公式为:A = Q / (U × ΔTlm)其中,A为换热面积,Q为换热量,U为传热系数,ΔTlm为对数平均温差。
根据水流量和温差计算得到的换热量,再结合所选型号的板式换热器的传热系数,可以计算出换热面积。
2.板式换热器的选取根据计算得到的换热面积,选择合适的型号的板式换热器。
在选型时,要考虑换热器的材质、耐压性能、传热系数等因素。
3.管程的设计四、设计结果根据设计要求和计算过程,可以得出四管程固定管板式换热器的设计结果。
1.换热面积:根据计算结果得出换热面积为X平方米。
2.板式换热器型号:根据换热面积和选取条件,最终确定使用XX型号的板式换热器。
3.管程设计:根据流体的温度差和流速等因素,按照长度逐渐增加的方式,确定四个管程的设计。
五、结论本文根据给定的设计要求,设计了一个四管程固定管板式换热器,并详细介绍了设计过程。
设计结果包括换热面积、板式换热器型号和管程设计。
通过本文的设计,可以满足给定的换热要求,并提供一个可行的四管程固定管板式换热器设计方案。
(1)换热管的排列方式为转角正方形排列,如下图所示布管(2)换热管中心距所选换热管d=25mm,换热管中心距宜不小于1.25倍的换热管外径, 查国标得换热管中心距S=32mm(3)布管限定圆(&)转甬正方形排列n L布管限定圆直径D——圆簡内直径mm;布管限定圆直径D L二D i-2b3b3=0.25d=0.25x 25=6.25mm(一般情况下不小于8mm)•••取b3=8.5DiD L二D i-2b3=500—2X 8.5 = 483mm具体布管图如附图U型管换热器的设计与校核1由工艺设计给定壳体公称直径为500mm,壳程的最高工作压力为1.2MPa,管程最高工作压力为1.5MPa,壳程液体进口温度为70C,出口温度为110C;管程液体进口温度180C,出口温度125C;管长为6000mm, 4管程单壳程的换热器。
原油的黏度大,因此壳程走原油,管程走被冷却的柴油。
2筒体壁厚设计由工艺设计给定设计温度为150C,选用低合金钢Q345R。
查GB 150 一2011 可知:150C时Q345R 的许用应力「50=189MPa,厚度暂取3〜16mm,焊接采用双面对接焊局部无损探伤检测,焊接系数=0.85,钢板的厚度负偏差按GB/T 709 一2006查3B类钢板得钢板负偏差为0=0.3,腐蚀裕量C2=3mm,设计压力为最大工作压力的1.05~1.1倍,由工艺设计给定壳程的最高工作压力为1.2MPa(绝);表压二绝压一当地大气压=1.2Mpa- 101.3kpa=1.1Mpa••• P c=(1.05~1.1)x 1.1=1.2Mpa计算壁厚t=( P c D i/2[ S ]冷-P c) + C1+ C2= 5.175mm由于管壳式换热器在工作过程中除承受内压外还受到温差应力、支座反力和自重等载荷的作用,因此壳体壁厚应比计算值大,对碳素钢和低合金钢应满足GB 151 一1999的最小厚度要求,查得U型管式换热器的壁厚应不小于8mm,圆整后取钢板名义厚度t n=8mm。
换热器设计:一:确定设计方案:1、选择换热器的类型两流体温度变化情况,热流体进口温度130°C,出口温度80°C;冷流体进口温度40°C,出口温度65°C。
该换热器用自来水冷却柴油,油品压力0.9MP,考虑到流体温差较大以及壳程压强0.9MP,初步确定为浮头式的列管式换热器。
2、流动空间及流速的确定由于冷却水容易结垢,为便于清洗,应使水走管程,柴油走壳程。
从热交换角度,柴油走壳程可以与空气进行热交换,增大传热强度。
选用Φ25×2.5 mm的10号碳钢管。
二、确定物性数据定性温度:可取流体进口温度的平均值。
壳程柴油的定性温度为T1=130°C,T2=80°C,t1=40°C,t2=65°CT=(130+80)/2=105(°C)管程水的定性温度为t=(40+65)/2=52.5(°C)已知壳程和管程流体的有关物性数据柴油105°C下的有关物性数据如下:ρ=840 kg/m3密度定压比热容C o=2.15 kJ/(kg·k)导热系数λo=0.122 W/(m·k)粘度µo=6.7×10-4N·s/m2水52.5°C的有关物性数据如下:ρ=988 kg/m3密度iC=4.175 kJ/(kg·k)定压比热容iλ=0.65 W/(m·k)导热系数i粘度 µi =4.9×10-4 N·s/m 2三、计算总传热系数1.热流量m 0=95000(kg/h)Q 0= m 0C o Δt o =95000×2.15×(130-80)=10212500kJ/h=2836.8(kw) 2.平均传热温差m t '∆=(Δt 1-Δt 2 )/ln (Δt 1/Δt 2)=[(130-65)-(80-40)]/ln[(130-65)/(80-40)]=51.5(°C) 其中Δt 1=T 1-t 2,Δt 2=T 2-t 1。
一、设计题目:设计一台换热器二、操作条件:1、煤油:入口温度140℃,出口温度40℃。
2、冷却介质:循环水,入口温度35℃。
3、允许压强降:不大于1×105Pa。
4、每年按330天计,每天24小时连续运行。
三、设备型式:管壳式换热器四、处理能力:114000吨/年煤油五、设计要求:1、选定管壳式换热器的种类和工艺流程。
2、管壳式换热器的工艺计算和主要的工艺尺寸设计。
3、设计结果概要或设计结果一览表。
4、设备简图(要求按比例画出主要结构及尺寸)。
5、对本设计的评述及有关问题的讨论。
第1章设计概述1、1热量传递的概念与意义[1](205)1、1、1 传热的概念所谓的传热(又称热传递)就是间壁两侧两种流体之间的热量传递问题。
由热力学第二定律可知,凡是有温差存在时,就必然发生热量从高温处传递到低温处,因此传热是自然界和工程技领域中极普遍的一种传递现象。
1、1、2 传热的意义化工生产中的很多过程和单元操作,都需要进行加热和冷却,如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量,又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。
所以传热是最常见的重要单元操作之一。
无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。
此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。
归纳起来化工生产中对传热过程的要求经常有以下两种情况:①强化传热过程,如各种换热设备中的传热。
②削弱传热过程,如设备和管道的保温,以减少热损失。
1、2 换热器的概念与意义[2]1、2、1 换热器的概念在不同温度的流体间传递热能的装置称为热交设备,简称为换热器。
在换热器中至少要有两种不同的流体,一种流体温度较高,放出热量:另一种流体则温度较低,吸收热量。
换热器毕业设计论文This model paper was revised by the Standardization Office on December 10, 2020第1章浮头式换热器是管壳式换热器系列中的一种,它的特点是两端管板只有一端与外壳固定死,另一端可相对壳体滑移,称为浮头。
浮头式换热器由于管束的膨胀不受壳体的约束,因此不会因管束之间的差胀而产生温差热应力,另外浮头式换热器的优点还在于拆卸方便,易清洗,在化工工业中应用非常广泛。
本文对浮头式换热器进行了整体的设计,按照设计要求,在结构的选取上,即壳侧两程,管侧四程。
首先,通过换热计算确定换热面积与管子的根数初步选定结构,然后按照设计的要求以及一系列国际标准进行结构设计,设计的前半部分是工艺计算部分,主要设根据设计传热系数、压强校核、壳程压降、管程压降的计算;设计的后半部分则是关于结构和强度的设计。
主要是根据已经选定的换热器型式进行设备内各零部件(如壳体、折流板、管箱固定管板、分程隔板、拉杆、进出口管、浮头箱、浮头、支座、法兰、补强圈)的设计。
换热器是国民经济和工业生产领域中应用十分广泛的热量交换设备。
随着现代新工艺、新技术、新材料的不断开发和能源问题的日趋严重,世界各国已普遍把石油化工深度加工和能源综合利用摆到十分重要的位置。
换热器因而面临着新的挑战。
换热器的性能对产品质量、能量利用率以及系统运行的经济性和可靠性起着重要的作用,有时甚至是决定性的作用。
目前在发达的工业国家热回收率已达96%。
换热设备在现代装置中约占设备总重30%左右,其中管壳式换热器仍然占绝对的优势,约70%。
其余30%为各类高效紧凑式换热器、新型热管热泵和蓄热器等设备。
其中板式、螺旋板式、板翅式以及各类高效传热元件的发展十分迅速。
在继续提高设备热效率的同时,促进换热设备的结构紧凑性,产品系列化、标准化和专业化,并朝大型化的方向发展。
浮头式换热器是管壳式换热器系列中的一种。
换热器的设计型计算Q=q m1C p1(T 1-T 2)=q m2C p2(t 2-t 1)Q=KA ∆t m 2211221A A A 1αλδα++=m A K(无相变传热过程,Re>104,Pr>0.7, bd PrRe .,.80210230λαα=()()12211221t T t T t T tT t m -----=∆ln 1、 设计型计算的命题给定生产任务:q m1,T 1→T 2(or q m2,t 1→t 2)选择工艺条件:t 1,t 2计算目的:换热器传热面积A 及其它有关尺寸(管子规格,根数);qm2特点:结果的非唯一性。
2、 计算公式: 质量衡算:p V N nu d q ⋅⋅=24π热量衡算:Q=q m1C p1(T 1-T 2)=q m2C p2(t 2-t 1)传热速率式:Q=KA ∆t m3、 计算方法:1)计算换热器的热流量)(2111T T Cp q Q m -=2)作出适当的选择并计算平均推动力m t ∆),,,,(2121流向t t T T f t m =∆∴必须选择A 、流向(逆流.并流.复杂流动方式)B 、选择冷却介质出口温度3)计算冷热流体与管壁的对流体给热系数和总传热系数必须选择:A 、冷,热流体各走管内还是管外B 、选择适当的流速C 、选择适当的污垢热阻4)由传热基本方程m t KA Q ∆=计算传热面积关键是:条件参数的选择!4、 条件参数的选择选择的原则:技术可行,经济合理1) t 1:决定于工艺需要,现实条件,经济性。
温度要求不很低,以水为冷却剂时,应以夏季水温为设计温度更安全。
2)t 2:技术:理论上t2可选范围经济性:q m1C p1(T 1-T 2)=q m2C p2(t 2-t 1)t 2越大,q m2消耗越少,↓1122p m p m C q C q⇒经常性操作费用少但∆t m ↓,同时q m2↓可能导致K ↓则mt K Q A ∆⋅=↑⇒设备投资费用大 ∴有经济优化问题。
换热器的设计1.1换热器概述换热器是化工、石油、动力、食品及其它许多任务业部门的通用设备,在生产中占有重要地位。
换热器种类很多,但根据冷、热流体热量交换的原理和方式根本上可分三大类即:间壁式、混合式和蓄热式。
在三类换热器中,间壁式换热器应用最多。
换热器随着换热目的的不同,具体可分为加热器、冷却器、蒸发器、冷凝器,再沸器和热交换器等。
由于使用条件的不同,换热设备又有各种各样的形式和构造。
换热器选型时需要考虑的因素是多方面的,主要有:①热负荷及流量大小;②流体的性质;③温度、压力及允许压降的围;④对清洗、维修的要求;⑤设备构造、材料、尺寸、重量;⑥价格、使用平安性和寿命;按照换热面积的形状和构造进展分类可分为管型、板型和其它型式的换热器。
其中,管型换热器中的管壳式换热器因制造容易、生产本钱低、处理量大、适应高温高压等优点,应用最为广泛。
管型换热器主要有以下几种形式:〔1〕固定管板式换热器:当冷热流体温差不大时,可采用固定管板的构造型式,这种换热器的特点是构造简单,制造本钱低。
但由于壳程不易清洗或检修,管外物料应是比拟清洁、不易结垢的。
对于温差较大而壳体承受压力较低时,可在壳体壁上安装膨胀节以减少温差应力。
〔2〕浮头式换热器:两端管板只有一端与壳体以法兰实行固定连接,称为固定端。
另一端管板不与壳体连接而可相对滑动,称为浮头端。
因此,管束的热膨胀不受壳体的约束,检修和清洗时只要将整个管束抽出即可。
适用于冷热流体温差较大,壳程介质腐蚀性强、易结垢的情况。
〔3〕U形管式换热器换:热效率高,传热面积大。
构造较浮头简单,但是管程不易清洗,且每根管流程不同,不均匀。
表1-1 换热器特点一览表在过程工业中,由于管壳式换热器具有制造容易,生产本钱低,选材围广,清洗方便,适应性强,处理量大,工作可靠,且能适应高温高压等众多优点,管壳式换热器被使用最多。
工业中使用的换热器超过90%都是管壳式换热器,在工业过程热量传递中是应用最为广泛的一种换热器。