多元统计分析均值向量和协方差阵检验课件
- 格式:ppt
- 大小:239.50 KB
- 文档页数:75
多元统计分析——均值向量和协方差阵检验均值向量检验是评估两个或多个总体均值是否相等的方法。
在多元统计分析中,均值向量检验常用于比较不同组别或条件下的均值是否有差异。
假设有k个样本组别,每个组别有n个观测值,那么总共有nk个观测值。
假设每个观测值有p个测量变量,那么每个样本组别的均值向量可以表示为一个p维的向量。
我们的目标是比较这k个均值向量是否相等。
常用的均值向量检验方法有Hotelling's T-squared统计量和Wilks' Lambda统计量。
Hotelling's T-squared统计量是基于方差-协方差阵的一个推广,它考虑了样本组别的大小和协方差结构。
它的计算公式为:T^2=n(p-k)/(k(n-1))*(x1-x)^TS^(-1)(x1-x)其中,n是每个组别的观测数,p是变量的个数,k是组别的个数,x1是第一个组别的均值向量,x是总体均值向量,S是协方差阵。
T^2的分布是一个自由度为k,维度为p的非中心F分布。
Wilks' Lambda统计量是基于协方差阵的特征值的一个变换,它的计算公式为:Lambda = ,W,/,B其中,W是所有组别的散布矩阵(Within-groups scatter matrix),B是总体的散布矩阵(Between-groups scatter matrix)。
Wilks' Lambda的分布是一个自由度为k和n-k-1的F分布。
协方差阵检验是评估两个或多个总体协方差阵是否相等的方法。
在多元统计分析中,协方差阵检验常用于比较不同组别或条件下的变量之间的协方差结构是否有差异。
假设有k个样本组别,每个组别有n个观测值,那么总共有nk个观测值。
假设每个观测值有p个测量变量,那么每个样本组别的协方差阵可以表示为一个p维的矩阵。
我们的目标是比较这k个协方差阵是否相等。
常用的协方差阵检验方法有Hotelling-Lawley's Trace统计量和Pillai-Bartlett's Trace统计量。