简支梁计算内容
- 格式:doc
- 大小:110.00 KB
- 文档页数:5
简支梁计算公式总汇简支梁计算方法是什么?计算基数级荷载值:Pka=Mka/α=21279.736/54.75=388.671(kN)计算各荷载下理论挠度值:f=2P[L+2(L/2-Χ1)(3L-4(L/2-Χ1))+2(L/2-Χ2)(3L-4(L/2-Χ2))]/48EI/1000=0.01156P基数级跨中弯距Mka:Mka=(Md+Mf)×VZ/VJ+ΔMs/VJ-MsMka=(Md+Mf)×1.017/1.0319+△Ms/1.0319-Ms=(17364.38+0)×1.017/1.0319+4468.475/1.0319-164.25=21279.736(kN·m)简支梁是什么?它是指梁的两端搁置在支座上,而支座仅约束梁的垂直位移,梁端是可以自由转动的。
为了使整个梁不产生水平移动,将在一端加设水平约束,该处的支座称为铰支座,另一端不加水平约束的支座则称为滚动支座。
简支梁有哪些特点?简支梁具有受力明确(静定结构)、构造简单、易于标准化设计,易于标准化工厂制造和工地预制,易于架设施工,易于养护、维修和更换等特点。
但简支梁桥不适用于较大跨度的桥梁工程。
简支梁和连续梁的区别是什么?1、支座数量不同简支梁有两个支座。
简支梁的两端搁置在支座上,一端加水平约束的支座称为铰支座,另一端不加水平约束的支座称为滚动支座。
连续梁有三个或三个以上支座。
连续梁有中间支座。
2、所受力不同简支梁仅在两端受铰支座约束,主要承受正弯矩。
体系温变、混凝土收缩徐变、张拉预应力、支座移动等都不会在梁中产生附加内力,受力简单,简支梁为力学简化模型。
连续梁属静不定结构,从力法求解其中的内力可知,连续梁承受三个以上的支座力矩。
连续梁有负弯矩,受正弯矩比相应的简支梁要小。
3、用途不同简支梁受力简单,为力学简化模型,构造也较简单,容易做成标准化、装配化构件。
连续梁经常使用在建筑、桥梁、航空以及管道线路等工程中。
两端简支梁力学计算公式
1.弯矩计算公式:
弯矩是梁中最常见的力学特征之一,用来描述梁的弯曲性质。
在两端简支梁中,弯矩可以通过以下公式计算:
M=(wL^2)/8
其中,M表示弯矩,w表示分布载荷的单位长度,L表示梁的长度。
2.剪力计算公式:
剪力是横截面梁中的各个部分之间的内力,用来描述梁的抗剪能力。
在两端简支梁中,剪力可以通过以下公式计算:
V=(wL)/2
其中,V表示剪力,w表示分布载荷的单位长度,L表示梁的长度。
3.轴力计算公式:
轴力是梁中的纵向内力,用来描述梁的受力性质。
在两端简支梁中,轴力可以通过以下公式计算:
N=(wL)/2
其中,N表示轴力,w表示分布载荷的单位长度,L表示梁的长度。
4.梁的挠度计算公式:
梁的挠度是梁受到外力作用后发生的弯曲变形。
在两端简支梁中,梁的挠度可以通过以下公式计算:
δ=(5wL^4)/(384EI)
其中,δ表示梁的挠度,w表示分布载荷的单位长度,L表示梁的长度,E表示梁的弹性模量,I表示梁的截面惯性矩。
5.梁的应力计算公式:
在两端简支梁中,梁的应力可以通过以下公式计算:
σ=(My)/I
其中,σ表示梁的应力,M表示弯矩,y表示离梁轴心的距离,I表示梁的截面惯性矩。
以上公式只涵盖了两端简支梁力学计算中的一部分,实际应用中还需要考虑其他因素,例如温度变化、应变等。
此外,梁的材料性质和截面形状也会对计算结果产生影响,因此在具体应用中需要根据实际情况进行调整。
4Φ20钢筋混凝土矩形截面简支梁,截面尺寸b×h =200mm ×450mm , 计算跨度L 0=6m ,承受均布线荷载:活荷载:楼面板2kN/m ,屋面板1.5 kN/m.永久荷载标准值:钢筋混凝土的重度标准值为25kN/m 3,故梁自重标准值为25×0.2×0.45=2.25 kN/m 。
墙自重18×0.24×3=12.96 kN/m ,楼板:25×0.08×2.25=4.5kN/m. 楼盖板25×0.06×2.25=3.375kN/m.查表得f c =12.5N/mm 2,f t =1.3N/mm 2,f y =360N/mm 2,ξb =0.550,α1=1.0,结构重要性系数 γ0=1.0,可变荷载组合值系数Ψc=0.71.计算弯矩设计值M故作用在梁上的恒荷载标准值为:g k =2.25+12.96+4.5+3.375=23.085kN/m简支梁在恒荷载标准值作用下的跨中弯矩为:M gk =1/8g k l 02=1/8×23.085×62=103.88kN.m简支梁在活荷载标准值作用下的跨中弯矩为:M qk =1/8q k l 02=1/8×62×(2+1.5*0.4)=11.7kN·m由恒载控制的跨中弯矩为:γ0(γG M gk + γQ Ψc M qk )=1.0×(1.35×103.88+1.4×0.7×11.7)=151.70kN·m由活荷载控制的跨中弯矩为:γ0(γG M gk +γQ M qk ) =1.0×(1.2×13.88+1.4×11.7)=141.03kN·m取较大值得跨中弯矩设计值M =151.70kN·m 。
1.确定截面有效高度h 0假设纵向受力钢筋为单层,则h 0=h -35=450-35=415mm假设纵向受力钢筋为单层,则h 0=h -35=450-35=415mm2.计算x ,并判断是否为超筋梁=4.15-((4.152-2*151.70*106/1.1*12.5*200))^0.5=166.03mm<0.518*415=214.97不属超筋梁。
一. 计算依据(1)《建筑施工承插式盘扣支架钢管脚手架安全技术规范》(JGJ 231-2010)(2)《建筑结构荷载规范》GB 50009-2012(3)《钢结构设计规范》GB 50017-2011二. 参数信息本工程箱型梁顶板厚度为0.54m;底板厚度为0.70m;中腹板厚度为0.50m,腹板高度为1.00m。
底面模板面板厚度为15.00mm,面板弹性模量为9900.00N/mm2,抗弯强度为15.00N/mm2,底模次楞方木截面宽度为100.00mm,截面高度为100.00mm。
次楞方木间距箱室部位为300.00mm,中腹板部位为300.00mm。
底模主楞方木截面宽度为150.00mm,截面高度为150.00mm,主楞方木间距为600.00mm。
恒荷载包括底面模板自重0.50kN/m2,钢筋混凝土自重26.50kN/m3,箱室内附加荷载2.50kN/m2。
活荷载包括施工荷载2.00kN/m2,振捣混凝土荷载2.00kN/m2。
钢管支撑架参数:支撑钢管类型Φ48×3.2支撑架步距为1.50m。
支撑架立杆中腹板部位横向间距为300.00mm,纵向间距为900.00mm;支撑架立杆箱室部位横向间距为600.00mm,纵向间距为900.00mm。
钢管立杆竖向变形计算参数:立杆实际竖向高度 H = 12.00m ;立杆实际工作长度内街头数量 n = 4 ;每个接头处非弹性变形值 det = 0.50mm;钢管的计算温度差 detT = 10.00度;立杆钢材的线膨胀系数 a = 1.20×10-5。
三. 荷载计算1.恒荷载标准值(荷载分项系数 Y G = 1.2)模板自重:在验算底模面板、主次楞方面和钢管支撑体系时取 q1 = 0.50kN/m2;腹板部位新浇筑钢筋混凝土自重标准值:q2 = 1.00×26.50=26.50kN/m2;箱室部位新浇筑钢筋混凝土自重标准值q3 = 1.24×26.50=32.86kN/m2;箱室内模及支架的重量取 q4 = 2.50kN/m2。
简支梁受力分析力矩剪力计算简支梁是一种常见的结构形式,其受力分析中包括力的计算、力矩的计算和剪力的计算。
下面将分别介绍这些内容。
一、力的计算简支梁上受力主要包括集中力和分布载荷两种情况。
1.集中力集中力是指作用于梁上其中一点或若干点的力。
对于集中力的计算,首先需要确定力的大小和方向。
然后根据力的平衡条件,可以得到力的计算式。
通过受力分析,可以计算出力的大小及分布情况。
2.分布载荷分布载荷是指作用于梁上区域的力。
对于分布载荷的计算,需要将其转化为等效集中力。
可以通过对分布载荷进行平衡条件的积分得到等效集中力的大小和位置。
二、力矩的计算力矩是一个力对于旋转轴产生的转动效果。
在简支梁受力分析中,力矩的计算包括两个方面:力对于旋转轴的力矩和力对于旋转轴的合力矩。
1.力对于旋转轴的力矩当一个力施加在梁上,力线不通过旋转轴时,就会产生力矩。
力矩的大小等于力的大小乘以力臂的长度。
力臂是力线与旋转轴的垂直距离。
2.力对于旋转轴的合力矩当多个力作用在梁上时,为了求出它们对于旋转轴的合力矩,需要将各个力对应的力矩求和。
根据力的平衡条件,可以得到力对于旋转轴的合力为零。
因此,可以通过力的力矩计算得到力对于旋转轴的合力矩。
三、剪力的计算剪力是指作用于梁截面上的内部力。
在简支梁的受力分析中,剪力的计算需要根据力的平衡条件和力的传递关系进行计算。
1.平衡条件剪力的计算基于力的平衡条件。
根据平衡条件,当梁处于平衡状态时,梁上各点的剪力和为零。
2.力的传递关系剪力的计算还需要考虑力的传递关系。
在简支梁上,如果一段梁上处于受力状态,那么它两侧的梁段也会受到力的传递。
根据这些原理,可以利用力的平衡条件和力的传递关系,结合结构形式和受力情况,进行剪力的计算。
具体计算过程需要根据具体的结构和受力情况来确定。
在简支梁受力分析中,力、力矩和剪力的计算是重要的内容。
通过受力分析可以获得梁上各点的受力情况,这对于结构的设计和安全评估都非常重要。
梁截面:b=0.24m L= 4.6mh=0.4m h 0=0.375m梁自重: 2.592KN/m梁两侧板:Q (面)= 5.2KN/(m*m)板1:跨度:L1(长)= 4.6mL1(短)= 3.3m板2:跨度:L2(长)= 4.6m L2(短)= 3.3m 27KN/m Q1=29.592KN/m fc=14.3放大系数1a1=1fy=360放大系数12、计算配筋:Q2=8.58KN/m Q (总)=Q1+Q2=38.172KN/m100.9649KN*m0.20920.23737905.18mm*mm=14.0824KN/m Q (总)=Q1+Q2=43.67439KN/m115.5188KN*m0.239360.2781060.09mm*mm=11.3312KN/mQ (总)=Q1+Q2=40.9232KN/m108.2419KN*m0.224280.25741981.576mm*mmξ=1-SQRT(1-2*as)=板传给梁的线荷载为:Q2=(2*L1(长)-0.5*L1(短))*L1(短)*Q (面)/4/L1(长)+L2(短)*Q (面)/4as=M/(a1*fc*b*h 0*h 0*1000)=M=Q (总)*L*L/8=梁配筋面积As:As=(a1*fc*b*h*ξ*1000000)/fy=(类型三):当梁一侧板为长垮(板1);一侧板为短垮(板2)时:Q2=(2*L1(长)-0.5*L1(短))*L1(短)*Q (面)/4/L1(长)+(2*L2(长)-0.5*L2(短))*L2(短)*Q (面)/4/L2(长)M=Q (总)*L*L/8=梁配筋面积As:as=M/(a1*fc*b*h 0*h 0*1000)=(L1(短)+L2(短))*Q (面)/4=M=Q (总)*L*L/8=(类型二):当梁两侧板均为其长垮时:作用在梁上的总荷载:类型(一):当梁两侧板均为其短垮时:ξ=1-SQRT(1-2*as)=As=(a1*fc*b*h*ξ*1000000)/fy=作用在梁上的总荷载:板传给梁的线荷载为:梁配筋面积As:材料数据:ξ=1-SQRT(1-2*as)=As=(a1*fc*b*h*ξ*1000000)/fy=板传给梁的线荷载为:作用在梁上的总荷载:次梁计算L-1(类型二)1、基本资料:楼板面荷载(包括板自重):作用在梁上墙体线荷载:as=M/(a1*fc*b*h 0*h 0*1000)=需修改计算结果最终结果KN/(m*m)分类。
简支梁在各种荷载作用下跨中最大挠度计算公式:均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!。