信号与系统第6章 连续信号的复频域分析
- 格式:ppt
- 大小:1.05 MB
- 文档页数:41
连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。
本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。
2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。
傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。
具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。
3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。
频率响应是系统对不同频率输入信号的响应情况。
通过系统函数H(ω)可以计算系统的频率响应。
系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。
4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。
通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。
常用的频域分析方法包括功率谱密度估计、谱线估计等。
5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。
通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。
6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。
通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。
进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。
7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。
频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。
总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。
频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。
第六章连续信号与系统复频域分析第六章习题6.1是非题(下述结论若正确,则在括号内填入√,若错误则填入某)1.若L[f(t)]F(),则L[f(tt0)]etF()()02.L1ein(t1)()211(1)3.拉氏变换法既能求解系统的稳态响应,又能求解系统的暂态响应。
()4.若已知系统函数H(),激励信号为某(t)e2tu(t),则系统的自由响应中必包含稳态响应分量。
()5.强迫响应一定是稳态响应。
()6.系统函数与激励信号无关()6.2求L[2e()d]t6.3已知系统函数的极点为p1=0,p2=-1,零点为z1=1,如该系统的冲激响应的终值为-10,求此系统的系统函数H()。
6.4对于题图所示的RC电路,若起始储能为零,以某(t)作为激励,v2(t)作为响应,0.5F+某(t)-2Ω+(1)…01234t某(t)v2(t)-1.求系统的冲激响应h(t)与阶跃响应g(t),并画出h(t)及g(t)的波形;2.若激励信号某1(t)u(t)u(t1),求系统响应v2(t);3.若激励信号某2(t)如题图所示,求系统响应v2(t)。
126.5系统如题图所示,L=1H,R=2Ω,C=RLEi(t)F,t=0以前开关位于“1”,电路已进入稳定状态;t=0开关从“1”倒向“2”,12RC1.画出系统的域模型;2.求电流i(t)。
6.6有一一阶低通滤波器,当激励为intu(t)时,自由响应为2e3tu(t),求强迫响应(设起始状态为零)。
6.7电路如题图所示,某(t)为激励信号,以vc(t)作为响应。
2Ω+某(t)-1H+1Fvc(t)-1.求该系统的系统函数H()及冲激响应h(t);2.画出该系统的域模型图(包含等效电源);3.求系统的起始状态iL(0),vc(0),使系统的零输入响应等于冲激响应;4.求系统的起始状态iL(0),vc(0),使系统对某(t)u(t)的全响应仍为u(t)。
6.8选择题(每小题可能有一个或几个正确答案,将正确的题号填入()内)1.若一因果系统的系统函数为H()论——————————()(1)若bi0(i0,1,n,且n2),则系统稳定。
信号与系统实验报告——连续时间系统的复频域分析班级:05911101学号:**********姓名:***实验五连续时间系统的复频域分析——1120111487 信息工程(实验班)蒋志科一、实验目的①掌握拉普拉斯变换及其反变换的定义,并掌握MA TLAB 实现方法 ②学习和掌握连续时间系统系统函数的定义及其复频域分析方法③掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。
二、实验原理与方法 1、拉普拉斯变换连续时间信号x(t)的拉普拉斯变换定义为:X s =x (t )e −st dt +∞−∞拉普拉斯反变换为:x t =12πj X (s )e st ds σ+j ∞σ−j ∞在MA TLAB 中可以采用符号数学工具箱中的laplace 函数和ilaplace 函数进行拉氏变换和拉氏反变换。
L=laplace(F)符号表达式F 的拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。
L=laplace(F,t)用t 替换结果中的变量s 。
F=ilaplace(L)以s 为变量的符号表达式L 的拉氏反变换,返回时间变量t 的结果表达式。
F=ilaplace(L,x)用x 替换结果中的变量t 。
2、连续时间系统的系统函数连续时间系统的系统函数是系统单位冲激响应的拉氏变换H s =ℎ(t )e −st dt +∞−∞此外,连续时间系统的系统函数还可以由系统输入和输出信号的拉氏变换之比得到H s =Y(s)/X(s) 单位冲激响应h(t)反映了系统的固有性质,而H(s)从复频域反映了系统的固有性质。
对于H(s)描述的连续时间系统,其系统函数s 的有理函数H s =b M s M +b M−1s M−1+⋯+b 0a n s n +a n −1s M−1+⋯+a 03、连续时间系统的零极点分析系统的零点指使式H s 的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统函数的值无穷大。
信号与系统实验报告实验题目: 实验三:连续时间系统的复频域分析实验仪器: 计算机,MATLAB 软件101b s b a s a ++++++称为系统的特征多项式,征根,也称为系统的固有频率(或自然频率)。
为将个特征根,这些特征根称为()F s 极点。
根据求函数21()(1)F s s s =-的拉氏逆变换。
源代码:num = [1]; 结果为:r =-1 1 1 a=conv([1 -1],[1 -1]);den = conv([1 0], a); p =1 1 0 [r,p,k] = residue(num, den); k=03.示例3:求函数2224()(4)s F s s -=+的拉氏逆变换源代码:num = [1 0 -4];den = conv([1 0 4], [1 0 4]); [r,p,k] = residue(num, den);结果为:r =-0.0000-0.0000i 0.5000+0.0000i -0.0000+0.0000i 0.5000-0.0000ip =-0.0000+2.0000i -0.0000+2.0000i -0.0000-2.0000i -0.0000-2.0000i k=04.示例4:已知系统函数为:321()221H s s s s =+++,利用Matlab 画出该系统的零极点分布图,分析系统的稳定性,并求出该系统的单位冲激响应和幅频响应。
源代码: num=[1];den=[1 2 2 1]; sys=tf(num,den); poles=roots(den); figure(1);pzmap(sys);xlabel('Re(s)');ylabel(' Im(s)');title('zero-pole map'); t=0:0.02:10;h=impulse(num,den,t); figure(2);plot(t,h);xlabel('t(s)');ylabel('h(t)');title('Impulse Response'); [H,w]=freqs(num,den);figure(3);plot(w,abs(H));xlabel('\omega(rad/s)');ylabel('|H(j\omega)|');title('Magenitude Response'); 结果为:poles =-1.0000 -0.5000 + 0.8660i -0.5000 - 0.8660i (2) 已知象函数,试调用residue 函数完成部分分式分解,并写出逆变换。
实验六连续信号与系统的复频域分析及matlab实现实验目的:(1)掌握连续系统及信号拉普拉斯变换概念(2)掌握利用MATLAB绘制系统三维曲面图的方法(3)掌握利用MATLAB求解拉普拉斯逆变换的方法实验内容:12.1程序:(1):f1=(1-exp(-2.5*t))*heaviside(t)syms tf1=(1-exp(-2.5*t))*heaviside(t);F1=laplace(f1);F1F1 =1/s - 1/(s + 5/2)(2): f2=t^2*exp(-2*t)*heaviside(t)syms tf2=t^2*exp(-2*t)*heaviside(t);F2=laplace(f2);F2F2 =2/(s + 2)^3(3): f3=(3*sin((pi/2)*t-(pi/4)))*heaviside(t)syms tf3=(3*sin((pi/2)*t-(pi/4)))*heaviside(t);F3=laplace(f3);F3F3 =(3*2^(1/2)*pi)/(4*(s^2 + pi^2/4)) - (3*2^(1/2)*s)/(2*(s^2 + pi^2/4))12.2程序:(1):F=(s+2)/(s^2+6*s+8)sym s;L=sym('(s+2)/(s^2+6*s+8)');F=ilaplace(L)F =exp(-4*t)(2):F=1/(s^2*(s+1))sym s;L=sym('1/(s^2*(s+1))');F=ilaplace(L)F =t + exp(-t) - 112.4程序:(2):a=-5:0.1:5;b=-4:0.08:4;[a,b]=meshgrid(a,b);t=a+i*b;F=abs(cos(pi*t)*(heaviside(t)-heaviside(t-2))); mesh(a,b,F);surf(a,b,F);colormap(hsv);title('cos(pi*t)[u(t)-u(t-2)]的拉氏变换曲面图');实验小结:通过实验我掌握了利用MATLAB绘制系统三维曲面图的方法,掌握了利用MATLAB求解拉普拉斯逆变换的方法。