均值向量和协方差阵的检验
- 格式:ppt
- 大小:702.00 KB
- 文档页数:45
实验一SPSS软件的基本操作与均值向量和协方差阵的检验【实验目的】通过本次实验,了解SPSS的基本特征、结构、运行模式、主要窗口等,了解如何录入数据和建立数据文件,掌握基本的数据文件编辑与修改方法,对SPSS有一个浅层次的综合认识。
同时能够掌握对均值向量和协方差阵进行检验。
【实验性质】必修,基础层次【实验仪器及软件】计算机及SPSS软件【实验内容】1.操作SPSS的基本方法(打开、保存、编辑数据文件)2.问卷编码3.录入数据并练习数据相关操作4.对均值向量和协方差阵进行检验,并给出分析结论。
【实验学时】4学时【实验方法与步骤】1.开机2.找到SPSS的快捷按纽或在程序中找到SPSS,打开SPSS3.认识SPSS数据编辑窗、结果输出窗、帮助窗口、图表编辑窗、语句编辑窗4.对一份给出的问卷进行编码和变量定义5.按要求录入数据6.练习基本的数据修改编辑方法7.检验多元总体的均值向量和协方差阵8.保存数据文件9.关闭SPSS,关机。
【实验注意事项】1.实验中不轻易改动SPSS的参数设置,以免引起系统运行问题。
2.遇到各种难以处理的问题,请询问指导教师。
3.为保证计算机的安全,上机过程中非经指导教师和实验室管理人员同意,禁止使用移动存储器。
4.每次上机,个人应按规定要求使用同一计算机,如因故障需更换,应报指导教师或实验室管理人员同意。
5.上机时间,禁止使用计算机从事与课程无关的工作。
【上机作业】1.定义变量:试录入以下数据文件,并按要求进行变量定义。
表1学号姓名性别生日身高(cm)体重(kg)英语(总分100分)数学(总分100分)生活费($代表人民币)200201 刘一迪男1982.01.12 156.42 47.54 75 79 345.00 200202 许兆辉男1982.06.05 155.73 37.83 78 76 435.00 200203 王鸿屿男1982.05.17 144.6 38.66 65 88 643.50 200204 江飞男1982.08.31 161.5 41.68 79 82 235.50 200205 袁翼鹏男1982.09.17 161.3 43.36 82 77 867.00 200206 段燕女1982.12.21 158 47.35 81 74200207 安剑萍女1982.10.18 161.5 47.44 77 69 1233.00 200208 赵冬莉女1982.07.06 162.76 47.87 67 73 767.80 200209 叶敏女1982.06.01 164.3 33.85 64 77 553.90 200210 毛云华女1982.09.12 144 33.84 70 80 343.00200211 孙世伟男1981.10.13 157.9 49.23 84 85 453.80200212 杨维清男1981.12.6 176.1 54.54 85 80 843.00男1981.11.21 168.55 50.67 79 79 657.40 200213 欧阳已祥200214 贺以礼男1981.09.28 164.5 44.56 75 80 1863.90200215 张放男1981.12.08 153 58.87 76 69 462.20200216 陆晓蓝女1981.10.07 164.7 44.14 80 83 476.80200217 吴挽君女1981.09.09 160.5 53.34 79 82200218 李利女1981.09.14 147 36.46 75 97 452.80200219 韩琴女1981.10.15 153.2 30.17 90 75 244.70200220 黄捷蕾女1981.12.02 157.9 40.45 71 80 253.00要求:1)变量名同表格名,以“()”内的内容作为变量标签。
第三章多元正态分布均值向量和协方差的检验
1.基本思想和步骤
2.均值向量的检验
(1)分布:设且X与S相互独立,,则称统计量的分布为非中心分布
当时,称服从(中心)分布,记为
(2)转换为F分布:若且X与S相互独立,令,则
3.一个正态总体均值向量的检验
(1)协差阵已知,检验统计量为
(2)协差阵未知,检验统计量为
4.两个正态总体均值向量的检验
设为来自p维正态总体的容量为n的样本,
为来自p维正态总体的容量为m的样本,且两组样本相互独立
①针对共同已知协差阵,检验统计量为
②针对共同未知协差阵,检验统计量为
(2)协差阵不等
①针对n=m的情形,检验统计量为
②针对n≠m的情形,检验统计量为
5.多个正态总体均值向量的检验
(1)单因素方差分析:设k个正态总体分别为,从k个总体中取个独立样本,,假设H0成立,检验统计量为
其中,组间平方和为,组内平方和为,总平方和为,其中,
(2)若,则为X的广义方差,为样本广义方差
(3)Wilks分布:若且二者相互独立,
为Wilks统计量,分布为Wilks分布,简记为
(4)多元方差分析:检验统计量为
其中,,A为组间离差阵,E为组内离差阵,T为总离差阵,且T=A+E
6.协差阵的检验
(1)一个正态总体协差阵的检验:构造检验统计量
(2)多个协差阵相等的检验:构造检验统计量。
武夷学院实验报告课程名称:多元统计分析项目名称:均值向量和协方差估计、均值分析和协差阵检验姓名:专业:信息与计算科学班级:1班学号:同组成员:无协差阵。
下面通过一个实例来说明多元正态分布参数估计的SPSS实现过程。
这里以海峡西岸经济区的20个城市为研究对象,选取海峡西岸经济区的主要经济指标进行均值向量和协差阵的估计。
主要经济指标包括:地区生产总值、固定资产投资额、社会消费品零售总额、货物进出口总额、实际利用外商直接投资,规模以上工业总产值以及公共财政预算收入等7个指标。
表2.2数据来源于2013年《中国城市统计年鉴》和2013年《中国区域经济统计年鉴》。
将表2.2数据输入到SPSS的数据编辑窗口中得到如下图(一)计算样本均值向量的步骤(1)点击分析→描述统计→描述,进入描述性主对话框,将待估计的7个变量选入变量列表框中。
(2)点击主对话框选项。
选择Mean选项,即可计算样本均值向量。
(3)点击继续返回主对话框。
点击确定按钮,执行操作。
(二)输出结果解释下表是描述统计(Descriptive Statistics)的内容,该表给出了样本均值向量。
由上表可得地区生产总值的样本均值向量估计为16830963.10万元;固定资产投资额的样本均值向量为10152282.35万元;社会消费品零售的样本均值向量为6857594.05万元;货物进出口总额的样本均值向量估计为1059096.20万美元;实际利用外商直接投资的样本均值向量估计为46204.65万美元;规模以上工业总产值的样本均值向量为24937870.25万元;公共财政预算收入135.3055亿元。
2、协方差的估计(1)样本协方差阵的步骤(1)点击分析→相关→双变量,进入双变量相关主对话框。
将7个变量选入右边的变量列表框中。
(2)点击主对话框选项。
选择叉积偏差和协方差选项,即可计算样本离差阵和样本协差阵。
(3)点击继续,返回主对话框。
点击确定按钮,执行操作。
多元统计分析——均值向量和协方差阵检验均值向量检验是评估两个或多个总体均值是否相等的方法。
在多元统计分析中,均值向量检验常用于比较不同组别或条件下的均值是否有差异。
假设有k个样本组别,每个组别有n个观测值,那么总共有nk个观测值。
假设每个观测值有p个测量变量,那么每个样本组别的均值向量可以表示为一个p维的向量。
我们的目标是比较这k个均值向量是否相等。
常用的均值向量检验方法有Hotelling's T-squared统计量和Wilks' Lambda统计量。
Hotelling's T-squared统计量是基于方差-协方差阵的一个推广,它考虑了样本组别的大小和协方差结构。
它的计算公式为:T^2=n(p-k)/(k(n-1))*(x1-x)^TS^(-1)(x1-x)其中,n是每个组别的观测数,p是变量的个数,k是组别的个数,x1是第一个组别的均值向量,x是总体均值向量,S是协方差阵。
T^2的分布是一个自由度为k,维度为p的非中心F分布。
Wilks' Lambda统计量是基于协方差阵的特征值的一个变换,它的计算公式为:Lambda = ,W,/,B其中,W是所有组别的散布矩阵(Within-groups scatter matrix),B是总体的散布矩阵(Between-groups scatter matrix)。
Wilks' Lambda的分布是一个自由度为k和n-k-1的F分布。
协方差阵检验是评估两个或多个总体协方差阵是否相等的方法。
在多元统计分析中,协方差阵检验常用于比较不同组别或条件下的变量之间的协方差结构是否有差异。
假设有k个样本组别,每个组别有n个观测值,那么总共有nk个观测值。
假设每个观测值有p个测量变量,那么每个样本组别的协方差阵可以表示为一个p维的矩阵。
我们的目标是比较这k个协方差阵是否相等。
常用的协方差阵检验方法有Hotelling-Lawley's Trace统计量和Pillai-Bartlett's Trace统计量。
均值向量和协方差阵的检验实验报告嘿,大家好!今天咱们聊聊一个听上去挺高大上的话题,均值向量和协方差阵的检验。
这听起来就像在说外星人的语言,其实也没那么复杂,咱们慢慢来,轻松愉快地搞定它。
想象一下你在和朋友聚会,大家都在聊各自的生活,分享自己的故事。
每个人的经历就像一组数据,有的高高兴兴,有的郁郁寡欢,这些故事就形成了一个均值向量。
均值向量呢,就是这些故事的“平均水平”,能告诉我们大家的普遍状况。
比如说,某个朋友总是出去旅游,那他在这个聚会里的均值肯定就比其他人高。
这其实很有趣,感觉每个人的生活就像一根根串珠,串在一起的就是大家的均值。
再说到协方差阵,这玩意儿就像一个大网,把每个人的故事串联起来。
它能告诉你不同数据之间的关系。
想象一下,你和你的小伙伴经常一起吃饭,这种关系就像是协方差阵的体现。
它不仅仅告诉你们的吃饭频率,还能分析出你们吃什么、什么时候吃,以及这段友情对你们生活的影响。
换句话说,协方差阵帮我们理解这些数据是怎么互动的。
在我们的实验中,咱们主要是想检验一下这些均值和协方差是不是合理。
这时候,就需要一些统计的方法。
大家可能会觉得统计是个无聊的领域,满是公式和计算,简直让人打哈欠。
其实不然,这个过程就像侦探在寻找证据,解决一个个谜团。
我们拿到数据,就像是拿到了一张藏宝图。
通过计算均值、协方差,咱们一点点挖掘出其中的秘密。
检验均值向量和协方差阵的过程可不简单,得用到一些统计检验的方法,比如t检验和卡方检验。
这些方法就像是咱们的工具箱,各种工具都有其独特的用途。
有的用来比较均值,有的用来检查数据的分布。
想象一下,一个厨师在厨房里忙碌,调料、锅具、食材各司其职,最后做出一顿美味的大餐。
咱们在统计的世界里也是如此,得心应手才能得出正确的结论。
在这个过程中,数据可得经过一番“洗礼”。
有时,咱们会发现数据里藏着一些“异常值”,这些就像是在聚会上讲冷笑话的人,让人哭笑不得。
为了让我们的结果更靠谱,就得把这些“冷笑话”给去掉,保持数据的干净整洁。