高中数学 矩阵与变换
- 格式:doc
- 大小:74.00 KB
- 文档页数:4
高中数学《矩阵与变换》知识点归纳一、151.解关于x 、y 、z 的三元一次方程组231231x y z x y az ay z +-=-⎧⎪-+=-⎨⎪-=⎩,并对解的情况进行讨论.【答案】答案不唯一,见解析 【解析】 【分析】根据题意,分别求出D 、x D 、y D 、z D 关于a 的表达式,再由三元一次方程组解的公式对a 的取值进行讨论,即可得到原方程组解的各种情况. 【详解】(1)(25)D a a =--+,(11)(1)x D a a =+-,22y D a =-,55z D a =-;① 当1a =,0x y z D D D D ====,方程组有无穷多解; ② 当52a =-,0D =,且x D 、y D 、z D 不为零,方程组无解; ③ 当1a ≠且52a ≠-时,方程组的解为1125a x a +=-+,225y a =+,525z a =-+. 【点睛】本题考查三元一次方程组的行列式解法,解题关键是要分类讨论,属于常考题.2.已知关于x 、y 的二元一次方程组()4360260x y kx k y +=⎧⎨++=⎩的解满足0x y >>,求实数k的取值范围. 【答案】5,42⎛⎫⎪⎝⎭【解析】 【分析】由题意得知0D ≠,求出x D 、y D 解出该方程组的解,然后由00x y D >>⎧⎨≠⎩列出关于k 的不等式组,解出即可. 【详解】由题意可得()4238D k k k =+-=+,()601x D k =-,()604y D k =-.由于方程组的解满足0x y >>,则0D ≠,该方程组的解为()()60186048x y k D x D k D k y D k ⎧-==⎪⎪+⎨-⎪==⎪+⎩,由于00D x y y ≠⎧⎪>⎨⎪>⎩,即()()()806016048860408k k k k k k k ⎧⎪+≠⎪--⎪>⎨++⎪⎪->⎪+⎩,整理得802508408k k k k k ⎧⎪+≠⎪-⎪>⎨+⎪-⎪<⎪+⎩,解得542k <<. 因此,实数k 的取值范围是5,42⎛⎫⎪⎝⎭. 【点睛】本题考查二元一次方程组的求解,同时也考查了分式不等式的求解,考查运算求解能力,属于中等题.3.用行列式解方程组252,23,24 1.x y z y z x y z ++=-⎧⎪--=⎨⎪++=-⎩【答案】1337313x y z ⎧=⎪⎪⎪=-⎨⎪⎪=-⎪⎩【解析】 【分析】先根据方程组中x ,y ,z 的系数及常数项求得D ,x D ,y D ,z D ,再对a 的值进行分类讨论,并求出相应的解. 【详解】方程组可转化为:125202324111x y z ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎦--⎣,1912502241D =-=-, 13922532141x D --=-=-,12503221121y D --==--,1312203241z D ---==-,所以13,37,31.3x y z D x D D y D D z D ⎧==⎪⎪⎪==-⎨⎪⎪==-⎪⎩【点睛】本题考查三元一次方程组的矩阵形式、线性方程组的行列式求解,考查运算求解能力.4.关于ϕ的矩阵()cos sin sin cos A ϕϕϕϕϕ-⎛⎫=⎪⎝⎭,列向量12x X x ⎛⎫= ⎪⎝⎭.(1)已知11x =,23x =,45ϕ=︒,计算()A X ϕ,并指出该算式表示的意义; (2)把反比例函数1xy =的图象绕坐标原点逆时针旋转45︒,求得到曲线的方程;(3)已知数列12n n a =,n *∈N ,猜想并计算()()()12n A a A a A a ⋅⋅⋅⋅⋅⋅. 【答案】(1)⎛⎝,表示把向量X 逆时针旋转45︒得到的向量;(2)22122y x -=; (3)cos1sin1sin1cos1-⎛⎫⎪⎝⎭.【解析】 【分析】(1)根据向量与矩阵的乘法可计算结果,由旋转变换的运算法则即可得到算式表示的意义;(2)由题意,得旋转变换矩阵cos sin4422sin cos 4422A ππππ⎛⎛⎫--⎪ ⎪==⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭,设xy =1上的任意点(),P x y '''在变换矩阵A 作用下为(,)P x y ,确定坐标之间的关系,即可求得曲线的方程;(3)分别求出n =1,n =2,n =3时矩阵相乘的结果,由此猜想算式关于n 的表达式,从而可求得所求算式的结果. 【详解】(1)()cos sin11442233sin cos 4422A X ππϕππ⎛⎛⎫--⎪⎛⎛⎫⎛⎫ ⎪===⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝ ⎪⎪⎝⎭⎝⎭,该算式表示把向量X 逆时针旋转45︒得到的向量;(2)由题意,得旋转变换矩阵cos sin44sin cos 44A ππππ⎛⎫- ⎪⎪==⎪⎪ ⎪ ⎪⎪⎝⎭⎭, 设xy =1上的任意点(),P x y '''在变换矩阵A 的作用下为(,)P x y ,则2222x x y y ⎛-⎛⎫⎛⎫ ⎪= ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪''⎝⎭,2222x x y y x y ⎧=-⎪⎪∴⎨⎪=+'''⎩'⎪,则222222y x x y x y x y ⎫⎫''''''-=--==⎪⎪⎪⎪⎝⎭⎝⎭, 将曲线xy =1绕坐标原点按逆时针方向旋转45︒,所得曲线的方程为22122y x -=;(3)当n =1时,()111cos sin2211sin cos 22n n n nA a ⎛⎫- ⎪=⎪ ⎪ ⎪⎝⎭; 当n =2时,()()2212221111cos sin cos sin 22221111sin cos sin cos 2222A a A a ⎛⎫⎛⎫-- ⎪⎪=⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭2222222211111111cos cos sin sin cos sin cos sin 2222222211111111sin cos sin cos cos cos sin sin 22222222⎛⎫--- ⎪=⎪ ⎪+- ⎪⎝⎭22221111cos()sin()22221111sin()cos()2222⎛⎫+-+ ⎪= ⎪ ⎪++ ⎪⎝⎭,当n =3时,()()()22331232233111111cos sin cos sincos sin222222111111sin cos sin cos sin cos 222222A a A a A a ⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪=⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭23232323111111cos()sin()222222111111sin()cos()222222⎛⎫++-++ ⎪= ⎪ ⎪++++ ⎪⎝⎭,由此猜想:当n =k 时,()()()221222111111cos sin cos sincos sin222222111111sin cos sin cos sin cos 222222k k k kkA a A a A a ⎛⎫⎛⎫⎛⎫--- ⎪⎪ ⎪=⎪⎪⎪ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭L L 222211111111cos()sin()cos(1)sin(1)2222222211111111sin()cos()sin(1)cos(1)22222222k k k k k k k k ⎛⎫⎛⎫+++-+++--- ⎪ ⎪== ⎪ ⎪ ⎪ ⎪++++++-- ⎪ ⎪⎝⎭⎝⎭L L L L ,当k →+∞时,1112k -→, 所以()()()12cos1sin1sin1cos1n A a A a A a -⎛⎫⋅⋅⋅⋅⋅⋅= ⎪⎝⎭.【点睛】本题考查向量经矩阵变换后的向量求法,曲线的旋转变换和矩阵的乘法,关键掌握住变换的运算法则和矩阵的乘法公式,属中档题.5.利用行列式讨论关于,x y 的方程组1323ax y ax ay a +=-⎧⎨-=+⎩解的情况.【答案】①当03a a ≠≠-且时,方程组有唯一解12x a y ⎧=⎪⎨⎪=-⎩;②当0a =时,方程组无解;③当3a =-时,方程组有无穷多解,可表示为()31x tt R y t =⎧∈⎨=-⎩.【解析】 【分析】由题,可得()()()3,3,23x y D a a D a D a a =-+=-+=+,分别讨论方程组有唯一解,无解,无穷多解的情况即可 【详解】()21333a D a a a a a a==--=-+-, ()()11233323x D a a a a a a-==-+=--=-++-,()()212332623323y a D a a a a a a a a a -==++=+=++,①当03a a ≠≠-且时,方程有唯一解,()()()()3132323x y a D x D a a a D a a y D a a ⎧-+===⎪-+⎪⎨+⎪===-⎪-+⎩,即12x a y ⎧=⎪⎨⎪=-⎩;②当0a =时,0D =,30x D =-≠,方程组无解;③当3a =-时,0x y D D D ===,方程组有无穷多解,设()x t t R =∈,则原方程组的解可表示为()31x tt R y t =⎧∈⎨=-⎩.【点睛】本题考查利用行列式解方程组,考查运算能力,考查分类讨论思想6.用行列式方法解关于x y 、的方程组:()()1R 214ax y a x a y a -=⎧∈⎨--=⎩,并对解的情况进行讨论.【答案】1a =时无解;12a =-时无穷解;12a ≠-且1a ≠时有唯一解11211x aa y a ⎧=⎪⎪-⎨-⎪=⎪-⎩【解析】 【分析】本题先求出相关行列式D 、x D 、y D 的值,再讨论分式的分母是否为0,用公式法写出方程组的解,得到本题结论. 【详解】Q 关于x 、y 的方程组:1()2ax y a a R x ay a +=+⎧∈⎨+=⎩,()()1R 214ax y a x a y a -=⎧∈⎨--=⎩∴21||1(1)(1)1a D a a a a==-=+-,21||(12)121(1)(21)112a D a a a a a a a-==-+=-++=--+-211||(1)2x a D a a a a a a +==-=-,1||124124121x D a a a a a==-+=+-- 21||21(21)(1)12y a a D a a a a a +==--=+-,21||41(21)(21)14y a D a a a a==-=+-.(1)当12a ≠-且1a ≠时,有唯一解11211x aa y a ⎧=⎪⎪-⎨-⎪=⎪-⎩,(2)当1a =时,无解; (3)当12a =-,时无穷解. 【点睛】本题考查了用行列式法求方程组的解,本题难度不大,属于基础题.7.已知线性方程组5210258x y x y +=⎧⎨+=⎩.()1写出方程组的系数矩阵和增广矩阵;()2运用矩阵变换求解方程组.【答案】(1)矩阵为5225⎛⎫ ⎪⎝⎭,增广矩阵为5210.258⎛⎫ ⎪⎝⎭ (2)34212021x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】 【分析】()1由线性方程组5210258x y x y +=⎧⎨+=⎩,能写出方程组的系数矩阵和增广矩阵. ()2由170345010521052102121258102540202001012121⎛⎫⎛⎫⎪ ⎪⎛⎫⎛⎫→→→⎪ ⎪ ⎪ ⎪--- ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭⎝⎭,能求出方程组的解. 【详解】(1)Q 线性方程组5210258x y x y +=⎧⎨+=⎩.∴方程组的系数矩阵为5225⎛⎫⎪⎝⎭, 增广矩阵为5210.258⎛⎫⎪⎝⎭(2)因为5210258x y x y +=⎧⎨+=⎩,1703452105010521052105210212120258102540021202020010101212121⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎛⎫⎛⎫⎛⎫ ⎪∴→→→→→ ⎪ ⎪ ⎪ ⎪ ⎪⎪-----⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭⎝⎭,34212021x y ⎧=⎪⎪∴⎨⎪=⎪⎩.【点睛】本题考查方程组的系数矩阵和增广矩阵的求法,考查运用矩阵变换求解方程组,考查矩阵的初等变换等基础知识,考查运算求解能力,是基础题.8.设函数()()271f x x ax a R =-++∈. (1)若1a =-,解不等式()0f x ≥; (2)若当01xx>-时,关于x 的不等式()1f x ≥恒成立,求a 的取值范围; (3)设()121x g ax x +-=-,若存在x 使不等式()()f x g x ≤成立,求a 的取值范围. 【答案】(1)[)8,6,3⎛⎤-∞+∞ ⎥⎝⎦U ;(2)5a ≥-;(3)4a ≥-.【解析】 【分析】(1)利用零点分段讨论可求不等式的解.(2)01xx>-的解为()0,1,在该条件下()1f x ≥恒成立即为()720a x +->恒成立,参变分离后可求实数a 的取值范围.(3)()()f x g x ≤有解即为12722a x x -≥---有解,利用绝对值不等式可求()2722h x x x =---的最小值,从而可得a 的取值范围.【详解】(1)当1a =-时,()0f x ≥即为2710x x --+≥.当72x ≥时,不等式可化为722710x x x ⎧≥⎪⎨⎪--+≥⎩,故6x ≥; 当72x <时,不等式可化为727210x x x ⎧<⎪⎨⎪--+≥⎩,故83x ≤.综上,()0f x ≥的解为[)8,6,3⎛⎤-∞+∞ ⎥⎝⎦U .(2)01xx>-的解为()0,1, 当()0,1x ∈时,有()()72182f x x ax a x =-++=+-,因为不等式()1f x ≥恒成立,故()821a x +->即()27a x ->-在()0,1上恒成立, 所以72a x ->-在()0,1上恒成立,而77x-<-在()0,1上总成立, 所以27a -≥-即5a ≥-. 故实数a 的取值范围为5a ≥-. (3)()12112x g x x ax a x a +==-++--, ()()f x g x ≤等价于27121x ax x ax a -++≤-++,即27211x x a ---≤-在R 上有解. 令()27212722h x x x x x =---=---,由绝对值不等式有272227225x x x x ---≤--+=, 所以527225x x -≤---≤,当且仅当72x ≥时,27225x x ---=-成立, 所以()min 5h x =-,故15a -≥-即4a ≥-. 故实数a 的取值范围为4a ≥-. 【点睛】解绝对值不等式的基本方法有零点分段讨论法、图象法、平方法等,利用零点分段讨论法时注意分类点的合理选择.绝对值不等式指:a b a b a b -≤+≤+及a b a b a b -≤-≤+,我们常利用它们求含绝对值符号的函数的最值.9.计算:12131201221122120-⎛⎫⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭【答案】91559124-⎛⎫⎪--⎝⎭【解析】 【分析】直接利用矩阵计算法则得到答案. 【详解】121312011213140222112212021122240-⎛⎫-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 123319155213629124----⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭【点睛】本题考查了矩阵的计算,意在考查学生的计算能力.10.定义()111111n n n n x x n N y y +*+-⎛⎫⎛⎫⎛⎫=∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为向量()111,n n n OP x y +++=u u u u u v 的一个矩阵变换, (1)若()12,3P ,求2OP u u u v ,3OP u u u v;(2)设向量()11,0OP =u u u v ,O 为坐标原点,请计算9OP u u u v 并探究2017OP u u u u u u v的坐标. 【答案】(1)()21,5OP =-u u u v ,()36,4OP =-u u u v ;(2)()25216,0.【解析】 【分析】(1)根据递推关系可直接计算2OP uuu r ,3OP u u ur .(2)根据向量的递推关系可得816n n OP OP +=u u u u u r u u u r 对任意的*n N ∈恒成立,据此可求9OP u u u r、2017OP u u u u u u r的坐标.【详解】(1)因为()12,3P ,故123OP⎛⎫= ⎪⎝⎭u u u r ,设2x OP y ⎛⎫= ⎪⎝⎭u u u r , 则11211135x y --⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以215OP -⎛⎫= ⎪⎝⎭u u u r 即()21,5OP =-u u u r ,同理()36,4OP =-u u u r . (2)因为111111n n n n x x y y ++-⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以11n n n n nn x x y y x y ++-⎛⎫⎛⎫= ⎪ ⎪+⎝⎭⎝⎭, 故21121122n n n n n n n n x x y y y x y x ++++++--⎛⎫⎛⎫⎛⎫==⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭,3223222222n n n n n n n n n n x x y y x y x y y x ++++++---⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪+-+⎝⎭⎝⎭⎝⎭, 43343344n n n n n n n n x x y x y x y y ++++++--⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭,所以44n n OP OP +=-u u u u u r u u u r ,故816n n OP OP +=u u u u u r u u u r . 又9811=⨯+,20174504182521=⨯+=⨯+,()911616,0OP OP ==u u u r u u u r所以()252252201711616,0OP OP ==u u u u u u r u u u r . 【点睛】本题考查向量的坐标计算及向量的递推关系,解题过程中注意根据已知的递推关系构建新的递推关系,此问题为中档题.11.已知直线l :ax +y =1在矩阵A =1201⎡⎤⎢⎥⎣⎦对应的变换作用下变为直线l′:x +by =1. (1)求实数a 、b 的值;(2)若点P(x 0,y 0)在直线l 上,且A 00x y ⎡⎤⎢⎥⎣⎦=00x y ⎡⎤⎢⎥⎣⎦,求点P 的坐标. 【答案】(1) 1.{1a b =-=(2)(1,0)【解析】(1)设直线l :ax +y =1上任意点M (x ,y )在矩阵A 对应的变换作用下像是M ′(x ′,y ′).由''x y ⎡⎤⎢⎥⎣⎦=1201⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦=2x y y +⎡⎤⎢⎥⎣⎦,得2{x x y y y ''=+,=. 又点M ′(x ′,y ′)在l ′上,所以x ′+by ′=1即x +(b +2)y =1.依题意,得1{21a b =+=解得1{1a b ==-(2)由A 00x y ⎡⎤⎢⎥⎣⎦=00x y ⎡⎤⎢⎥⎣⎦,得00000 2{x x y y y =+,=解得y 0=0., 又点P (x 0,y 0)在直线l 上,所以x 0=1. 故点P 的坐标为(1,0).12.已知ABC ∆的顶点坐标分别为(5,0)A -、(3,3)B -、(0,2)C ,请分别运用行列式、向量、平面解析几何知识,用其中两种不同方法求ABC ∆的面积.【答案】312【解析】 【分析】解法一:用行列式求解,面积公式为112233111ABC x y S x y x y ∆=,代入点的坐标求解即可;解法二:平面解析几何知识求解,先求出直线BC 的方程、点A 到直线BC 的距离d 及BC ,利用12ABC S BC d ∆=⋅⋅计算即可. 【详解】解法一:行列式求解,11223315013113312121ABC x y S x y x y ∆-==-=; 解法二:平面解析几何知识求解, 直线BC 的方程为:3353y x +-=-,即:5360x y +-=, 点A 到直线BC的距离d ===,BC ==所以113122342ABC S BC d ∆=⋅⋅=⋅=. 【点睛】本题考查利用三阶行列式计算三角形面积、利用平面向量知识计算三角形面积、利用平面解析几何知识求解三角形面积,属于基础题.13.已知数列{}n a 满足条件1(1)(1)(1)n n n a n a +-=+-,且26a = (1)计算134,,a a a ,请猜测数列{}n a 的通项公式,并用数学归纳法证明;(2)请分别构造一个二阶和三阶行列式,使它们的值均为n a ,其中,要求所构造的三阶行列式主对角线下方的元素均为零,并用按某行或者某列展开的方法验证三阶行列式的值为n a【答案】(1)1341,15,28a a a ===,22n a n n =-;证明见解析 (2)2=1n n n a n,211101=001n n n a -,验证见解析 【解析】 【分析】(1)分别将1,2,3n =代回即可求得134,,a a a ,可猜测22n a n n =-,根据数学归纳法证明即可;(2)由(1)可构造二阶行列式为21n n n,根据要求可构造三阶行列式为211101001n n -,并展开求值进行验证即可 【详解】(1)当1n =时,()1021a =-,即11a =;当2n =时,()()323136115a a =-=⨯-=; 当3n =时,()43241a a =-,则428a =;猜测22n a n n =-,证明:当1,2,3,4n =时,22n a n n =-成立;假设当()5n k k =≥时,22k a k k =-成立,则()()()1111k k k a k a +-=+-,所以()()()()()2221112121123121111k k k a k k k k k k k k k k +++=--=+-=++=+-+--, 即当1n k =+时,等式也成立,综上,22n a n n =-成立(2)由(1),因为2221n a n n n n n =-=⋅-⋅,则可构造二阶行列式为21n n n;因为要求所构造的三阶行列式主对角线下方的元素均为零,可构造三阶行列式为211101001n n -,检验,()()()221110121110212001n n n n n n n n n a -=-⋅-⋅=-=-=,故该三阶行列式符合题意 【点睛】本题考查利用数学归纳法证明,考查行列式的应用,考查数列的通项公式,考查数列的项,考查运算能力,考查猜测推理的能力14.用行列式解关于x 、y 的方程组:1()2ax y a a R x ay a +=+⎧∈⎨+=⎩,并对解的情况进行讨论. 【答案】见解析 【解析】 【分析】先求出相关的行列式,,x y D D D 的值,再讨论分式的分母是否为0,用公式法写出方程组的解,即可得到结论. 【详解】由题意,关于x 、y 的方程组:1()2ax y a a R x ay a +=+⎧∈⎨+=⎩, 所以221111,(1),12x a a D a D a a a a aaa+==-==-=-2121(21)(1)12y a a D a a a a a+==--=+-,(1)当1a ≠±时,0D ≠,方程组有唯一解,1211a x a a y a ⎧=⎪⎪+⎨+⎪=⎪+⎩;(2)当1a =-时,0,0x D D =≠,方程组无解; (3)当1a =时,0x y D D D ===,方程组有无穷多解,,()2x tt R y t=⎧∈⎨=-⎩.【点睛】本题主要考查了用行列式法求方程组的解,难度不大,属于基础题.15.变换T 1是逆时针旋转2π角的旋转变换,对应的变换矩阵是M 1;变换T 2对应的变换矩阵是M 2=1101⎡⎤⎢⎥⎣⎦. (1)点P(2,1)经过变换T 1得到点P',求P'的坐标;(2)求曲线y =x 2先经过变换T 1,再经过变换T 2所得曲线的方程. 【答案】(1)P'(-1,2).(2)y -x =y 2. 【解析】试题分析:(1)先写出旋转矩阵M 1=0110-⎡⎤⎢⎥⎣⎦,再利用矩阵运算得到点P'的坐标是P'(-1,2).(2)先按序确定矩阵变换M =M 2⋅M 1=1110-⎡⎤⎢⎥⎣⎦,再根据相关点法求曲线方程:即先求出对应点之间关系,再代入已知曲线方程,化简得y -x =y 2.试题解析:解:(1)M 1=0110-⎡⎤⎢⎥⎣⎦, M 121⎡⎤⎢⎥⎣⎦=12-⎡⎤⎢⎥⎣⎦.所以点P(2,1)在T 1作用下的点P'的坐标是P'(-1,2). (2)M =M 2⋅M 1=1110-⎡⎤⎢⎥⎣⎦, 设x y ⎡⎤⎢⎥⎣⎦是变换后图象上任一点,与之对应的变换前的点是00x y ⎡⎤⎢⎥⎣⎦, 则M 00x y ⎡⎤⎢⎥⎣⎦=x y ⎡⎤⎢⎥⎣⎦,也就是000{x y x x y -==即00{y y x x y =-=所以,所求曲线的方程是y -x =y 2.考点:旋转矩阵,矩阵变换16.选修4-2:矩阵与变换(本小题满分10分) 已知矩阵A =01a k ⎡⎤⎢⎥⎣⎦ (k≠0)的一个特征向量为α=1k ⎡⎤⎢⎥-⎣⎦, A 的逆矩阵A-1对应的变换将点(3,1)变为点(1,1).求实数a ,k 的值.【答案】解:设特征向量为α=1k ⎡⎤⎢⎥-⎣⎦对应的特征值为λ,则01a k ⎡⎤⎢⎥⎣⎦ 1k ⎡⎤⎢⎥-⎣⎦=λ1k ⎡⎤⎢⎥-⎣⎦,即1ak k kλλ-=⎧⎨=⎩ 因为k≠0,所以a =2. 5分因为13111A -⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,所以A 11⎡⎤⎢⎥⎣⎦=31⎡⎤⎢⎥⎣⎦,即201k ⎡⎤⎢⎥⎣⎦11⎡⎤⎢⎥⎣⎦=31⎡⎤⎢⎥⎣⎦, 所以2+k =3,解得 k =1.综上,a =2,k =1. 10分 【解析】试题分析:由 特征向量求矩阵A, 由逆矩阵求k 考点:特征向量, 逆矩阵点评:本题主要考查了二阶矩阵,以及特征值与特征向量的计算,考查逆矩阵.17.己知矩阵1221M ⎡⎤=⎢⎥⎣⎦. (1)求1M -;(2)若曲线221:1C x y -=在矩阵M 对应的变换作用下得到另一曲线2C ,求2C 的方程.【答案】(1)112332133M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦;(2)223y x -= 【解析】 【分析】(1)根据逆矩阵的求法,求得M 的逆矩阵1M -.(2)设出1C 上任意一点的坐标,设出其在矩阵M 对应的变换作用下得到点的坐标,根据坐标变换列方程,解方程求得两者坐标对应关系式,再代入1C 方程,化简后可求得2C 的方程. 【详解】解(1)设所求逆矩阵为a b c d ⎡⎤⎢⎥⎣⎦,则122210212201a b a c b d c d a c b d ++⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥++⎣⎦⎣⎦⎣⎦⎣⎦,即21202021a cb d ac bd +=⎧⎪+=⎪⎨+=⎪⎪+=⎩,解得13232313a b c d ⎧=-⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=-⎩,所以112332133M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. (2)设曲线1C 上任一点坐标为()00,x y ,在矩阵M 对应的变换作用下得到点(),x y , 则001221x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即000022x y x x y y+=⎧⎨+=⎩, 解得002323y x x x y y -⎧=⎪⎪⎨-⎪=⎪⎩. 因为2201x y -=,所以2222133y x x y --⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,整理得223y x -=, 所以2C 的方程为223y x -=. 【点睛】本小题主要考查逆矩阵的求法,考查利用矩阵变换求曲线方程,考查运算求解能力,属于中档题.18.已知直线l :0ax y -=在矩阵0112A ⎡⎤=⎢⎥⎣⎦对应的变换作用下得到直线l ',若直线l '过点()1,1,求实数a 的值. 【答案】1a =- 【解析】 【分析】根据矩阵变换得到()210a x ay ''-++=,将点()1,1代入方程,计算得到答案. 【详解】设(),P x y 为直线l 上任意一点,在矩阵A 对应的变换下变为直线l '上点、(),P x y ''',则0112x x y y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦,化简,得2x x y y x =-+⎧⎨='''⎩, 代入0ax y -=,整理得()210a x ay ''-++=.将点()1,1代入上述方程,解得1a =-. 【点睛】本题考查了矩阵变换,意在考查学生的计计算能力和转化能力.19.已知矩阵4321M -⎡⎤=⎢⎥-⎣⎦,向量75α⎡⎤=⎢⎥⎣⎦u r . (1)求矩阵M 的特征值及属于每个特征值的一个特征向量; (2)求3M α.【答案】(1)特征值为11λ=,22λ=,分别对应的特征向量为11⎡⎤⎢⎥⎣⎦和32⎡⎤⎢⎥⎣⎦,(2)34933M α⎡⎤=⎢⎥⎣⎦r .【解析】 【分析】(1)根据特征值的定义列出特征多项式,令()0f λ=解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量;(2)7132512α⎛⎫⎡⎤⎡⎤==+ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦r g ,即可求3M αr.【详解】(1)矩阵M 的特征多项式为()(1)(2)f λλλ=--, 令()0f λ=,可求得特征值为11λ=,22λ=, 设11λ=对应的一个特征向量为x y α⎡⎤=⎢⎥⎣⎦,则由1M λαα=,得330x y -+=,可令1x =,则1y =-,所以矩阵M 的一个特征值11λ=对应的一个特征向量为11⎡⎤⎢⎥⎣⎦,同理可得矩阵M 的一个特征值22λ=对应的一个特征向量为32⎡⎤⎢⎥⎣⎦.(2)7132512α⎛⎫⎡⎤⎡⎤==+ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦r g所以331349221233M α⎡⎤⎡⎤⎡⎤=+⨯⨯=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦r .【点睛】本题主要考查了矩阵特征值与特征向量的计算等基础知识,意在考查学生对这些知识的理解掌握水平.20.用矩阵变换的方法,解二元一次方程组2342x y x y =⎧⎨-=⎩-【答案】17107x y ⎧=⎪⎪⎨⎪=-⎪⎩【解析】 【分析】先将方程组化为矩阵,再根据矩阵运算求结果. 【详解】2312342412x y x x y y =-⎧⎡⎤⎡⎤⎡⎤⇒=⎨⎢⎥⎢⎥⎢⎥-=-⎩⎣⎦⎣⎦⎣⎦- 所以1121123377741241210777x y -⎡⎤⎡⎤-⎢⎥⎢⎥-⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦因此17107x y ⎧=⎪⎪⎨⎪=-⎪⎩【点睛】本题考查利用矩阵解方程组,考查基本分析求解能力,属基础题.。
专题一 矩阵与变换二.主要内容解读 1.矩阵变换注意:矩阵AB 与矩阵BA 意义不同AB 是先施加矩阵B 对应的变换,再施加矩阵A 对应的变换; BA 是先施加矩阵A 对应的变换,再施加矩阵B 对应的变换. 2.矩阵的运算、逆矩阵逆矩阵的求法:(1)定义法;(2)公式法1-=A d b ad bc ad bc c a ad bcad bc -⎡⎤⎢⎥--⎢⎥-⎢⎥⎢⎥--⎣⎦. 3.特征值和特征向量设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得A λ=αα,那么称λ为α的一个特征值,而α称为A 的属于特征值λ的一个特征向量.特征值和特征向量的求法:(1)写出A 的特征多项式()f λ,(2)求出()0f λ=的根,(3)将λ代入λ=A αα的二元一次方程组,(4)写出满足条件的一组非零解. 三.高考试题展示1.(08年江苏)在平面直角坐标系xOy 中,设椭圆2241x y +=在矩阵2001⎡⎤⎢⎥⎣⎦对应的变换作用下得到曲线F ,求F 的方程.[解析]本题主要考察曲线在矩阵变换下的变化特点,考察运算求解能力.满分10分. 解:设00(,)P x y 是椭圆上任意一点,点00(,)P x y 在矩阵2001⎡⎤⎢⎥⎣⎦对应的变换下变为点 00(,)P x y ''',则有00002001x x y y ⎡⎤'⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦,即00002x x y y ⎧'=⎪⎨'=⎪⎩,所以00002x x y y ⎧'=⎪⎨⎪'=⎩又因为点P 在椭圆上,故220041x y +=,从而2200()()1x y ''+=,所以,曲线F 的方程是:221x y +=.2.(09年江苏)求矩阵3221⎡⎤=⎢⎥⎣⎦A 的逆矩阵.[解析] 本题主要考查逆矩阵的求法,考查运算求解能力.满分10分. 解:设矩阵A 的逆矩阵为,x y z w ⎡⎤⎢⎥⎣⎦则3210,2101x y z w ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即323210,2201x z y w x z y w ++⎡⎤⎡⎤=⎢⎥⎢⎥++⎣⎦⎣⎦故321,320,20,21,x z y w x z y w +=+=⎧⎧⎨⎨+=+=⎩⎩解得:1,2,2,3x z y w =-===-, 从而A 的逆矩阵为11223--⎡⎤=⎢⎥-⎣⎦A . 3.(10年江苏)在平面直角坐标系xOy 中,A (0,0),B (-3,0),C (-2,1),设k ≠0,k ∈R ,M =⎥⎦⎤⎢⎣⎡100k ,N =⎥⎦⎤⎢⎣⎡0110,点A 、B 、C 在矩阵MN 对应的变换下得到点A 1,B 1,C 1,△A 1B 1C 1的面积是△ABC 面积的2倍,求实数k 的值.[解析] 本题主要考查矩阵的乘法运算及变换.满分10分.解:0010011010k k ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦MN , 由00320010001032k k --⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,知A 1(0,0),B 1(0,-3),C 1(k ,-2). ∵1322ABC C S AB y ∆=⋅=,∴111111132322A B C C ABC S A B x k S ∆∆=⋅===,∴2k =±.4.(11年江苏)已知矩阵1121⎡⎤=⎢⎥⎣⎦A ,向量12⎡⎤=⎢⎥⎣⎦β.求向量α,使得2=A αβ. [解析] 本题主要考查矩阵的乘法运算.满分10分.解:设x y α⎡⎤=⎢⎥⎣⎦,由2A =αβ得:321432x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,321432x y x y +=⎧∴⎨+=⎩,12x y =-⎧∴⎨=⎩,12-⎡⎤∴=⎢⎥⎣⎦α.四.试题分类汇总 1.矩阵变换 题1:(2010南京一模)在直角坐标系中,已知△ABC 的顶点坐标为A (0,0),B (2,0),C (2,1),求△ABC 在矩阵MN 作用下变换所得到的图形的面积,这里矩阵:2002⎡⎤=⎢⎥⎣⎦M ,0110-⎡⎤=⎢⎥⎣⎦N .题2:(2009年南京一模)已知矩阵0110⎡⎤=⎢⎥⎣⎦M ,0110-⎡⎤=⎢⎥⎣⎦N .在平面直角坐标系中,设直线012=+-y x 在矩阵M N 对应的变换作用下得到曲线F ,求曲线F 的方程.题3:(2011年苏、锡、常、镇二模)求圆22:4C x y +=在矩阵2001⎡⎤=⎢⎥⎣⎦A 对应变换作用下的曲线方程.题4:(2011年南京二模)求曲线C 1xy =:在矩阵1111⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到的曲线1C 的方程.题5:(2011年南通二模)已知圆C :221x y +=在矩阵0=(0,0)0a a b b ⎡⎤>>⎢⎥⎣⎦A 对应的变换作用下变为椭圆22194x y +=,求a ,b 的值.题6:(2010年南京二模)如果曲线2243x xy y ++在矩阵11a b ⎛⎫⎪⎝⎭的作用下变换得到曲线221x y -=,求a b +的值.题7:(2011年苏、锡、常、镇一模)已知直角坐标平面xOy 上的一个变换是先绕原点逆时针旋转45,再作关于x 轴反射变换,求这个变换的逆变换的矩阵.2.矩阵的运算、逆矩阵题8:(2009南通二模)已知1 0 4 31 2 4 1-⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦B , 求矩阵B .题9:(2010盐城二模)求使等式 2 4 2 0 1 03 50 10 -1⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦M 成立的矩阵M .题10:(2009南京二模)已知二阶矩阵M 满足1112,0012⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦M M ,求211⎡⎤⎢⎥-⎣⎦M .题11:(2010南通一模)若点A (2,2)在矩阵cos sin sin cos αααα-⎡⎤=⎢⎥⎣⎦M 对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵.题12:(2010年盐城一模)已知二阶矩阵A 有特征值31=λ及其对应的一个特征向量111⎡⎤=⎢⎥⎣⎦α,特征值12-=λ及其对应的一个特征向量211⎡⎤=⎢⎥-⎣⎦α,求矩阵A 的逆矩阵1-A .3.特征值和特征向量题13:(2010年南通二模)求矩阵2112⎡⎤⎢⎥⎣⎦的特征值及对应的特征向量.题14:(2009年苏、锡、常、镇二模)已知矩阵M 221a ⎡⎤=⎢⎥⎣⎦,其中a ∈R ,若点(1,2)P - 在矩阵M 的变换下得到点(4,0)P '-,(1)求实数a 的值; (2)求矩阵M 的特征值及其对应的特征向量.题15:(2011年盐城一模)已知矩阵M =⎥⎦⎤⎢⎣⎡x 221的一个特征值为3,求其另一个特征值.题16:(2011年南京一模)已知21⎡⎤=⎢⎥⎣⎦α为矩阵114a ⎡⎤=⎢⎥-⎣⎦A 属于λ的一个特征向量,求实数a ,λ的值及2A .题17:(2010年苏、锡、常、镇二模)一个22⨯的矩阵M 有两个特征值:128,2λλ==,其中1λ对应的一个特征向量111⎡⎤=⎢⎥⎣⎦e ,2λ对应的一个特征向量212⎡⎤=⎢⎥-⎣⎦e ,求M .参考答案: 题1:解:200102021020MN --⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,由0203200220001064----⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,知1(0,0)A ,1(0,6)B -,1(2,4)C --,11111162A B C C S A B x ∆∴=⋅=.题2:解:由题设得⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-⋅⎥⎦⎤⎢⎣⎡=100101100110MN ,设),(y x 是直线012=+-y x 上任意一点,点),(y x 在矩阵MN 对应的变换作用下变为),(y x '',则有⎥⎦⎤⎢⎣⎡''=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-y x y x 1001, 即⎥⎦⎤⎢⎣⎡''=⎥⎦⎤⎢⎣⎡-y x y x ,所以⎩⎨⎧'-='=y y x x .因为点),(y x 在直线012=+-y x 上,从而01)(2=+'--'y x ,即:012=+'+'y x ,所以曲线F 的方程为 012=++y x .题3:解:设(,)P x y 是圆22:4C x y +=上的任意一点,设(,)P x y '''是(,)P x y 在矩阵2001⎡⎤=⎢⎥⎣⎦A 对应变换作用下的新曲线上的对应点, 则20201x x x y y y '⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦⎣⎦, …………………………………3分 则2x x y y '=⎧⎨'=⎩,所以2x x y y '⎧=⎪⎨⎪'=⎩, …………………………………6分将2x x y y '⎧=⎪⎨⎪'=⎩代入224x y +=,得22()()44x y ''+=. …………………………………8分 所以所求曲线方程为221164x y +=. …………………………………10分 题4:解:设00(,)P x y 为曲线C 1xy =:上任意一点,它在矩阵⎥⎦⎤⎢⎣⎡-=1111M 对应的变换作用下得到点(,)Q x y ,由001111x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,得0000x y x x y y +=⎧⎨-+=⎩,解得0022x y x x yy -⎧=⎪⎪⎨+⎪=⎪⎩, ………………………5分 因为00(,)P x y 在曲线C 1xy =:上,所以001x y =,所以122x y x y -+⨯=,即224x y -=. 所以所求曲线1C 的方程为:224x y -=. …………………………………10分题5:解:设(,)P x y 为圆C 上的任意一点,在矩阵A 对应的变换下变为另一个点(,)P x y ''',则 00x a x y b y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦,即,.x a x y b y '=⎧⎨'=⎩ …………………………………4分 又因为点(,)P x y '''在椭圆22194x y +=上,所以 2222194a xb y +=.由已知条件可知,221x y += ,所以 a 2=9,b 2=4.因为 a >0 ,b >0,所以 a =3,b =2. ………………………………10分题6:解:设00(,)P x y 是曲线22431x xy y ++=上的任意一点,点00(,)P x y 在矩阵11a b ⎡⎤⎢⎥⎣⎦对应的变换作用下,得到的点(,)Q x y 都在曲线221x y -=上. 由0011x a x b y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得0000x ay x bx y y +=⎧⎨+=⎩, 代入221x y -=,得:22220000(1)(22)(1)1b x a b x y a y -+-+-=, 又因为00(,)P x y 在22431x xy y ++=上,所以220000431x x y y ++=,所以221122413b a b a ⎧-=⎪-=⎨⎪-=⎩,解得20a b =⎧⎨=⎩,所以2a b +=.题7:解:这个变换的逆变换是先作关于x 轴反射变换,再作绕原点顺时针45旋转变换,…2分其矩阵是10cos(45)sin(45)01sin(45)cos(45)⎡⎤---⎡⎤⋅⎢⎥⎢⎥---⎣⎦⎣⎦ …………………………………6分22⎡-⎢⎢=⎢⎢⎣ 。
高中数学中的矩阵运算与矩阵变换矩阵是高中数学中的一个重要概念,它不仅在数学理论中有着广泛的应用,而且在实际问题中也有着重要的作用。
矩阵运算和矩阵变换是矩阵的两个核心概念,它们在解决实际问题和理论研究中都有着不可或缺的地位。
矩阵运算是指对矩阵进行加法、减法、数乘、乘法等操作。
这些运算在实际问题中有着广泛的应用。
例如,在经济学中,矩阵运算可以用来描述不同产业之间的投入产出关系;在物理学中,矩阵运算可以用来描述物体的运动和变换等。
通过矩阵运算,我们可以对复杂的问题进行简化和求解,从而得到更加准确和有效的结果。
矩阵变换是指通过矩阵运算对向量进行变换。
这些变换可以是平移、旋转、缩放等。
在实际应用中,矩阵变换可以用来描述图像的变换、物体的变形等。
例如,在计算机图形学中,矩阵变换可以用来实现图像的平移、旋转、缩放等效果;在机器人学中,矩阵变换可以用来描述机器人的运动和姿态等。
通过矩阵变换,我们可以对复杂的几何问题进行简化和求解,从而得到更加清晰和直观的结果。
矩阵运算和矩阵变换之间有着密切的联系。
矩阵运算是矩阵变换的基础,而矩阵变换则是矩阵运算的应用。
通过矩阵运算,我们可以对矩阵进行组合、分解和求逆等操作,从而得到更加灵活和高效的矩阵变换。
例如,在计算机图形学中,我们可以通过矩阵运算来实现复杂的图像变换,如图像的旋转、缩放和平移等。
通过矩阵变换,我们可以将一个复杂的图像变换问题转化为一个简单的矩阵运算问题,从而简化了问题的求解过程。
除了在实际应用中的重要性,矩阵运算和矩阵变换还在理论研究中有着广泛的应用。
在数学理论中,矩阵运算和矩阵变换是线性代数的核心内容。
通过研究矩阵运算和矩阵变换,我们可以深入理解线性代数的基本概念和原理,从而为更高级的数学理论和应用打下坚实的基础。
例如,在微分方程的研究中,我们可以通过矩阵变换将微分方程转化为矩阵方程,从而简化了问题的求解过程。
通过研究矩阵运算和矩阵变换,我们可以发现其中的规律和特性,从而为更深入的数学研究提供了重要的线索和工具。
高中数学《矩阵与变换》练习题(含答案解析)一、单选题1.方程x 2=x 的所有实数根组成的集合为( ) A .()0,1B .(){}0,1C .{}0,1D .{}2x x =2.若某线性方程组的增广矩阵为1282416⎛⎫⎪⎝⎭,则该线性方程组的解的个数为( )A .0个B .1个C .无数个D .不确定3.关于x ,y 的二元一次方程组2332x y x y -=⎧⎨+=⎩的系数矩阵为( )A .1231- B .1332C .1231-⎛⎫⎪⎝⎭ D .2312-⎛⎫⎪⎝⎭4.某人在超市一次性购买了20斤大米和10斤食用油,大米的价格是4.8元/斤,食用油的价格是15元/斤,则购买这两种商品的总花费可以用下列哪个算式计算得到( ).A .201510 4.8⎛⎫⎪⎝⎭B .20 4.81015⎛⎫⎪⎝⎭C .()4.8201015⎛⎫⎪⎝⎭D .() 4.8201015⎛⎫⎪⎝⎭5.二元一次方程2135x y x y -=⎧⎨+=⎩的系数行列式的值是( )A .2B .5C .7D .116.三阶行列式111222333a b c a b c a b c 中,1b 的代数余子式是( ). A .1122a c a c B .2233a c a c C .2233c a c a D .1122c a c a7.由9个互不相等的正数组成的矩阵111213212223313233a a a a a a a a a ⎛⎫⎪⎪ ⎪⎝⎭中,每行中的三个数成等差数列,且111213a a a ++、212223a a a ++、313233a a a ++成等比数列,下列判断正确的有①第2列中的122232a a a 、、必成等比数列;①第1列中的112131a a a 、、不一定成等比数列;①12322123a a a a +>+; A .1个B .2个C .3个D .0个8.若矩阵12a b -⎛⎫⎪⎝⎭是线性方程组321x y x y -=⎧⎨-=⎩的系数矩阵,则( )A .1,1a b ==-B .1,1a b ==C .1,1a b =-=D .1,1a b =-=-9.下列行列式的值与()sin αβ+不相等的是( ) A .sin cos sin cos ααββ- B .sin cos sin cos ββαα--C .sin sin cos cos αβαβ- D .cos sin cos sin ααββ-10.在ABC ∆中,如果1101a c b a c b =,则ABC ∆一定是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形二、填空题11.三阶行列式3510236774-----中元素5-的代数余子式的值为_________.12.行列式4126的值为____________. 13.函数()sin 111||x f x =的最小正周期为_____.14.若数列{}n a*10,N 1n =∈,且lim n n a →∞存在,则lim n n a →∞=___________; 三、解答题15.已知矩阵33A c d ⎡⎤=⎢⎥⎣⎦,若矩阵A 属于特征值6的一个特征向量为111⎡⎤=⎢⎥⎣⎦α,属于特征值1的一个特征向量为232α⎡⎤=⎢⎥-⎣⎦.求矩阵A ,并写出A 的逆矩阵.16.王明、李东、张红三位同学在第一、第二学期消费的部分文具的数量如表所示:若笔记本的单价为每本5元;练习本每本2元;水笔每支3元;铅笔每支1元.求三位学生在这些文具上各自花费的金额.17.已知三角形三边的和6a b c ++=,又0a b cc a b b c a=,求各边之长.18.已知sin 1cos 1x x x m ωωω=⎪⎭-⎛⎫⎝,(cos sin ,2sin )(0)n x x x ωωωω=->,若()f x m n =⋅且()f x 的图像相邻的对称轴间的距离不小于2π. (1)求ω的取值范围;(2)若当ω取最大值时,()1f A =,且在ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,其面积ABCS =求ABC 周长的最小值.参考答案与解析:1.C【分析】解方程x 2=x ,得x =0或x =1,由此能求出方程x 2=x 的所有实数根组成的集合 【详解】解:解方程x 2=x ,得x =0或x =1, 方程x 2=x 的所有实数根组成的集合为{}0,1. 故选:C .2.C【解析】将线性方程组转化为方程,即可判断解的个数. 【详解】该线性方程组可化为方程28x y +=,故有无数组解, 故选:C. 3.C【分析】根据方程组的系数矩阵的定义判断即可.【详解】解:关于x ,y 的二元一次方程组2332x y x y -=⎧⎨+=⎩的系数矩阵为1231-⎛⎫⎪⎝⎭. 故选:C 4.D【分析】先计算出购买这两种商品的总花费,再计算矩阵比较即得解. 【详解】由题意得购买这两种商品的总花费为20 4.8+1015=246⨯⨯又() 4.82010=20 4.8+1015=24615⎛⎫⨯⨯ ⎪⎝⎭ 故选:D 5.C【解析】先列出二元一次方程2135x y x y -=⎧⎨+=⎩的系数行列式为1231-,再计算即可求解.【详解】因为二元一次方程2135x y x y -=⎧⎨+=⎩的系数行列式为1231-,()121132731-=⨯-⨯-=,故选:C 6.C【分析】直接利用代数余子式的定义计算得到答案.【详解】行列式111222333a b c a b c a b c 1b 的代数余子式是()222222333313321a c a c c a a c a c c a +=-=-.故选:C.7.C【解析】根据每行中的三个数成等差数列,可以把原来的矩阵变形,最后根据等比的数列的性质、基本不等式,举特例对三种说法逐一判断即可.【详解】因为每行中的三个数成等差数列,所以有222a a d a d b b m b m c c n c n ++⎛⎫ ⎪++ ⎪ ⎪++⎝⎭.111213a a a ++、212223a a a ++、313233a a a ++分别为:3(),3(),3()a d b m c n +++,它们成等比数列,因此有:2()()()b m a d c n +=++,因此说法①正确;()()2()a d c n b m +++>=+题中已知可知这九个数都不互相相等,故不取等号),因此说法①正确;当1232.54 5.56.589.5⎛⎫⎪⎪ ⎪⎝⎭显然符合已知条件,所以说法①正确. 故选:C【点睛】本题考查了等差数列的性质、等比数列的性质,考查了基本不等式的应用. 8.A【分析】直接根据系数矩阵的定义得到答案.【详解】矩阵12a b -⎛⎫ ⎪⎝⎭是线性方程组321x y x y -=⎧⎨-=⎩的系数矩阵,则1,1a b ==-.故选:A .【点睛】本题考查了系数矩阵,属于简单题. 9.D【分析】根据行列式的运算性质,结合两角和的正弦函数的公式,逐项运算,即可求解. 【详解】对于A 中,可得sin cos sin cos cos sin sin()sin cos αααβαβαβββ=+=+-;对于B 中,可得sin cos (sin cos cos sin )sin cos βββαβααα--=---sin cos cos sin sin()αβαβαβ=+=+;对于C 中,可得sin sin sin cos cos sin sin()cos cos αβαβαβαβαβ-=+=+;对于D 中,可得cos sin cos sin sin cos sin()cos sin αααβαβαβββ=--=-+-,故选D.【点睛】本题主要考查了行列式的运算性质,以及两角和的正弦公式的应用,其中解答中熟记行列式的运算性质,结合两角和的正弦公式求解是解答的关键,着重考查了推理与运算能,属于基础题. 10.D【分析】根据1101a cb ac b =计算得到a b c ==,得到答案.【详解】2221101a cb a a bc ac bc ab c b =++---=即()()()222102a b b c a c a b c ⎡⎤-+-+-=∴==⎣⎦ 故选D【点睛】本题考查了行列式的计算,意在考查学生的计算能力. 11.34【分析】根据行列式的代数余子式的定义进行计算.【详解】由题可知[]1226(1)24(6)(7)3474+--⋅=-⨯--⨯-=-.故答案为:34. 12.22【分析】根据行列式的计算方法求解即可【详解】行列式4126的值为461222⨯-⨯=故答案为:22 13.2π【分析】化简函数结合最小正周期公式求解即可. 【详解】解:函数()sin 111||x f x =sin 1x =-,所以函数的周期为:221T ππ==. 故答案为:2π. 14.9【分析】由题设有60n a =,令0n x =有260x x --=,解方程即可得结果.60n a =-≥,则60n a =,又lim n n a →∞存在,故lim 60n n n a →∞-=,令0n x =≥,则2lim n n x a →∞=, 所以26(2)(3)0x x x x --=+-=,可得3x =或2x =-(舍),所以lim 9n n a →∞=. 故答案为:915.21321132⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦【解析】根据矩阵特征值与特征向量的关系,建立,c d 关系式,从而求出矩阵A ,再利用公式求出逆矩阵.【详解】由矩阵A 属于特征值6的一个特征向量为111⎡⎤=⎢⎥⎣⎦α 可得3311611c d ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即c +d =6; 由矩阵A 属于特征值1的一个特征向量为232α⎡⎤=⎢⎥-⎣⎦,可得333322c d ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,即3c -2d =-2, 解得24c d =⎧⎨=⎩即3324A ⎡⎤=⎢⎥⎣⎦,A 的逆矩阵是21321132⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦. 【点睛】本题考查特征值和特征向量的计算,考查了逆矩阵求解公式,属于基础题. 16.分别花费79元、87元、115元【分析】根据题意用矩阵表示各文具每学期消费数量和文具的单价,而花费的金额等于数量乘文具的单价,利用矩阵乘法求出三位学生在这些文具上各自花费的金额.【详解】各文具每学期消费数量用矩阵表示1352426334742A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,24633485251064A ⎛⎫⎪= ⎪ ⎪⎝⎭.这些文具的单价矩阵为5231P ⎛⎫⎪⎪= ⎪ ⎪⎝⎭,所以这三位同学两学期在这几种文具上花费的矩阵为()12571157792614858739171061151C A A P ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=+⋅== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以这三位学生在这些文具上分别花费79元、87元、115元【点睛】本题考查了线性变换的矩阵表示理解与应用,矩阵乘法,属于容易题. 17.2a b c ===【分析】先由行列式得到3333a b c abc ++=,再利用基本不等式3333a b c abc +≥+,得到a b c ==,然后由6a b c ++=求解.【详解】因为0a b cc a b b c a =,所以3333a b c abc ++=, 又因为3333a b c abc +≥+, 当且仅当a b c ==时,取等号, 又因为6a b c ++=, 所以2a b c ===,【点睛】本题主要考查行列式的计算以及基本不等式的应用,还考查了运算求解的能力,属于基础题. 18.(1)01ω<≤ (2)6【分析】(1)化简得到()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭,再根据周期的范围得到答案.(2)根据()1f A =得到π3A =,根据面积公式得到4bc =,再利用余弦定理结合均值不等式得到答案. (1)()sin 1sin cos cos 1x x x x x x m ωωωωωω⎛⎫== ⎭+⎝-⎪,()22cos sin cos cos22f x m n x x x x x x ωωωωωω=⋅=-+=π2sin 26x ω⎛⎫=+ ⎪⎝⎭,2ππ2T ω=≥,解得01ω<≤.(2)()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,()π2sin 216f A A ⎛⎫=+= ⎪⎝⎭,ππ13π2,666A ⎛⎫+∈ ⎪⎝⎭, 故π5π266A +=,π3A =.1sin 2ABC S bc A ===△4bc =,222222cos 4a b c bc A b c =+-=+-,6a b c b c ++=+,当2b c ==时等号成立.故周长的最小值为6.。
一、知识梳理【高考考情解读】本讲从内容上看,主要考查二阶矩阵的基本运算,考查矩阵的逆运算及利用系数矩阵的逆矩阵求点的坐标或曲线方程等.从形式上看,以解答题为主,本节知识是高考中数学教材和高等数学教材的接轨知识,一般以基础题目为主,难度不大.又经常与其他知识结合,在考查基础知识的同时,考查转化与化归等数学思想,以及分析问题、解决问题的能力.分值为10分.1.矩阵乘法的定义2.几种常见的平面变换(1)恒等变换;(2)伸缩变换;(3)反射变换;(4)旋转变换;(5)投影变换;(6)切变变换.3.矩阵的逆矩阵(1)逆矩阵的有关概念(2)逆矩阵的求法(3)逆矩阵的简单性质①若二阶矩阵A,B均存在逆矩阵,则AB也存在逆矩阵,且(AB)-1=B-1A-1.②已知A,B,C为二阶矩阵,且AB=AC,若矩阵A存在逆矩阵,则B=C.(4)逆矩阵与二元一次方程组4.二阶矩阵的特征值和特征向量(1)特征值与特征向量的概念(2)特征向量的几何意义(3)特征多项式(4)求矩阵的特征值与特征向量二、课前预习1 . ⎣⎢⎡⎦⎥⎤1 00 -1⎣⎢⎡⎦⎥⎤57=________. 2.若X ⎣⎢⎡⎦⎥⎤2 31 2=⎣⎢⎡⎦⎥⎤ 3 2-1 1,则二阶矩阵X =____________. 3.圆x 2+y 2=1在矩阵⎣⎢⎢⎡⎦⎥⎥⎤1 00 12对应的变换作用下的结果为________.4.若A =⎣⎢⎡⎦⎥⎤1 65 2,则A 的特征值为________. 5.设矩阵A 为二阶矩阵,且规定其元素a ij =i 2+j (i =1,2;j =1,2),则A =__________. 三、典型例题考点一 利用向量证明平行与垂直关系 考点一 常见矩阵变换的应用 例1、已知矩阵A =⎣⎢⎡⎦⎥⎤1 011,B =⎣⎢⎡⎦⎥⎤0 23 2.(1)求满足条件AM =B 的矩阵M ;(2)矩阵M 对应的变换将曲线C :x 2+y 2=1变换为曲线C ′,求曲线C ′的方程.考点二 求二阶矩阵的逆矩阵 例2、设矩阵M =⎣⎢⎡⎦⎥⎤a00b (其中a >0,b >0).(1)若a =2,b =3,求矩阵M 的逆矩阵M -1;(2)若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C ′:x 24+y 2=1,求a ,b 的值.考点三 求矩阵的特征值与特征向量例3、已知二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(-2,4). (1)求矩阵M ;(2)求矩阵M 的另一个特征值,及对应的一个特征向量e 2的坐标之间的关系; (3)求直线l :x -y +1=0在矩阵M 的作用下的直线l ′的方程.四、课后练习 一、填空题 1. 求满足X ⎣⎢⎡⎦⎥⎤231 2=⎣⎢⎡⎦⎥⎤ 3 2-11的二阶矩阵X .2. 双曲线x 25-y 24=1的右焦点为F ,矩阵A =⎣⎢⎡⎦⎥⎤210,B =⎣⎢⎡⎦⎥⎤1 00 3,求点F 在矩阵BA 对应的变换作用下的象F ′.3. 求函数y =x 2在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤1 00 14变换作用下的结果.4. (2012·江苏)已知矩阵A 的逆矩阵A-1=⎣⎢⎡⎦⎥⎤-14 3412 -12,求矩阵A 的特征值.5. 已知矩阵A =⎣⎢⎡⎦⎥⎤1 12 1,向量β=⎣⎢⎡⎦⎥⎤12.求向量α,使得A 2α=β.6. 已知变换S 把平面上的点A (3,0),B (2,1)分别变换为点A ′(0,3),B ′(1,-1),试求变换S 对应的矩阵T .7. 已知曲线C :xy =1,将曲线C 绕坐标原点逆时针旋转45°后,求得到的曲线C ′的方程.8. 在直角坐标系中,已知△ABC 的顶点坐标为A (0,0)、B (1,1)、C (0,2),求△ABC 在矩阵MN作用下变换所得到的图形的面积,其中M =⎣⎢⎡⎦⎥⎤0 11 0,N =⎣⎢⎡⎦⎥⎤0 -11 0.9. 已知矩阵A =⎣⎢⎡⎦⎥⎤1 -1a 1,其中a ∈R ,若点P (1,1)在矩阵A 的变换下得到点P ′(0,-3).(1)求实数a 的值;(2)求矩阵A 的特征值及特征向量.10.(2012·福建)设曲线2x 2+2xy +y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤a 0b1(a >0)对应的变换作用下得到的曲线为x 2+y 2=1.(1)求实数a ,b 的值; (2)求A 2的逆矩阵.。
选修4-2矩阵与变换 2.1.1 矩阵的概念编写人: 编号:001学习目标1、 了解矩阵的产生背景,并会用矩阵形式表示一些实际问题。
2、 了解矩阵的相关知识,如行、列、元素、零矩阵的意义和表示。
学习过程:一、预习:(一)阅读教材,解决下列问题:问题1:已知向量OP ,O(0,0),P(1,3).因此把)3,1(=OP ,如果把OP 的坐标排成一列,可简记为 。
问题2:某电视台举办歌唱比赛,甲乙两名选手初、复赛成绩如下表,并简记为问题3:将方程组⎩⎨⎧=+-=++2423132z y x mz y x 中未知数z y x ,,的系数按原来的次序排列,并简记为(二)建构数学1. 矩阵:我们把形如⎥⎦⎤⎢⎣⎡31,⎥⎦⎤⎢⎣⎡85609080,⎥⎦⎤⎢⎣⎡-42332m 这样的矩形数字阵列称为矩阵。
用大写黑体拉丁字母A,B,…来表示矩阵2. 矩阵的行:3. 矩阵的列:4. 矩阵的元素:5. 零矩阵:6. 行矩阵:7.列矩阵:练习征?问该图形有什么几何特表示平面中的图形,请现用矩阵⎥⎦⎤⎢⎣⎡=02204310M 二、课堂训练:例1.用矩阵表示ABC ∆,其中A(-1,0),B(0,2),C(2,0)例2.某种水果的产地为21,A A ,销地为21,B B ,请用矩阵表示产地i A 运到销地j B 水果数量)(ij a ,其中,2,1,2,1==j i例3.已知⎥⎦⎤⎢⎣⎡-=243x A ,⎥⎦⎤⎢⎣⎡-=21z y B ,若A=B ,试求z y x ,,例4.的量。
两矿区向三个城市送煤万吨。
请用矩阵表示从万吨、万吨、送煤的量分别是万吨;从乙矿区向城市万吨、万吨、是送煤的量分别矿区向城市向三个城市送煤:从甲某公司负责从两个矿区820360400,,160240200,,C B A C B A三、课后巩固:1、写出方程组⎩⎨⎧-=+=-2312my x y x 变量x,y 的系数矩阵.2、已知⎥⎦⎤⎢⎣⎡+=c b d a A 23,⎥⎦⎤⎢⎣⎡++=d a c b B 245,若A=B ,求a ,b ,c ,d.3、“两个矩阵的行数和列数相等”是“两个矩阵相等”的( )A 、充分不必要条件B 、必要不充分条件是C 、充要条件D 、既不充分又不必要条件4、已知⎥⎦⎤⎢⎣⎡b a 2000是一个正三角形的三个顶点坐标所组成的矩阵,求a ,b.5. 已知⎥⎦⎤⎢⎣⎡--+-=1sin cos sin cos 1ββααA ,⎥⎦⎤⎢⎣⎡--=1221B 若A=B ,求α,β.。
14.2 矩阵与变换
解答题
1. 在平面直角坐标系xOy 中,设椭圆4x 2
+y 2
=1在矩阵A =⎣⎢⎡⎦
⎥⎤
2 00 1对应的变换下
得到曲线F ,求F 的方程.
解析 设P (x ,y )是椭圆4x 2+y 2=1上的任意一点,点P (x ,y )在矩阵A 对应的变换下变为点P ′(x ′,y ′),则有⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢
⎡⎦⎥⎤2
00
1 ⎣⎢⎡⎦⎥⎤x y ,即⎩⎨⎧
x ′=2x ,y ′=y ,
所以⎩⎨⎧
x =x ′
2y =y ′
.
又因为点P (x ,y )在椭圆4x 2+y 2=1上, 所以4(
x ′2
)2+y ′2=1,
即x ′2+y ′2=1.
故曲线F 的方程为x 2+y 2=1.
【点评】 线性变换是基本变换,解这类问题关键是由⎣⎢⎡⎦⎥⎤x ′y ′=A ⎣⎢⎡⎦
⎥⎤
x y 得到点
P ′(x ′,y ′)与点P (x ,y )的坐标关系.
2.已知在一个二阶矩阵M 对应变换的作用下,点A (1,2)变成了点A ′(7,10),点B (2,0)变成了点B ′(2,4),求矩阵M . 解析 设M =⎣⎢
⎡⎦
⎥⎤a
b c
d ,则⎣⎢
⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤710,⎣⎢⎡⎦⎥⎤a
b c
d ⎣⎢⎡⎦⎥⎤20=⎣⎢⎡⎦
⎥⎤24, 即⎩⎨⎧ a +2b =7,
c +2
d =10,2a =2,2c =4.
解得⎩⎨⎧
a =1,
b =3,
c =2,
d =4.
所以M =⎣⎢
⎡⎦
⎥⎤1
32 4.
3.求圆C :x 2
+y 2=4在矩阵A =⎣⎢
⎡⎦
⎥⎤
2
00
1的变换作用下的曲线方程. 解析 设P ′(x ′,y ′)是圆C :x 2+y 2=4上的任一点, 设P (x ,y )是P ′(x ′,y ′)在矩阵A =⎣⎢
⎡⎦
⎥⎤
2
00 1对应变换作用下新曲线上的对应点, 则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤2 00
1 ⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦
⎥⎤2x ′ y ′, 即⎩⎨
⎧
x =2x ′,y =y ′,
所以⎩⎨
⎧
x ′=x 2,
y ′=y .
将⎩⎨⎧
x ′=x 2,
y ′=y
代入x 2
+y 2
=4,得x 2
4
+y 2=4,
故方程为x 2
16+y 2
4
=1.
4.在平面直角坐标系xOy 中,直线l :x +y +2=0在矩阵M =⎣⎢
⎡⎦
⎥⎤
1
a b 4对应的变换作用下得到直线m :x -y -4=0,求实数a ,b 的值.
解析 在直线l :x +y +2=0上取两点A (-2,0),B (0,-2).
A 、
B 在矩阵M 对应的变换作用下分别对应于点A ′、B ′. 因为⎣⎢⎡⎦⎥⎤1 a b 4 ⎣⎢⎡⎦⎥⎤-2 0=⎣⎢⎡⎦⎥⎤ -2 -2b ,所以点A ′的坐标为(-2,-2b );
⎣⎢⎡⎦⎥⎤1 a b 4 ⎣⎢⎡⎦⎥⎤ 0-2=⎣⎢⎡⎦
⎥⎤-2a -8,所以点B ′的坐标为(-2a ,-8). 由题意,点A ′、B ′在直线m :x -y -4=0上, 所以⎩⎨⎧
(-2)-(-2b )-4=0,(-2a )-(-8)-4=0.
解得a =2,b =3.
5.求曲线C :xy =1在矩阵M =⎣⎢⎡⎦⎥⎤
1 1-1 1对应的变换作用下得到的曲线C 1的方程.
解析 设P (x 0,y 0)为曲线C :xy =1上的任意一点,
它在矩阵M =⎣⎢
⎡⎦
⎥⎤
1
1-1 1对应的变换作用下得到点Q (x ,y ) 由⎣⎢
⎡⎦⎥⎤ 1 1-1
1⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,得⎩⎨⎧
x 0+y 0=x ,-x 0+y 0=y .
解得⎩
⎪⎨
⎪⎧
x 0=x -y 2,y 0
=x +y 2.
因为P (x 0,y 0)在曲线C :xy =1上,所以x 0y 0=1. 所以
x -y 2×
x +y 2
=1,即x 2-y 2=4.
所以所求曲线C 1的方程为x 2-y 2=4.
6. 已知矩阵⎥⎦⎤⎢⎣⎡=d c A 33,若矩阵A 属于特征值6的一个特征向量为⎥
⎦⎤⎢⎣⎡=111α,属 于特征值1的一个特征向量为⎥⎦
⎤
⎢⎣⎡-=232α.求矩阵A 的逆矩阵.
解析 由矩阵A 属于特征值6的一个特征向量为⎥⎦⎤⎢⎣⎡=111α,可得⎥⎦⎤⎢⎣⎡d c 33⎥⎦⎤⎢⎣⎡11=6⎥
⎦⎤
⎢⎣⎡11, 即6=+d c ;
由矩阵A 属于特征值1的一个特征向量为⎥⎦⎤⎢⎣⎡-=232α可得,⎥⎦⎤⎢⎣⎡d c 33⎥⎦⎤⎢⎣⎡-23=⎥⎦⎤
⎢⎣⎡-23, 即223-=-d c ,
解得⎩⎨⎧==,4,2d c 即A =⎥⎦⎤⎢⎣⎡4233,A 逆矩阵是⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡2131-21-32
. 7.在平面直角坐标系xOy 中,已知点A (0,0),B (-2,0),C (-2,1),设k 为非零实数,M =⎣⎢⎡⎦⎥⎤k 00 1,N =⎣⎢⎡⎦⎥⎤
0 11 0,点A 、B 、C 在矩阵MN 对应的变换下得到的点
分别为A 1、B 1、C 1,△A 1B 1C 1的面积是△ABC 面积的2倍,求k 的值. 解析 由题设得MN =⎣⎢⎡⎦⎥⎤k 00 1⎣⎢⎡⎦⎥⎤0 11 0=⎣⎢⎡⎦
⎥⎤
0 k 1 0.
由⎣⎢⎡⎦⎥⎤0 k 1
0⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎡⎦⎥⎤0 k 1 0 ⎣⎢⎡⎦⎥⎤-2 0=⎣⎢⎡⎦⎥⎤ 0-2,⎣⎢⎡⎦⎥⎤0 k 1 0 ⎣⎢⎡⎦
⎥⎤
-2 1 ⎣⎢⎡⎦
⎥⎤
k -2,可知A 1(0,0),B 1(0,-2),C 1(k ,-2). 计算得△ABC 的面积是1,△A 1B 1C 1的面积是|k |,则由题设知|k |=2×1=2. 所以k 的值为-2或2.
8.已知矩阵M =⎣⎢⎡⎦⎥⎤0 11 0,N =⎣⎢⎡⎦⎥⎤
0 -11 0.在平面直角坐标系中,设直线2x -y +1
=0在矩阵MN 对应的变换作用下得到的曲线F ,求曲线F 的方程. 解析 由题设得MN =⎣⎢⎡⎦⎥⎤0 11 0 ⎣⎢⎡⎦⎥⎤0 -11 0=⎣⎢⎡⎦⎥⎤
1 00 -1,
设(x ,y )是直线2x -y +1=0上任意一点,
点(x ,y )在矩阵MN 对应的变换作用下变为(x ′,y ′), 则有⎣⎢⎡⎦⎥⎤1 00 -1 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,
即⎣⎢⎡⎦⎥⎤ x -y =⎣⎢⎡⎦⎥⎤x ′y ′, 所以⎩⎨
⎧
x =x ′,y =-y ′.
因为点(x ,y )在直线2x -y +1=0上,
从而2x ′-(-y ′)+1=0,即2x ′+y ′+1=0, 所以曲线F 的方程为2x +y +1=0.。