多元正态分布均值向量和协差阵检验
- 格式:ppt
- 大小:1.35 MB
- 文档页数:30
第三章多元正态分布均值向量和协方差的检验
1.基本思想和步骤
2.均值向量的检验
(1)分布:设且X与S相互独立,,则称统计量的分布为非中心分布
当时,称服从(中心)分布,记为
(2)转换为F分布:若且X与S相互独立,令,则
3.一个正态总体均值向量的检验
(1)协差阵已知,检验统计量为
(2)协差阵未知,检验统计量为
4.两个正态总体均值向量的检验
设为来自p维正态总体的容量为n的样本,
为来自p维正态总体的容量为m的样本,且两组样本相互独立
①针对共同已知协差阵,检验统计量为
②针对共同未知协差阵,检验统计量为
(2)协差阵不等
①针对n=m的情形,检验统计量为
②针对n≠m的情形,检验统计量为
5.多个正态总体均值向量的检验
(1)单因素方差分析:设k个正态总体分别为,从k个总体中取个独立样本,,假设H0成立,检验统计量为
其中,组间平方和为,组内平方和为,总平方和为,其中,
(2)若,则为X的广义方差,为样本广义方差
(3)Wilks分布:若且二者相互独立,
为Wilks统计量,分布为Wilks分布,简记为
(4)多元方差分析:检验统计量为
其中,,A为组间离差阵,E为组内离差阵,T为总离差阵,且T=A+E
6.协差阵的检验
(1)一个正态总体协差阵的检验:构造检验统计量
(2)多个协差阵相等的检验:构造检验统计量。
第一章、多元正态分布的参数估计二、判断题1.多元分布函数是单调不减函数,而且是右连续的。
(√ )()x F 2.设是维随机向量,则服从多元正态分布的充要条件是:它的任何组合X p X 都是一元正态分布。
(X )()p R X ∈'αα3.是一个P 维的均值向量,当A 、B 为常数矩阵时,具有如下性质:μ(1)E (AX )=AE (X ) (2)E (AXB )=AE (X )B (√ )4.若P 个随机变量X1,…XP 的联合分布等于各自边缘分布的乘积,则称X1,…XP 是相互独立的。
(√ )5.一般情况下,对任何随机向量,协差阵是对称阵,也()'=p X X X ,,1 ∑是正定阵。
(X )6.多元正态向量的任意线性变换仍然服从多元正态分布。
()'=p X X X ,,1 (√)7.多元正态分布的任何边缘分布为正态分布,反之一样。
( X )8.多元样本中,不同样品之间的观测值一定是相互独立的。
(√)9.多元正态总体参数均值的估计量具有无偏性、有效性和一致性。
(√)μX 10.是的无偏估计。
( X )S n 1∑11.Wishart 分布是分布在维正态情况下的推广。
(√)2χp 12.若,,且相互独立,则样本离差阵()()∑,~μαp N X n ,,1 =α。
(√)()()()()()∑-'--=∑=,1~1n W X X X X S n p ααα13.若,为奇异矩阵,则。
( X )()∑,~n W X p C ()c c n W C CX p '∑',~第二章 多元正态分布均值向量和协差阵的检验二、判断题1.设,,,则称统计量的分布为()∑,~μp N X ()∑,~n W S p p n ≥X S X n T 12-'=非中心分布,记为。
( X )2HotellingT ()μ,,~22n p T T 2.在协差阵未知的情况下对均值向量进行检验,需要用样本协差阵去代∑S n1替。
多元正态分布公式协方差矩阵条件分布在统计学中,多元正态分布是一种重要的概率分布,它描述了多个变量之间的关系。
协方差矩阵是用来表达多元正态分布中变量之间的相关性和方差的。
本文将探讨多元正态分布公式中的协方差矩阵条件分布。
1. 多元正态分布公式多元正态分布是指具有两个或两个以上连续型随机变量X1, X2, ..., Xk的联合概率分布服从正态分布的情况。
多元正态分布的概率密度函数如下:f(x) = (2π)^(-k/2)|Σ|^(-1/2)exp[-0.5(x-μ)'Σ^(-1)(x-μ)]其中,x是k维列向量,μ是k维列向量,Σ是k×k矩阵,Σ^(-1)表示Σ的逆矩阵。
2. 协方差矩阵条件分布在多元正态分布中,协方差矩阵Σ描述了随机变量之间的相关性和方差。
当我们对其中一些变量施加一些限制或条件时,我们可以通过计算条件分布来获得在这些条件下的概率分布。
对于多元正态分布X = (X1, X2, ..., Xk)',设X = (X_1, X_2)'是其中的一组变量,X_2是X的互补。
给定条件X_2 = x_2时,X_1的条件分布可以表示为:X_1|X_2=x_2 ~ N(μ_1 + Σ_12Σ_22^(-1)(x_2 - μ_2), Σ_11 -Σ_12Σ_22^(-1)Σ_21)其中,μ_1是X_1的均值向量,μ_2是X_2的均值向量,Σ_11是X_1的协方差矩阵,Σ_22是X_2的协方差矩阵,Σ_12是X_1和X_2之间的协方差。
3. 实例分析为了更好地理解协方差矩阵条件分布的概念,我们以一个实际案例进行分析。
假设我们有一个样本包含身高和体重两个变量,并且我们认为这两个变量服从多元正态分布。
我们想要根据给定的体重条件,推断身高的条件概率分布。
首先,我们计算身高和体重的均值向量和协方差矩阵。
然后,根据协方差矩阵的公式,计算出给定体重条件下身高的条件分布。
假设体重的均值为μ_w,身高的均值为μ_h,体重的方差为σ_w^2,身高的方差为σ_h^2,体重和身高之间的协方差为σ_hw。
多元统计分析陈钰芬课后答案第1章多元正态分布1、在数据处理时,为什么通常要进行标准化处理?第1章多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
第一章 多元正态分布的参数估计一、填空题1。
设X 、Y 为两个随机向量,对一切的u 、v,有 ,则称X 与Y 相互独立。
2。
多元分析处理的数据一般都属于 数据。
3.多元正态向量()'=p X X X ,,1 的协方差阵∑是 ,则X 的各分量是相互独立的随机变量。
4.一个p 元函数()p x x x f ,,,21 能作为pR 中某个随机向量的密度函数的主要条件是和 。
5.若p 个随机变量1X ,2X , ,p X 的联合分布等于 ,则称1X ,2X , ,p X 是相互独立的。
6。
多元正态分布的任何边缘分布为 。
7。
若()∑,~μp N X ,A 为p s ⨯阶常数阵,d 为s 维常数向量,则~d AX + 。
8.多元正态向量X 的任何一个分量子集的分布称为X 的 . 9.多元样本中,不同样品的观测值之间一定是 。
10。
多元正态总体均值向量和协差阵的极大似然估计量分别是 。
11.多元正态总体均值向量μ和协差阵∑的估计量X 、S n 11-具有 、 和 。
12.设X 和S 分别是多元正态总体()∑,μp N 的样本均值向量和离差阵,则~X ,X 和S 。
13。
若()()∑,~μαp N X ,n ,,2,1 =α且相互独立,则样本离差阵()()()()∑='--=nX X X X S 1~ααα .14.若()∑,~i p i n W S ,k i ,,1 =,且相互独立,则~21k S S S S +++= 。
二、判断题1。
多元分布函数()x F 是单调不减函数,而且是右连续的。
2.设X 是p 维随机向量,则X 服从多元正态分布的充要条件是:它的任何组合()p R X ∈'αα都是一元正态分布.3。
μ是一个P 维的均值向量,当A 、B 为常数矩阵时,具有如下性质: (1)E (AX )=AE (X ) (2)E (AXB)=AE (X )B4.若P 个随机变量X 1,…X P 的联合分布等于各自边缘分布的乘积,则称X 1,… X P 是相互独立的。