线性代数第六章 线性空间与线性变换
- 格式:ppt
- 大小:2.60 MB
- 文档页数:85
第六章线性空间与线性变换第六章线性空间与线性变换1. 验证所给矩阵集合对于矩阵的加法和乘数运算构成线性空间, 并写出各个空间的一个基.(1) 2阶矩阵的全体S 1;解设A , B 分别为二阶矩阵, 则A , B ∈S 1. 因为(A +B )∈S 1, kA ∈S 1,所以S 1对于矩阵的加法和乘数运算构成线性空间.=00011ε, ??? ??=00102ε, ??? ??=01003ε, ??? ??=10004ε是S 1的一个基.(2)主对角线上的元素之和等于0的2阶矩阵的全体S 2;解设-=a c b a A , ?-=d f e d B , A , B ∈S 2. 因为2)(S d a a c b c d a B A ∈??? ??++++-=+,2S ka kc kb ka kA ∈??? ??-=,所以S 2对于矩阵的加法和乘数运算构成线性空间.-=10011ε,=00102ε,=01003ε是S 2的一个基.(3) 2阶对称矩阵的全体S 3.解设A , B ∈S 3, 则A T =A , B T =B . 因为 (A +B )T =A T +B T=A +B , (A +B )∈S 3, (kA )T =kA T =kA , kA ∈S 3,所以S 3对于加法和乘数运算构成线性空间.=00011ε, ??? ??=01102ε,=10003ε是S 3的一个基.2. 验证: 与向量(0, 0, 1)T 不平行的全体3维数组向量, 对于数组向量的加法和乘数运算不构成线性空间.解设V ={与向量(0, 0, 1)T 不平行的全体三维向量}, 设r 1=(1, 1, 0)T , r 2=(-1, 0, 1)T , 则r 1, r 2∈V , 但r 1+r 2=(0, 0, 1)T ?V , 即V 不是线性空间.3. 设U 是线性空间V 的一个子空间, 试证: 若U 与V 的维数相等, 则U =V .证明设ε1,ε2,,εn为U的一组基,它可扩充为整个空间V的一个基,由于dim(U)=dim(V),从而ε1,ε2,,εn也为V的一个基,则:对于x∈V可以表示为x=k1ε1+k2ε2++k rεr.显然,x∈U,故V?U,而由已知知U?V,有U=V.4.设V r是n维线性空间V n的一个子空间,a1,a2,,a r是V r的一个基.试证:V n中存在元素a r+1,,a n,使a1,a2,,a r,a r+1,,a n成为V n的一个基.证明设r<="" p="" r+1),则a1,a2,,a="" r+1?v="" r+1是线性无关的.若r+1="n,则命题得证,否则存在a" r+1添加进来,则a1,a2,,a="" r+2?l(a1,a2,,="" r+2线性无关,依此类推,可找到n 个线性无关的向量a1,a2,,a="" r,它不能被a1,a2,,a="" r线性表示,将a="" 则在v="">5.在R3中求向量α=(3, 7, 1)T在基α1=(1, 3, 5)T,α2=(6, 3, 2)T,α3=(3, 1, 0)T下的坐标.解设ε1,ε2,ε3是R3的自然基,则(α1,α2,α3)=(ε1,ε2,ε3)A, (ε1,ε2,ε3)=(α1,α2,α3)A-1, 其中=25133361A,----= - 15 28 9 8 15 5 3 6 2 1 A . 因为==-7 3 ) , , ( 1 7 3 ) , , (1 3 2 1 3 2 1 A αααεεεα- - - - - = 1 7 3 15 28 9 8 15 5 3 6 2 ) ,(3 2 1 ααα- = 154 82 33 ) ,, (3 2 1 ααα,所以向量α在基α1,α2,α3下的坐标为(33,-82, 154)T.6.在R3取两个基α1=(1, 2, 1)T,α2=(2, 3, 3)T,α3=(3, 7, 1)T;β1=(3, 1, 4)T,β2=(5, 2, 1)T,β3=(1, 1,-6)T.试求坐标变换公式.解设ε1,ε2,ε3是R3的自然基,则(β1,β2,β1)=(ε1,ε2,ε3)B,(ε1,ε2,ε3)=(β1,β2,β1)B-1,(α1,α2,α1)=(ε1,ε2,ε3)A=(β1,β2,β1)B-1A,其中=131732121A , ???? ??-=614121153B .设任意向量α在基α1, α2, α3下的坐标为(x 1, x 2, x 3)T , 则=???? ??=-3211321321321) , ,() , ,(x x x A B x x x βββαααα,故α在基β1, β2, β3下的坐标为= ??'''-3211321x x x A B x x x ??---=321499107263139********x x x .7. 在R 4中取两个基e 1=(1,0,0,0)T , e 2=(0,1,0,0)T , e 3=(0,0,1,0)T , e 4=(0,0,0,1)T ; α1=(2,1,-1,1)T , α2=(0,3,1,0)T , α3=(5,3,2,1)T , α3=(6,6,1,3)T . (1)求由前一个基到后一个基的过渡矩阵; 解由题意知-=3101121163316502) , , ,() , , ,(43214321e e e e αααα,从而由前一个基到后一个基的过渡矩阵为-=3101121163316502A .(2)求向量(x 1, x 2, x 3, x 4)T 在后一个基下的坐标; 解因为=????? ??=-43211432143214321) , , ,() , , ,(x x x x A x x x x αααααe e e e ,向量α在后一个基下的坐标为-=????? ??-4321143213166123501301112x x x x y y y y ??-------=432126937180092391213327912271x x x x .(3)求在两个基下有相同坐标的向量.解令=????? ??????? ??-------4321432126937180092391213327912271x x x x x x x x ,解方程组得?=11114321k x x x x (k 为常数).8. 说明xOy 平面上变换?=??y x A y x T 的几何意义, 其中 (1)-=1001A ;解因为-=??? ????? ?-=??? ??y x y x y x T 1001,所以在此变换下T (α)与α关于y 轴对称.(2)=1000A ;解因为=??? ????? ?=??? ??y y x y x T 01000,所以在此变换下T (α)是α在y 轴上的投影.(3)=0110A ;解因为=??? ????? ?=??? ??x y y x y x T 0110,所以在此变换下T (α)与α关于直线y =x 对称.(4)-=0110A .解因为-=??? ????? ??-=??? ??x y y x y x T 0110, 所以在此变换下T (α)是将α顺时针旋转2π.9. n 阶对称矩阵的全体V 对于矩阵的线性运算构成一个2)1(+n n 维线性空间. 给出n 阶矩阵P , 以A 表示V 中的任一元素, 变换T (A )=P T AP 称为合同变换. 试证合同变换T 是V 中的线性变换.证明设A , B ∈V , 则A T =A , B T =B . T (A +B )=P T (A +B )P =P T (A +B )T P =[(A +B )P ]T P =(AP +BP )T P=(P T A +P T B )P =P T AP +P T BP =T (A )+T (B ), T (kA )=P T (kA )P =kP T AP =kT (A ), 从而, 合同变换T 是V 中的线性变换.10. 函数集合V 3={α=(a 2x 2+a 1x +a 0)e x | a 2, a 1, a 0 ∈R }对于函数的线性运算构成3维线性空间, 在V 3中取一个基α1=x 2e x , α2=xe x , α3=e x .求微分运算D 在这个基下的矩阵. 解设β1=D (α1)=2xe x +x 2e x =2α2+α1, β2=D (α2)=e x +xe x =α3+α2, β3=D (α3)=e x =α3.易知β1, β2, β3线性无关, 故为一个基.由=110012001) , ,() , ,(321321αααβββ, 知即D 在基α1, α2, α3下的矩阵为=110012001P .11. 2阶对称矩阵的全体},,|{32132213R x x x x x x x A V ∈==对于矩阵的线性运算构成3维线性空间. 在V 3中取一个基=00011A , ??? ??=01102A ,=10003A .在V 3中定义合同变换=10111101)(A A T ,求T 在基A 1, A 2, A 3下的矩阵. 解因为=101100011101)(1A T 3211111AA A ++=??? ??=,=101111101101)(2A T 3222110AA +=??? ??=,=101110001101)(3A T 31000A=??? ?=,故=121011001) , ,())( ),( ),((321321A A A A T A T A T , 从而, T 在基A 1, A 2, A 3下的矩阵=121011001A .。
第6章线性空间与线性变换6.1本章要点详解本章要点■线性空间的定义与性质■维数、基与坐标■基变换与坐标变换■线性变换■线性变换的矩阵表示式重难点导学一、线性空间的定义与性质1.两种运算(1)加法运算设V是一个非空集合,R为实数域.如果在V中定义了一个加法,即对于任意两个元素α,β∈V,总有唯一的一个元素γ∈V与之对应,称为α与β的和,记作γ=α+β.(2)数乘运算在V中又定义了一个数与元素的乘法(简称数乘),即对于任一数λ∈R与任一元素α∈V,总有唯一的一个元素δ∈V与之对应,称为λ与α的数量乘积,记作δ=λα.2.线性空间定义设V是一个非空集合,R为实数域.如果在V中取任意两个元素α,β∈V,加法运算和乘法运算满足以下八条运算规律(设α、β、γ∈V,λ、μ∈R):(1)α+β=β+α;(2)(α+β)+γ=α+(β+γ);(3)在V中存在零元素0,对任何α∈V,都有α+0=α;(4)对任何α∈V,都有α的负元素β∈V,使α+β=0;(5)1α=α;(6)λ(μα)=(λμ)α;(7)(λ+μ)α=λα+μα;(8)λ(α+β)=λα+λβ,则V称为线性空间,又称向量空间.3.线性空间的性质(1)零向量是唯一的;(2)任一向量的负向量是唯一的,α的负向量记作-α;(3)0α=0,(-1)α=-α,λ0=0;(4)如果λα=0,则λ=0或α=0.4.子空间(1)定义设V是一个线性空间,L是V的一个非空子集,如果L对于V中所定义的加法和数乘两种运算也构成一个线性空间,则L称为V的子空间.(2)定理线性空间V的非空子集L构成子空间的充分必要条件是:L对于V中的线性运算封闭.二、维数、基与坐标1.维数与基在线性空间V中,如果存在n个向量,满足:(1)线性无关;(2)V中任一向量α总可由线性表示,则就称为线性空间V的一个基,n称为线性空间V的维数.注:维数为n的线性空间称为n维线性空间,记作V n.2.坐标设是线性空间V n的一个基.对于任一向量α∈V n,总有且仅有一组有序数,使这组有序数就称为向量α在这个基中的坐标,并记作3.同构设V与U是两个线性空间,如果在它们的向量之间有一一对应关系,且这个对应关系保持线性组合的对应,则线性空间V与U同构.三、基变换与坐标变换1.基变换定义设α1,…,αn及β1,…,βn是线性空间V n中的两个基,有(6-1)把α1,…,αn这n个有序向量记作(α1,…,αn),记n阶矩阵P=(p ij),利用向量和矩阵的形式,式(6-1)可表示为(6-2)式(6-2)称为基变换公式,矩阵P称为由基α1,…,αn到基β1,β2,…,βn的过渡矩阵.又β1,β2,…,βn线性无关,故过渡矩阵P可逆.2.坐标变换公式设V n中的向量α在基α1,…,αn中的坐标为(x1,x2,…,x n)T,在基β1,β2,…,βn 中的坐标为.若两个基满足关系式(6-2),则有坐标变换公式四、线性变换1.定义设V n,U m分别是n维和m维线性空间,T是一个从V n到U m的映射,若映射T满足:(1)任给α1、α2∈V n(从而α1+α2∈V n),有T(α1+α2)=T(α1)+T(α2);(2)任给α∈V n,λ∈R(从而λα∈V n),有T(λα)=λT(α).则T称为从V n到U m的线性映射,又称线性变换.2.线性变换基本性质(1)T0=0,T(-α)=-Tα;(2)若则;(3)若α1,α2,…,αm线性相关,则Tα1,Tα2,…,Tαm亦线性相关,反之不成立;(4)线性变换T的像集T(V n)是一个线性空间,称为线性变换T的像空间;(5)使Tα=0的α的全体N T={α|α∈V n,Tα=0}也是一个线性空间,且N T称为线性变换T的核.五、线性变换的矩阵表示式1.定义设T是线性空间V n中的线性变换,在V n中取定一个基α1,α2,…,αn,如果这个基在变换T下的像为记,上式可表示为其中则A就称为线性变换T在基α1,α2,…,αn下的矩阵.2.定理设线性空间V n中取定两个基α1,α2,…,αn;β1,β2,…,βn,由基α1,α2,…,αn到基β1,β2,…,βn的过渡矩阵为P,V n中的线性变换T在这两个基下的矩阵依次为A和B,则B=P-1AP.6.2配套考研真题解析本章为非重点,暂未编选考研真题,若有最新真题会及时更新.。
映射:设M 和M'是两个非空集合,如果对M 中的每个元素,按照某种法则T 都有M'中的一个确定的元素与之对应,则称T 是从M 到M'中的一个映射,记作T :M →M'称M 为T 的定义域。
如果映射T 使α∈M 与β∈M'相对应,则称β是α在映射T 下的象,而称α为β的一个原象,记作T (α)=β(α∈M )集合M 到自身的映射称为M 上的变换。
设T 和S 都是集合M 到M'的映射。
如果对任一元素α∈M 都有T (α)=S (α),则称T 和S 相等,记作T=S如果对于M'中的每一个元素β,都有α∈M 使T (α)=β,则称T 是一个满射。
如果对于任意α1,α2∈M ,当α1≠α2时,都有T (α1)≠T (α2),则称T 是单射。
如果映射T 既是满射又是单射,则称之为一一映射(或一一对应)映射T 下所有象所成的集合称为T 的值域(或象集合),记作R (T ),即R(T)={ T (α)︱α∈M}显然R(T)⊂ M',一个集合M 到M'的映射T 是满射的充分必要条件是R (T )= M';而T 是单射的充分必要条件是,对任意α1,α2∈M ,由T (α1)= T (α2)可以推出α1=α2 设M 是一个非空集合,定义E (α)=α(α∈M )则E 是M 上的变换,称为M 的单位映射(或恒等映射),记作M I 。
E 是一一映射。
对于映射,定义它的乘积如下(ST )(α)﹦S (T (α))(α∈M )所确定的从M 到M''的映射ST 称为S 与T 的乘积。
映射的乘积是复合函数的推广,但不是任意两个影射都可以求他们的乘积。
由映射T 和S 得到乘积ST 的充分必要条件是T 的值域含与S 的定义域。
例1 设M=K n ×n .定义 T 1(A )=det A (A ∈K )则T 是K n ×n 到K 的一个映射,它是满射,但不是单射。
线性代数目录前言
第1章行列式
1 二阶与三阶行列式
2 全排列和对换
3 n 阶行列式的定义
4 行列式的性质
5 行列式按行(列)展开
习题一
第2章矩阵及其运算
1 线性方程组和矩阵
2 矩阵的运算
3 逆矩阵
4 克拉默法则
5 矩阵分块法
习题二
第3章矩阵的初等变换与线性方程组
1 矩阵的初等变换
2 矩阵的秩
3 线性方程组的解
习题三
第4章向量组的线性相关性
1 向量组及其线性组合
2 向量组的线性相关性
3 向量组的秩
4 线性方程组的解的结构
5 向量空间
习题四
第5章相似矩阵及二次型
1 向量的内积、长度及正交性
2 方阵的特征值与特征向量
3 相似矩阵
4 对称矩阵的对角化
5 二次型及其标准形
6 用配方法化二次型成标准形
7 正定二次型
习题五
∗第6章线性空间与线性变换
1 线性空间的定义与性质
2 维数、基与坐标
3 基变换与坐标变换
4 线性变换
5 线性变换的矩阵表示式
习题六
部分习题答案。