居于马线性代数第六章答案
- 格式:doc
- 大小:1.87 MB
- 文档页数:25
线性代数参考题一答案:(注:为了大家共同的利益,我做了每一道题,希望你发现有做错处及时告诉我,谢谢,你的朋友冯国晨 gcfeng@ )一. 填空题(每小题3分,满分30分)1.42342311a a a a 与44322311a a a a -;2.b a =;3.)(211E A A -=-;4.可逆阵或满秩阵或非奇异阵;5.特征根为0;6.1-=α;7.)()(T r A r =;8.3R ;9.负定;10.25≠t二. 陈治中版《线性代数》例题1.5.7(p.26)答案:nn bc ad D )(2-=三. 令⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛=130231,3512,343122321C B A 则⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫⎝⎛----=--2115.053,2153,1115.235.123111X BA四. 令),,,(4321αααα=A ,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----==0000310020101013130631120140121),,,(4321ααααA 因而3)(=A r ,321,,ααα构成一个极大无关组,且321432αααα+-=五. 陈治中版《线性代数》习题4.6(p.121)答案:p.211 六. 将二次型f 化成矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=211121112A ,显然A 为实对称阵,可以正交对角化的,即 由特征方程0||=-E A λ,得01=λ,33,2=λ当01=λ 对应的特征向量为T)1,1,1(1=α,标准化为T)1,1,1(311=η;当33,2=λ 对应的特征向量为T)0,1,1(2-=α和T)1,0,1(3-=α正交化T)0,1,1(22-==αβ,标准化为T)0,1,1(212-=ηT)1,1,0(,,2222333-=⋅><><-=ββββααβ,标准化T)1,1,0(213-=η因而),,(321ηηη=P ,且232233y y f += 七. 令αααααααααααααααβββββL n nn=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⋅⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=3213213212113211111111111............由 1||=L 以及n αα,,1 线性无关得n ββ,,1 线性无关。
1、22220aab a b ab ab abb=⋅-⋅=2、22cos sin cos cos (sin )sin cos sin 1sin cos αααααααααα-=⋅--⋅=+=3、222()()22()2a bi b a bi a bi ab a b ab a b aa bi+=+--=+-=--4、3242123*1*(3)2*(2)*5(4)*4*23*(2)*22*4*(3)(4)*1*5423--=-+-+--------- 920321224205=---+++=-5、1234561*5*92*6*73*4*81*6*82*4*93*5*7789=++--- 45849648721050=++---=6、2214112*1*1012*(1)*2021*4*1992*(1)*1992*4*1011*1*202202199101-=+-+----20240479639880820218=-++--=-7、222234322222211101(1)(1)(1)011w wwww ww w w w w w w w w www+⨯---=-=-++=-⨯--第2行第1行()第3行第1行()8、3322232121*2*3322663x xxx x x x x x x x xx=++---=-+9、143000400400431(1)0434********324321+-=-=-按第行展开10、公式: 111112111222222122112212000000000000n n nn nn nn n n nn a a a a a a a a a a a a a a a a a a ===11111,11(1)2,12,2,1212,1212,111,11100000000(1)0n n n n n n n n n n n n n n n n nnn n a a a a a a a a a a a a a a a a a a -------===-⋅解:101000010000100200002010(1)1008000080090000910+-⋅按第行展开 9(19)210(1)128910!+=⋅-⋅⋅⋅=11、3111111112111110200311*(2)8111100204111112----=-=------第行第行第行第行第行第行12、该行列式中各行元素之和均为10,所以吧第2,3,4列加到第1列,然后再把第1列后三个元素化为零,再对第1列展开,即 12341234123421113234113410113103110102223412*********114141231123111---=-=-----------第行第行第行第行 第行第行10*16160==13、50421111111121011211121021014324741204120032415311115420153-----=-=----=----------第,行交换14、先将第1行与第5行对换,第3行与第4行对换(反号两次,其值不变) 365641111111111111112545325453032750327536342254650328700012254653634203075002001111136564329722------===---根据课本20页公式(1.21),原式012112003*4120322=-=-=-()15、1200340012132*160013345151-==---()()=3216、1234512345123678910678910213567810*220000130101143100002400024011113-=-=-=-第,行对换17、根据课本20页公式(1.22) 23001121120030212(1)30212*(5)600024031241240131258⨯--=-=-=--18、1001201*2*33!123A ===,5(51)20000100020(1)(1)(2)(3)(4)(5)5!00300040005B ---==------=----所以 3*5*(1)||||3!5!0A AB B=-=-19、证:21111111112222222222233333333311111112222222223333333(1)2*1(1)(1)(1)1*2(1)a b x a x b c a b x b x c a b xa xbc x a b xb xc a b xa xbc a b xb xc a b xb c a b c x a b xb c x x a b c a b xb c a b c +++-=++-+-+++-+=-+--=+左第列第列第列第列右20、1111111121111100311111004111110xx x x x y x y yxy++----=-+-----第行第行左第行第行第行第行144401114(1)10(1)()00xx xxy y xx xxy++--+-⋅⋅-+-⋅-⋅----按第列展开 2222222(1)()x y y x xy xy x x y y x y x x y ⎡⎤=---++-=----==⎣⎦右21、33333333333111111010b ac aab c b a c ab ac aabcb ac a--==--=⋅----左()()()()()()()()()()()()()()()()2222222222b ac a c ac a c a b a b ab a b a c a c ac ab ab a b ac a c ac bab b a c a c b a b c =--++---++=--++---=--+--=---++=右22、解法1:()()()()232322332233223323223311001111a ab b b a b a b acacabaccc ac a=--=-------整理得()()()()ab bc ca b a c a c b =++---又根据范德蒙行列式有:()()()222111a ab ac a c b b b cc---=故原式得证。
第六章 二次型1. 用矩阵记号表示下列二次型:(1);4427),,(222yz xz xy z y x z y x f ----+=(2)22312121321542),,(x x x x x x x x x f -++=; (3)),,,(4321x x x x f .46242423241312124232221x x x x x x x x x x x x x x -+-+-+++=解:(1)()⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-------=z y x z yxz y x f 722211211),,( (2) ()⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-=321321321002052/222/21),,(x x x x x x x x x f(3) ()⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛------=4321432143211001231223111211),,,(x x x x x x x x x x x x f 2. 求一个正交变换将下列二次型化成标准形:),,(321x x x f 322322214332x x x x x +++=.解:0)5)(1)(2(32023002=---=---=-λλλλλλλE A 得11=λ,22=λ,53=λ当11=λ时,特征向量为T)(11-01=ξ 当22=λ时,特征向量为T )(0012=ξ 当53=λ时,特征向量为T)(1103=ξ取⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2102121021-010P , 则利用正交变换Py x =,二次型可化为标准型 23222152y y y f ++= 3. 求一个正交变换将下列二次型化成标准形:23322231212132128244),,(x x x x x x x x x x x x f -+-+-=. 解:0)7()2(2-4242-22212=+--=-----=-λλλλλλE A 得=1λ22=λ,73-=λ当=1λ22=λ,时,特征向量为T )(1021=ξ,T )(012-2=ξ,通过施密特正交化得到T )(10251e 1=,Te )(452-5312= 当73-=λ时,特征向量为T)(11-213-=ξ,单位化得T )(22131e 3--= 取⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=32534513253503153252P , 则利用正交变换Py x =,二次型可化为标准型 232221722y y y f -+= 4. 求一个正交变换将下列二次型化成标准形:),,,(4321x x x x f 43324121242322212222x x x x x x x x x x x x +--++++=.解:0)3)(1()1(11011110011110112=-+-=--------=-λλλλλλλλE A得121==λλ,13-=λ,34=λ当121==λλ时,特征向量为T )(01011=ξ,T)(10102=ξ 当13-=λ时,特征向量为T )(11113--=ξ 当34=λ时,特征向量为T )(11114--=ξ 取⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----=21211021210121211021211P ,则利用正交变换Py x =,二次型可化为标准型 24232221y 3+-+=y y y f5. 二次型)0(a 2332),,(32232221321>+++=a x x x x x x x x f 通过正交变换可化为标准形23222132152),,(y y y y y y f ++=,求参数a 及所用的正交变换矩阵. 解:二次型矩阵为⎪⎪⎪⎭⎫⎝⎛=3030002a a A特征值为11=λ,22=λ,53=λ,得10=A ,故10)9(22=-=a A ,又0>a ,得2=a . 当11=λ时,特征向量为T)(11-01=ξ 当22=λ时,特征向量为T )(0012=ξ 当53=λ时,特征向量为T)(1103=ξ取⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2102121021-010P ,用正交变换Py x =,二次型标准型为 23222152y y y f ++=6. 用配方法化),,(321x x x f 32312321222x x x x x x +++=为规范形,写出所用变换的矩阵. 解:),,(321x x x f 2322223132312321))222x x x x x x x x x x x ++-+=+++=((由⎪⎩⎪⎨⎧=+==+33222131y x x y x y x x 得⎪⎩⎪⎨⎧+-==-+=323223211y y x y x y y y x ,取⎪⎪⎪⎭⎫⎝⎛--=110010111C ,C 可逆, 由变换Cy x =得二次型的规范型为),,(321x x x f 232221y y y +-=7. 判别下列二次型的正定性:(1)),,(321x x x f 312123222122462x x x x x x x ++---=;(2)424131212423222162421993x x x x x x x x x x x x f -++-+++=4312x x -.解:(1)负定 (2)正定8. 二次型323121242322214321222)(),,,(x x x x x x x x x x t x x x x f -+++++=,t 取何值时是正定二次型?解: 二次型矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛--1000011011011t t t ,二次型正定即要求所有顺序主子式 0)2()1(100011011011,0)2()1(111111,0111,0222>-+=-->-+=-->-=>=t t tt t t t tt t t t t t t 可得2t >时此二次型正定.9. 已知A 为n 阶方阵,E A -是正定矩阵,证明A 为正定矩阵.证明:因为E A -是正定矩阵,所以()E A E A E A T T-=-=-,所以 A A T=,即A 为对称矩阵.设λ为A 的任意一个特征值,则1-λ是E A -的一个特征值,因为E A -为正定矩阵,所以01>-λ,从而0>λ,因此A 为正定矩阵.10. 设C 为可逆矩阵,A C C T=,证明x x A T=f 为正定二次型..证明:)()(TCx Cx Cx C x f TTT===x x A令y x =C ,因为C 可逆,对任意0≠x ,有0≠y , 从而0)()(>==y y Cx Cx f TT,为正定二次型。
1、22220a aba b ab ab ab b =⋅-⋅=2、22cos sin cos cos (sin )sin cos sin 1sin cos αααααααααα-=⋅--⋅=+=3、222()()22()2a bi ba bi a bi ab a b ab a b a a bi+=+--=+-=--4、3242123*1*(3)2*(2)*5(4)*4*23*(2)*22*4*(3)(4)*1*5423--=-+-+---------920321224205=---+++=-5、1234561*5*92*6*73*4*81*6*82*4*93*5*7789=++---45849648721050=++---=6、2214112*1*1012*(1)*2021*4*1992*(1)*1992*4*1011*1*202202199101-=+-+----20240479639880820218=-++--=-7、222234322222211101(1)(1)(1)011w w w w w ww w w w w w w w w w w w +⨯---=-=-++=-⨯--第2行第1行()第3行第1行()8、3322232121*2*3322663x xxx x x x x x x x xx =++---=-+9、143000400400431(1)0434*******4324321+-=-=-按第行展开10、公式:11111211122222212211221200000000000n n nn nn nnn n nn a a a a a a a a a a a a a a a a a a ===11111,11(1)2,12,2,1212,1212,111,1110000000(1)0000n n n n n n n nn n n n n n n n nn n n a a a a a a a a a a a a a a a a a a -------===-⋅解:10100001000010020*******(1)1008000080090000910+-⋅ 按第行展开9(19)210(1)128910!+=⋅-⋅⋅⋅=11、3111111112111110200311*(2)8111100204111110002----=-=------第行第行第行第行第行第行12、该行列式中各行元素之和均为10,所以吧第2,3,4列加到第1列,然后再把第1列后三个元素化为零,再对第1列展开,即123412341234211132341134101131031101022234121412022211141412311230111---=-=-----------第行第行第行第行 第行第行10*16160==13、504211111111210112111210210143247412041200324153111150420153-----=-=----=----------第,行交换14、先将第1行与第5行对换,第3行与第4行对换(反号两次,其值不变)3656411111111111111125453254530327503275363422546503287000122546536342030750020011111365640329700022------===--- 根据课本20页公式(1.21),原式012112003*41203022=-=-=-()15、1200340012132*16001334510051-==---()()=3216、1234512345123678910678910213567810*22000013010114301000024000240101100013-=-=-=-第,行对换17、根据课本20页公式(1.22)23001121120030212(1)30212*(5)6000240312401240131258⨯--=-=-=--18、1001201*2*33!123A ===,5(51)20000100020(1)(1)(2)(3)(4)(5)5!030004000500B ---==------=----所以3*5*(1)||||3!5!0A AB B=-=-19、证:21111111112222222222233333333311111112222222223333333(1)2*1(1)(1)(1)1*2(1)a b x a x b c a b x b x c a b x a x b c x a b x b x c a b x a x b c a b x b x c a b xb c a b c x a b x b c x x a b c a b x b c a b c +++-=++-+-+++-+=-+--=+左第列第列第列第列右20、11111111211111003111110041111100x x x x x y x y y x y++----=-+-----第行第行左第行第行第行第行144401114(1)10(1)()000x x x xy y xx xxy++--+-⋅⋅-+-⋅-⋅----按第列展开2222222(1)()x y y x xy xy x x y y x y x x y ⎡⎤=---++-=----==⎣⎦右21、33333333333111111010b a c a ab c b ac a b a c a a b c b a c a --==--=⋅----左()()()()()()()()()()()()()()()()2222222222b a c a c ac a c a b a b ab a b a c a c ac a b ab a b a c a c ac b ab b a c a c b a b c =--++---++=--++---=--+--=---++=右22、解法1:()()()()232322332233223323223311001111a a b b b a b a b a c a c a b a c c c a c a =--=------- 整理得()()()()ab bc ca b a c a c b =++---又根据范德蒙行列式有:()()()222111a a b a c a c b bb cc ---= 故原式得证。
《线性代数》课后习题答案第一章行列式习题1.11. 证明:(1)首先证明)3(Q 是数域。
因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。
任给两个复数)3(3,32211Q b a b a ∈++,我们有3)()3()3)(3(3)()()3()3(3)()()3()3(21212121221121212211212122 11b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。
因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以)3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221 121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。
如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。
又因为有理数的和、差、积、商仍为有理数,所以)3(33)(3)3()3)(3()3)(3(332222212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--=-+-+=++。
综上所述,我们有)3(Q 是数域。
(2)类似可证明)(p Q 是数域,这儿p 是一个素数。
(3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。
(反证法)如果)()(q Qp Q ?,则q b a p Q b a +=?∈?,,从而有q ab qb a p p 2)()(222++==。
由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。
所以有0=a 或0=b 。
第六章 二次型将以下1-3题的二次型表示成矩阵形式。
1.22(,)467f x y x xy y =-- 解:()2243(,)46737x f x y x xy y xy y ⎛⎫⎛⎫=--= ⎪⎪-⎝⎭⎝⎭2.222(,,)346f x y z x xy y yz z =+--+解:()222320(,,)346213031x f x y z x xy y yz z xyz y z ⎛⎫⎛⎫⎪⎪=+--+=-- ⎪⎪ ⎪⎪-⎝⎭⎝⎭3.22212341341214232434(,,,)242264f x x x x x x x x x x x x x x x x x =++++--+解:()12123412343412012013(,,,)01121322x x f x x x x x x x x x x ⎛⎫⎛⎫ ⎪ ⎪-- ⎪⎪= ⎪ ⎪- ⎪ ⎪-⎝⎭⎝⎭4.设n 元二次型12(,,,)n f x x x 的矩阵为n 阶三对角对称矩阵1111111111A -⎛⎫⎪-- ⎪⎪=- ⎪- ⎪⎪-⎝⎭, 试写出二次型(二次齐次多项式)的表示式。
解:22221211222311(,,,)222n n n n n f x x x x x x x x x x x x x --=-+-++-+。
12(,,,)T n f x x x x Ax =对一切12(,,,)T n x x x x =恒有12(,,,)0n f x x x =,证明A 为n阶零矩阵。
证明:取(0,,1,,0)T i x =(其中第i 个分量为1,其余分量全为零),那么有11()0,1,2,,nnTi i i ij i j ii i j f x x Ax a x x a i n =======∑∑。
再取(0,,1,,1,,0)T ij x =(其中第i 和第j 个分量为1,其余分量全为零),那么有()20,,1,2,,T ij ij ij ij f x x Ax a i j n ====。
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( )。
(A) 24315 (B ) 14325 (C ) 41523 (D )24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( )。
(A )k (B)k n - (C )k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A ) 0 (B )2-n (C ) )!2(-n (D) )!1(-n4.=001001001001000( )。
(A ) 0 (B)1- (C) 1 (D ) 25.=001100000100100( )。
(A) 0 (B )1- (C ) 1 (D) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 27。
若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B ) 4- (C) 2 (D) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A )ka (B)ka - (C )a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B )3- (C ) 3 (D ) 210。
若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ).(A )1- (B)2- (C )3- (D )011。
若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B )2- (C)3- (D )012。
第五章 特征值和特征向量 矩阵的对角化答案1.求下列矩阵的特征值和特征向量:(1) 2331-⎛⎫ ⎪-⎝⎭ (2) 311201112-⎛⎫ ⎪ ⎪ ⎪-⎝⎭ (3) 200111113⎛⎫⎪⎪ ⎪-⎝⎭ (4) 1234012300120001⎛⎫⎪⎪ ⎪ ⎪⎝⎭(5) 452221111-⎛⎫ ⎪-- ⎪ ⎪--⎝⎭ (6) 220212020-⎛⎫ ⎪-- ⎪ ⎪-⎝⎭【解析】(1) 令2331A -⎛⎫=⎪-⎝⎭,则矩阵A 的特征方程为故A的特征值为123322λλ+==。
当132λ+=时,由1()0I A x λ-=,即得其基础解系为(16,1Tx =-,因此,11k x (1k 为非零任意常数)是A 的对应于132λ=的全部特征向量。
当2λ=时,由2()0I A x λ-=,即得其基础解系为(26,1Tx =,因此,22k x (2k 为非零任意常数)是A的对应于2λ=的全部特征向量。
(2) 令311201112A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则矩阵A 的特征方程为 故A 的特征值为121,2λλ==(二重特征值)。
当11λ=时,由1()0I A x λ-=,即得其基础解系为()10,1,1Tx =,因此,11k x (1k 为非零任意常数)是A 的对应于11λ=的全部特征向量。
当22λ=时,由2()0I A x λ-=,即得其基础解系为()21,1,0Tx =,因此,22k x (2k 为非零任意常数)是A 的对应于22λ=的全部特征向量。
(3) 令200111113A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则矩阵A 的特征方程为 故A 的特征值为2λ=(三重特征值)。
当2λ=时,由()0I A x λ-=,即得其基础解系为()()121,1,0,0,1,1TTx x ==,因此,A 的对应于2λ=的全部特征向量为1122k x k x +(其中12,k k 为不全为零的任意常数)。
(4) 令1234012300120001A ⎛⎫⎪⎪= ⎪⎪⎝⎭,则矩阵A 的特征方程为故A 的特征值为1λ=(四重特征值)。
线性代数习题答案线性代数是一门数学学科,研究向量空间、线性映射和线性方程组等概念及其性质的数学理论。
它在科学、工程和经济学等领域中有着广泛的应用。
在学习线性代数的过程中,习题是帮助我们巩固知识、培养逻辑思维和解决问题能力的重要手段。
下面,我将为大家提供一些线性代数习题的答案,希望能对大家的学习有所帮助。
1. 线性方程组的解集形式对于一个线性方程组,我们希望找到它的解集形式。
解集的形式可以分为无解、唯一解和无穷解三种情况。
- 如果方程组无解,那么它的解集为空集。
- 如果方程组有唯一解,那么它的解集为一个只含有一个向量的集合。
- 如果方程组有无穷多个解,那么它的解集可以表示为一个参数方程的形式。
2. 矩阵的秩矩阵的秩是指矩阵中非零行的最大线性无关组的向量个数。
对于一个矩阵来说,它的秩有以下性质:- 矩阵的秩小于等于它的行数和列数中的较小值。
- 矩阵的秩等于它的行最简形式中非零行的个数。
- 矩阵的秩等于它的列最简形式中非零列的个数。
3. 矩阵的特征值和特征向量矩阵的特征值和特征向量是矩阵在线性变换过程中的一些特殊性质。
特征值是一个标量,特征向量是一个非零向量。
对于一个矩阵来说,它的特征值和特征向量有以下性质:- 矩阵的特征值是使得矩阵与特征向量的乘积等于特征值乘以特征向量的向量。
- 矩阵的特征值可以通过求解矩阵的特征方程得到。
- 矩阵的特征向量是特征值对应的零空间的非零向量。
4. 矩阵的行列式矩阵的行列式是一个标量,它可以用来判断矩阵是否可逆。
对于一个矩阵来说,它的行列式有以下性质:- 矩阵的行列式等于它的转置矩阵的行列式。
- 矩阵的行列式等于它的特征值的乘积。
- 矩阵的行列式为零表示矩阵不可逆,否则矩阵可逆。
5. 矩阵的正交性矩阵的正交性是指矩阵的列向量两两之间的内积为零。
对于一个矩阵来说,它的正交性有以下性质:- 矩阵的列向量两两之间的内积为零表示矩阵的列向量是两两正交的。
- 矩阵的列向量是两两正交的,那么它的转置矩阵与原矩阵的乘积为一个对角矩阵。
1.2. 已知向量空间的一个基为α1=(1 1 0)T ,α2=(1 0 1)T,α3=(0 1 1 )T ,试求α=(2 0 0)T在上述基下的坐标。
解. 设α=()321ααα⎪⎪⎪⎭⎫ ⎝⎛321x x x , ()321ααα=⎪⎪⎪⎭⎫ ⎝⎛110101011()321ααα-1=⎪⎪⎪⎭⎫ ⎝⎛---11111111121所以 ⎪⎪⎪⎭⎫ ⎝⎛321x x x =()321ααα-1α=⎪⎪⎪⎭⎫⎝⎛---1111111111⎪⎪⎪⎭⎫ ⎝⎛002=⎪⎪⎪⎭⎫ ⎝⎛-111 2.验证α1=(1 -1 0)T,α2=(2 1 3)T,α3=(3 1 2 )T为R 3的一个基,并把α=(5 0 7)T ,β=(-9 -8 -13)T用这个基线性表示。
解.设()321ααα=⎪⎪⎪⎭⎫ ⎝⎛-230111321,321ααα= 230111321-= -6 ≠0所以α1,α2,α3为R 3的一个基。
设α=()321ααα⎪⎪⎪⎭⎫ ⎝⎛321x x x ,β=()321ααα⎪⎪⎪⎭⎫ ⎝⎛321y y y由()αααα21=A =⎪⎪⎪⎭⎫ ⎝⎛-723001115321→⎪⎪⎪⎭⎫⎝⎛-220054305321得α=()321ααα⎪⎪⎪⎭⎫ ⎝⎛321x x x =()321ααα⎪⎪⎪⎭⎫⎝⎛-132=2α1+3α2-α3 ,又有()βααα21=A=⎪⎪⎪⎭⎫ ⎝⎛----1323081119321→⎪⎪⎪⎭⎫ ⎝⎛---4200174309321 得β=()321ααα⎪⎪⎪⎭⎫ ⎝⎛321y y y =()321ααα⎪⎪⎪⎭⎫⎝⎛--233=3α1-3α2-2α3 。
3.下列n 阶方阵的集合,关于矩阵的加法和数乘矩阵两种运算是否构成线性空间?(1)n 阶对称矩阵全体所成之集合S ; (2)n 阶可逆矩阵全体所成之集合R ;(3)主对角线上各元素之和等于零的n 阶矩阵全体所成之集合T 。
高等代数(北大版)第6章习题参考答案第六章线性空间1?设 MuN,证明:MRN = M、MUN = N。
证任取a eM,由MuN,得awN,所以awMDN,即证又因 MflNuM,故Mp|N = M。
再证第二式,任取a^M或a已N,但MuN,因此无论哪一种情形,都有aeN,此即。
但N uMU N,所以MUN = N °2.证明 Mp|(NUD = (MriN)U(MrU), MU(NfU) = (MUN)n(MUD。
证 VxwMCl(NUD,则在后一情形,于是 xeMflN佥所以xe(MC\N)\J(MC\L),由此得 MCl(NUD = (MnN)U(Mri 厶)。
反之,若 xw(MnN)U(MfU),则XW MCIN或iwMCl L.在前一情形,x 已M、x已N、因此X^N\JL.故得xeMCl(NUE),在后一情形,因而xeM,xeL, x^N\jL ,得 xwMCl(NU 厶),故(MnN)U(MClDuMri(N U 厶),于是 Mn(NUD=(MriN)u(Mru)。
若xwMU(NDZJ ,贝ijxe M, xeNf)厶。
在前一情形 XxwMUN,且X wMU厶,因而xw(MUN)n(MUL)。
在后一情形,xwN,xwL,因而xiWUN,且XwMU厶,即Xw(MUN)n(MUL)所以(MUN)n(MUL)uMU(NUL)故MU(Np|L) = (MUN)pl(MUL)即证。
3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1)次数等于n (n>l)的实系数多项式的全体,对于多项式的加法和数量乘法;2)设A是一个nXn实数矩阵,A的实系数多项式f (A)的全体,对于矩阵的加法和数呈乘法;3)全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法;4)平面上不平行于某一向量所成的集合,对于向疑的加法和数量乘法;5)全体实数的二元数列,对于下面定义的运算:(?,勺2(。
线性代数同济大学第五版全部课后题答案 第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4. (2)b a c a c b cb a ;解 ba c a cb cb a=acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3.(3)222111c b a c b a ;解 222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).(4)y x y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3).2. 按自然数从小到大为标准次序, 求下列各排列的逆序数:(1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ⋅ ⋅ ⋅ (2n -1) 2 4 ⋅ ⋅ ⋅ (2n );解 逆序数为2)1(-n n :3 2 (1个) 5 2, 5 4(2个)7 2, 7 4, 7 6(3个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)(6)1 3 ⋅⋅⋅(2n-1) (2n) (2n-2) ⋅⋅⋅ 2.解逆序数为n(n-1) :3 2(1个)5 2, 5 4 (2个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)4 2(1个)6 2, 6 4(2个)⋅⋅⋅⋅⋅⋅(2n)2, (2n)4, (2n)6,⋅⋅⋅, (2n)(2n-2) (n-1个)3.写出四阶行列式中含有因子a11a23的项.解含因子a11a23的项的一般形式为(-1)t a11a23a3r a4s,其中rs是2和4构成的排列,这种排列共有两个,即24和42.所以含因子a11a23的项分别是(-1)t a11a23a32a44=(-1)1a11a23a32a44=-a11a23a32a44,(-1)t a11a23a34a42=(-1)2a11a23a34a42=a11a23a34a42.4.计算下列各行列式:(1)71100251020214214; 解 71100251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-; 解 2605232112131412-26053212213041224--=====c c 041203212213041224--=====r r 0000003212213041214=--=====r r . (3)efcf bf de cd bd aeac ab ---;解 efcf bf de cd bd aeac ab ---e c b e c b e c b adf ---=a b c d e f a d f b c e 4111111111=---=.(4)dc b a 100110011001---. 解d c b a 100110011001---dc b aab ar r 10011001101021---++===== d c a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ada ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 . (2)y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=y x z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2得)022122212221222122222=++++=d d c c b b a a . (4)444422221111d c b a d c b a d c b a =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ); 证明 444422221111d c b a d c b a d c b a )()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b ---------=)()()(111))()((222a d d a c c a b b d c b a d a c a b +++---=))(())((00111))()((a b d b d d a b c b c c b d b c a d a c a b ++-++------=)()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----= =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ). (5)12211 000 00 1000 01a x a a a a x x xn n n+⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n .证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+-=, 命题成立. 假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ⋅ ⋅ ⋅ +a n -2x +a n -1, 则D n 按第一列展开, 有 11100 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-xx a xD D n n n n =xD n -1+a n =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n . 因此, 对于n 阶行列式命题成立.6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转, 依次得n nn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nn n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , 11113 a a a a D n nnn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(--==, D 3=D .证明 因为D =det(a ij ), 所以 nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证 nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n Tn n 2)1(2)1()1()1(---=-=. D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k 为k 阶行列式):(1)aaD n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解aa a a a D n 0 0010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 00 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=a n -a n -2=a n -2(a 2-1).(2)xa aa x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得 ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1(=[x +(n -1)a ](x -a )n -1. (3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n nn n n ; 解 根据第6题结果, 有 nnn n n n n n n n a a a n a a a n a a aD )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++此行列式为范德蒙德行列式.∏≥>≥++++--+--=11)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112; 解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开) nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+. 再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是 ∏=-=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D -==, 所以 ∏=-=n i i i i i n c b d a D 12)(. (5) D =det(a ij ), 其中a ij =|i -j |; 解 a ij =|i -j |, 04321 4 01233 10122 21011 3210)det(⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n 043211 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r15242321 0 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2.(6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ⋅ ⋅ ⋅ a n≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 111 1121 nn n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--100001 000 100 0100 0100 0011332212132 1111312112111000011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 00010 000 00 10000 01000 001)11)((121∑=+=ni i n a a a a .8. 用克莱姆法则解下列方程组: (1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为 14211213513241211111-=----=D , 142112105132412211151-=------=D , 284112035122412111512-=-----=D , 426110135232422115113-=----=D , 14202132132212151114=-----=D , 所以 111==DD x , 222==D D x , 333==D D x , 144-==D Dx .(2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为 665510006510006510065100065==D , 150751001651000651000650000611==D , 114551010651000650000601000152-==D , 703511650000601000051001653==D , 39551601000051000651010654-==D , 2121100005100065100651100655==D , 所以66515071=x , 66511452-=x , 6657033=x , 6653954-=x , 6652124=x .9. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D .令D =0, 得 μ=0或λ=1.于是, 当μ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D=(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3. 令D =0, 得λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0.(2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取 ⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫ ⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以AB =(AB )T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ;解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i n s i n c o s A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫ ⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组: (1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x . 14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A )可逆, 且(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得A 2-A =2E , 即A (A -E )=2E ,或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2,即 |A ||A -E |=2,故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,)3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|. 解 因为*||11A A A =-, 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有 |A *|=|A |n |A -1|=|A |n -1≠0,从而A *也可逆.因为A *=|A |A -1, 所以(A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A *, 证明:(1)若|A |=0, 则|A *|=0;(2)|A *|=|A |n -1.证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0.(2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n .若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立.因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫ ⎝⎛-=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330. 20. 设⎪⎪⎭⎫ ⎝⎛=101020101A , 且AB +E =A 2+B , 求B . 解 由AB +E =A 2+B 得(A -E )B =A 2-E ,即 (A -E )B =(A -E )(A +E ).因为010********||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A . 26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521,即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解 4100120021100101002000021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A ,故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则 ⎪⎭⎫⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A , 1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A .29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫ ⎝⎛O B A O ; 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n EBC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C OC OC A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A . 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nEBD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ; 解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取 ⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫ ⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以AB =(AB )T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i n s i n c o s A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫ ⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组: (1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x . 14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A )可逆, 且(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得A 2-A =2E , 即A (A -E )=2E ,或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2,即 |A ||A -E |=2,故 |A |≠0,。
线性代数习题参考答案(总96页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章行列式§1 行列式的概念1.填空(1) 排列6427531的逆序数为,该排列为排列。
(2) i = ,j = 时,排列1274i56j9为偶排列。
(3) n阶行列式由项的代数和组成,其中每一项为行列式中位于不同行不同列的n个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n元排列。
若该排列为奇排列,则该项的符号为号;若为偶排列,该项的符号为号。
(4) 在6阶行列式中,含152332445166a a a a a a的项的符号为,含324314516625a a a a a a的项的符号为。
2.用行列式的定义计算下列行列式的值(1)112223323300 0aa aa a解:该行列式的3!项展开式中,有项不为零,它们分别为,所以行列式的值为。
(2)12,121,21,11, 12,100000nn nn n n n n n n n n nnaa aa a aa a a a------解:该行列式展开式中唯一不可能为0的项是,而它的逆序数是,故行列式值为。
3.证明:在全部n 元排列中,奇排列数与偶排列数相等。
证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。
对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n2n 。
4.若一个n 阶行列式中等于0的元素个数比n n -2多,则此行列式为0,为什么 5.n 阶行列式中,若负项的个数为偶数,则n 至少为多少(提示:利用3题的结果) 6.利用对角线法则计算下列三阶行列式(1)21141183---(2)222111ab c a b c§2 行列式的性质1.利用行列式的性质计算系列行列式。
1、22220a aba b ab ab ab b =⋅-⋅=2、22cos sin cos cos (sin )sin cos sin 1sin cos αααααααααα-=⋅--⋅=+=3、222()()22()2a bi ba bi a bi ab a b ab a b a a bi+=+--=+-=--4、3242123*1*(3)2*(2)*5(4)*4*23*(2)*22*4*(3)(4)*1*5423--=-+-+--------- 920321224205=---+++=-5、1234561*5*92*6*73*4*81*6*82*4*93*5*7789=++--- 45849648721050=++---=6、2214112*1*1012*(1)*2021*4*1992*(1)*1992*4*1011*1*202202199101-=+-+---- 20240479639880820218=-++--=-7、222234322222211101(1)(1)(1)0101w w w w w ww w w w w w w w w w w w +⨯---=-=-++=-⨯--第2行第1行()第3行第1行()8、3322232121*2*3322663xxxx x x x x x x x xx =++---=-+9、143000400400431(1)0434*******4324321+-=-=-按第行展开10、公式:111112111222222122112212000000000000n n nn nn nnn n nn a a a a a a a a a a a a a a a a a a ===11111,11(1)2,12,2,1212,1212,111,11100000000(1)000n n n nn n n n n n n n n n n n nnn n a a a a a a a a a a a a a a a a a a -------===-⋅解:101000010000100200002010(1)1008000080090000910+-⋅按第行展开9(19)210(1)128910!+=⋅-⋅⋅⋅=11、3111111112111110200311*(2)8111100204111110002----=-=------第行第行第行第行第行第行12、该行列式中各行元素之和均为10,所以吧第2,3,4列加到第1列,然后再把第1列后三个元素化为零,再对第1列展开,即123412341234211132341134101131031101022234121412022211141412311230111---=-=-----------第行第行第行第行 第行第行10*16160==13、504211111111210112111210210143247412041200324153111150420153-----=-=----=----------第,行交换14、先将第1行与第5行对换,第3行与第4行对换〔反号两次,其值不变〕3656411111111111111125453254530327503275363422546503287000122546536342030750020011111365640329700022------===--- 根据课本20页公式〔1.21〕,原式012112003*41203022=-=-=-()15、1200340012132*16001334510051-==---()()=3216、1234512345123678910678910213567810*220000*********01000024000240101100013-=-=-=-第,行对换17、根据课本20页公式〔1.22〕23001121120030212(1)30212*(5)6000240312401240131258⨯--=-=-=--18、1001201*2*33!123A ===,5(51)20000100020(1)(1)(2)(3)(4)(5)5!030004000500B ---==------=----所以3*5*(1)||||3!5!0AA B B=-=-19、证:21111111112222222222233333333311111112222222223333333(1)2*1(1)(1)(1)1*2(1)a b x a x b c a b x b x c a b x a x b c x a b x b x c a b x a x b c a b x b x c a b xb c a b c x a b x b c x x a b c a b x b c a b c +++-=++-+-+++-+=-+--=+左第列第列第列第列右20、11111111211111003111110041111100x x x x x y x y y x y++----=-+-----第行第行左第行第行第行第行144401114(1)10(1)()0000x x xxy y x x xxy++--+-⋅⋅-+-⋅-⋅----按第列展开2222222(1)()x y y x xy xy x x y y x y x x y ⎡⎤=---++-=----==⎣⎦右21、33333333333111111010b ac a ab c b a c a b a c a a b c b a c a--==--=⋅----左()()()()()()()()()()()()()()()()2222222222b a c a c ac a c a b a b ab a b a c a c ac a b ab a b a c a c ac b ab b a c a c b a b c =--++---++=--++---=--+--=---++=右22、解法1:()()()()232322332233223323223311001111a a bb b a b a b ac a c a b a c c c a c a =--=------- 整理得()()()()ab bc ca b a c a c b =++---又根据X 德蒙行列式有:()()()222111a a b a c a c b bb cc ---= 故原式得证。
第六章 线性空间与线性变换1. 验证所给矩阵集合对于矩阵的加法和乘数运算构成线性空间, 并写出各个空间的一个基.(1) 2阶矩阵的全体S 1;解 设A , B 分别为二阶矩阵, 则A , B ∈S 1. 因为(A +B )∈S 1, kA ∈S 1,所以S 1对于矩阵的加法和乘数运算构成线性空间.⎪⎭⎫ ⎝⎛=00011ε, ⎪⎭⎫ ⎝⎛=00102ε, ⎪⎭⎫ ⎝⎛=01003ε, ⎪⎭⎫ ⎝⎛=10004ε是S 1的一个基.(2)主对角线上的元素之和等于0的2阶矩阵的全体S 2;解 设⎪⎭⎫⎝⎛-=a c b a A , ⎪⎭⎫ ⎝⎛-=d f e d B , A , B ∈S 2. 因为 2)(S d a a c b c d a B A ∈⎪⎭⎫ ⎝⎛++++-=+,2S ka kc kb ka kA ∈⎪⎭⎫ ⎝⎛-=, 所以S 2对于矩阵的加法和乘数运算构成线性空间.⎪⎭⎫ ⎝⎛-=10011ε, ⎪⎭⎫ ⎝⎛=00102ε, ⎪⎭⎫ ⎝⎛=01003ε 是S 2的一个基.(3) 2阶对称矩阵的全体S 3.解 设A , B ∈S 3, 则A T =A , B T =B . 因为 (A +B )T =A T +B T =A +B , (A +B )∈S 3, (kA )T =kA T =kA , kA ∈S 3,所以S 3对于加法和乘数运算构成线性空间.⎪⎭⎫ ⎝⎛=00011ε, ⎪⎭⎫ ⎝⎛=01102ε, ⎪⎭⎫ ⎝⎛=10003ε是S 3的一个基.2. 验证: 与向量(0, 0, 1)T 不平行的全体3维数组向量, 对于数组向量的加法和乘数运算不构成线性空间.解 设V ={与向量(0, 0, 1)T 不平行的全体三维向量}, 设r 1=(1, 1, 0)T , r 2=(-1, 0, 1)T , 则r 1, r 2∈V , 但r 1+r 2=(0, 0, 1)T ∉V , 即V 不是线性空间.3. 设U 是线性空间V 的一个子空间, 试证: 若U 与V 的维数相等, 则U =V .证明 设ε1, ε2, ⋅⋅⋅, εn 为U 的一组基, 它可扩充为整个空间V 的一个基, 由于dim(U )=dim(V ), 从而ε1, ε2, ⋅⋅⋅, εn 也为V 的一个基, 则: 对于x ∈V 可以表示为x =k 1ε1+k 2ε2+ ⋅⋅⋅ +k r εr . 显然, x ∈U , 故V ⊆U , 而由已知知U ⊆V , 有U =V .4. 设V r 是n 维线性空间V n 的一个子空间, a 1, a 2, ⋅⋅⋅, a r 是V r 的一个基. 试证: V n 中存在元素a r +1, ⋅⋅⋅, a n , 使a 1, a 2, ⋅⋅⋅, a r , a r +1, ⋅⋅⋅, a n 成为V n 的一个基.证明 设r <n, 则在V n 中必存在一向量a r +1∉V r , 它不能被a 1, a 2, ⋅⋅⋅, a r 线性表示, 将a r +1添加进来, 则a 1, a 2, ⋅⋅⋅, a r +1是线性无关的. 若r +1=n , 则命题得证, 否则存在a r +2∉L (a 1, a 2, ⋅⋅⋅, a r +1), 则a 1, a 2, ⋅⋅⋅, a r +2线性无关, 依此类推, 可找到n 个线性无关的向量a 1, a 2, ⋅⋅⋅, a n , 它们是V n 的一个基.5. 在R 3中求向量α=(3, 7, 1)T 在基α1=(1, 3, 5)T , α2=(6, 3, 2)T , α3=(3, 1, 0)T 下的坐标. 解 设ε1, ε2, ε3是R 3的自然基, 则 (α1, α2, α3)=(ε1, ε2, ε3)A , (ε1, ε2, ε3)=(α1, α2, α3)A -1,其中⎪⎪⎭⎫ ⎝⎛=025133361A , ⎪⎪⎭⎫ ⎝⎛-----=-1528981553621A .因为 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=-173) , ,(173) , ,(1321321A αααεεεα⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-----=173152898155362) , ,(321ααα⎪⎪⎭⎫⎝⎛-=1548233) , ,(321ααα,所以向量α在基α1, α2, α3下的坐标为(33, -82, 154)T .6. 在R 3取两个基α1=(1, 2, 1)T , α2=(2, 3, 3)T , α3=(3, 7, 1)T ; β1=(3, 1, 4)T , β2=(5, 2, 1)T , β3=(1, 1, -6)T . 试求坐标变换公式.解 设ε1, ε2, ε3是R 3的自然基, 则 (β1, β2, β1)=(ε1, ε2, ε3)B , (ε1, ε2, ε3)=(β1, β2, β1)B -1,(α1, α2, α1)=(ε1, ε2, ε3)A =(β1, β2, β1)B -1A , 其中⎪⎪⎭⎫ ⎝⎛=131732121A , ⎪⎪⎭⎫ ⎝⎛-=614121153B .设任意向量α在基α1, α2, α3下的坐标为(x 1, x 2, x 3)T , 则⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=-3211321321321) , ,() , ,(x x x A B x x x βββαααα,故α在基β1, β2, β3下的坐标为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛'''-3211321x x x A B x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=32149910726313941811913x x x .7. 在R 4中取两个基e 1=(1,0,0,0)T , e 2=(0,1,0,0)T , e 3=(0,0,1,0)T , e 4=(0,0,0,1)T ; α1=(2,1,-1,1)T , α2=(0,3,1,0)T , α3=(5,3,2,1)T , α3=(6,6,1,3)T . (1)求由前一个基到后一个基的过渡矩阵; 解 由题意知⎪⎪⎪⎭⎫⎝⎛-=3101121163316502) , , ,() , , ,(43214321e e e e αααα, 从而由前一个基到后一个基的过渡矩阵为⎪⎪⎪⎭⎫⎝⎛-=3101121163316502A . (2)求向量(x 1, x 2, x 3, x 4)T 在后一个基下的坐标;解 因为⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=-43211432143214321) , , ,() , , ,(x x x x A x x x x αααααe e e e ,向量α在后一个基下的坐标为⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-4321143213166123501301112x x x x y y y y ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-------=432126937180092391213327912271x x x x . (3)求在两个基下有相同坐标的向量.解 令⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-------4321432126937180092391213327912271x x x x x x x x , 解方程组得⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛11114321k x x x x (k 为常数).8. 说明xOy 平面上变换⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛y x A y x T 的几何意义, 其中(1)⎪⎭⎫⎝⎛-=1001A ; 解 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛y x y x y x T 1001, 所以在此变换下T (α)与α关于y 轴对称. (2)⎪⎭⎫⎝⎛=1000A ; 解 因为⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛y y x y x T 01000, 所以在此变换下T (α)是α在y 轴上的投影. (3)⎪⎭⎫⎝⎛=0110A ; 解 因为⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛x y y x y x T 0110, 所以在此变换下T (α)与α关于直线y =x 对称. (4)⎪⎭⎫⎝⎛-=0110A . 解 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛x y y x y x T 0110,所以在此变换下T (α)是将α顺时针旋转2π.9. n 阶对称矩阵的全体V 对于矩阵的线性运算构成一个2)1(+n n 维线性空间. 给出n 阶矩阵P , 以A 表示V 中的任一元素, 变换T (A )=P T AP 称为合同变换. 试证合同变换T 是V 中的线性变换.证明 设A , B ∈V , 则A T =A , B T =B . T (A +B )=P T (A +B )P =P T (A +B )T P =[(A +B )P ]T P =(AP +BP )T P=(P T A +P T B )P =P T AP +P T BP =T (A )+T (B ), T (kA )=P T (kA )P =kP T AP =kT (A ),从而, 合同变换T 是V 中的线性变换.10. 函数集合V 3={α=(a 2x 2+a 1x +a 0)e x | a 2, a 1, a 0 ∈R }对于函数的线性运算构成3维线性空间, 在V 3中取一个基α1=x 2e x , α2=xe x , α3=e x .求微分运算D 在这个基下的矩阵. 解 设β1=D (α1)=2xe x +x 2e x =2α2+α1, β2=D (α2)=e x +xe x =α3+α2, β3=D (α3)=e x =α3. 易知β1, β2, β3线性无关, 故为一个基.由 ⎪⎪⎭⎫⎝⎛=110012001) , ,() , ,(321321αααβββ,知即D 在基α1, α2, α3下的矩阵为⎪⎪⎭⎫⎝⎛=110012001P .11. 2阶对称矩阵的全体},,|{32132213R x x x x x x x A V ∈⎪⎭⎫⎝⎛==对于矩阵的线性运算构成3维线性空间. 在V 3中取一个基⎪⎭⎫ ⎝⎛=00011A , ⎪⎭⎫ ⎝⎛=01102A , ⎪⎭⎫ ⎝⎛=10003A .在V 3中定义合同变换⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=10111101)(A A T ,求T 在基A 1, A 2, A 3下的矩阵. 解 因为⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=101100011101)(1A T 3211111A A A ++=⎪⎭⎫ ⎝⎛=,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=101111101101)(2A T 3222110A A +=⎪⎭⎫ ⎝⎛=,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=101110001101)(3A T 31000A =⎪⎭⎫ ⎝⎛=, 故 ⎪⎪⎭⎫ ⎝⎛=121011001) , ,())( ),( ),((321321A A A A T A T A T , 从而, T 在基A 1, A 2, A 3下的矩阵⎪⎪⎭⎫⎝⎛=121011001A .。
第六章 二次型将下列1-3题的二次型表示成矩阵形式。
1.22(,)467f x y x xy y =-- 解:()2243(,)46737x f x y x xy y xy y ⎛⎫⎛⎫=--= ⎪⎪-⎝⎭⎝⎭2.222(,,)346f x y z x xy y yz z =+--+解:()222320(,,)346213031x f x y z x xy y yz z xyz y z ⎛⎫⎛⎫⎪⎪=+--+=-- ⎪⎪ ⎪⎪-⎝⎭⎝⎭3.22212341341214232434(,,,)242264f x x x x x x x x x x x x x x x x x =++++--+解:()12123412343412012013(,,,)01121322x x f x x x x x x x x x x ⎛⎫⎛⎫ ⎪ ⎪-- ⎪⎪= ⎪ ⎪- ⎪ ⎪-⎝⎭⎝⎭4.设n 元二次型12(,,,)n f x x x 的矩阵为n 阶三对角对称矩阵1111111111A -⎛⎫⎪-- ⎪⎪=- ⎪- ⎪⎪-⎝⎭, 试写出二次型(二次齐次多项式)的表示式。
解:22221211222311(,,,)222n n n n n f x x x x x x x x x x x x x --=-+-++-+。
5.若二次型12(,,,)T n f x x x x Ax =对一切12(,,,)T n x x x x =恒有12(,,,)0n f x x x =,证明A 为n 阶零矩阵。
证明:取(0,,1,,0)T i x =(其中第i 个分量为1,其余分量全为零),则有11()0,1,2,,nnTi i i ij i j ii i j f x x Ax a x x a i n =======∑∑。
再取(0,,1,,1,,0)T ij x =(其中第i 和第j 个分量为1,其余分量全为零),则有()20,,1,2,,T ij ij ij ij f x x Ax a i j n ====。
所以,A 的2n 个元素全为0,即A 为n 阶零矩阵。
6.设,A B 均为n 阶对称矩阵,且对一切x 有TTx Ax x Bx =,则A B =。
证明:由12(,,,)()T n f x x x x A B x =-,对一切12(,,,)T n x x x x =恒有()0f x =。
利用上题结果得0A B -=。
7.设,AB C D ,且它们都是n 阶实对称矩阵,下列结论成立吗?(1) )()A C B D ++(; (2) A O B O O C O D ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭解:(1)不成立;如1000,,,0111A B C D ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭,此时,A C +与B D +不合同。
(2)成立。
由1122,T TC AC B C CCD ==(其中12,C C 为可逆矩阵),得11112222TT TC C A O B O C AC O C C O C OD OC CC ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 其中12C C ⎛⎫⎪⎝⎭仍然可逆,所以结论成立。
8.用正交变换x Qy =,将下列二次型化为标准形,并求正交矩阵Q :(1) 222123232334f x x x x x =+++解:二次型对应的矩阵为200032023A ⎛⎫ ⎪= ⎪ ⎪⎝⎭A 的三个特征值为1231,2,5λλλ===。
由()0E A x -=,求得对应11λ=的特征向量为1011ξ⎛⎫⎪=- ⎪ ⎪⎝⎭由(2)0E A x -=,求得对应22λ=的特征向量为2100ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭由(5)0E A x -=,求得对应35λ=的特征向量为3011ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭因123,,ξξξ是分别属于三个不同特征值的特征向量,故正交。
单位化,1011η⎛⎫⎪=-⎪⎪⎭,2100η⎛⎫ ⎪= ⎪ ⎪⎝⎭,3011η⎛⎫⎪=⎪⎪⎭令()12301000Q ηηη⎛⎫ ⎪ ⎪ == ⎝,有1125TQ AQ Q AQ -⎛⎫ ⎪== ⎪ ⎪⎝⎭。
(2) 22221234121423342222f x x x x x x x x x x x x =++++---解:二次型对应的矩阵为1101111001111011A -⎛⎫ ⎪-⎪= ⎪-- ⎪--⎝⎭由[(1]0E A x +-=,求得对应1+的特征向量为1211,1001ξξ-⎛⎫⎛ - ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭正交化,得12120,101ηη⎛- -⎛⎫ ⎪ ⎪ ==⎪ ⎪ ⎝⎭⎪⎝⎭再单位化,得1211011,12210p p --⎛⎫⎛⎫ ⎪ ⎪==⎪ ⎪- ⎪ ⎪⎝⎭由[(1]0E A x --=,求得对应13411,1001ξξ-⎛⎫- ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭单位化,341111,221001p p -⎛⎫- ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭令()123411110121110001Q p p p p ⎛--- - ⎪==⎪- ⎪ ⎪⎝⎭,则11111T Q AQ Q AQ -⎛⎫⎪+ ⎪== ⎪- ⎪⎝。
9.设420002100000500000460061A -⎛⎫ ⎪- ⎪⎪= ⎪- ⎪ ⎪⎝⎭,求正交矩阵Q ,使得T Q AQ 为对角矩阵。
解:利用7(2)分块矩阵合同的结论,令12A A A A ⎛⎫⎪=⎪ ⎪⎝⎭,其中 1024246,(5),2161A A A --⎛⎫⎛⎫=== ⎪ ⎪-⎝⎭⎝⎭。
对14221A -⎛⎫=⎪-⎝⎭,存在可逆矩阵11221P ⎛⎫= ⎪-⎝⎭,使得1111105P A P -⎛⎫==Λ ⎪⎝⎭;对24661A -⎛⎫= ⎪⎝⎭,存在可逆矩阵22332P ⎛⎫= ⎪-⎝⎭,使得1222258P A P -⎛⎫==Λ ⎪-⎝⎭。
不同特征值对应的特征向量已经正交,只需单位化。
取12,Q Q⎫⎫⎪⎪⎪⎪==,令1211QQQ⎫⎪⎪⎪⎪⎛⎫⎪⎪== ⎪⎪⎪⎪⎝⎭ ⎪⎪⎪⎝,则有5558TQ AQ⎛⎫⎪⎪⎪=Λ=⎪⎪⎪-⎝⎭。
10.用配方法将下列二次型化为标准形,并写出所用的坐标变换:(1) 21122343x x x x x+-解:212311223(,,)43f x x x x x x x x=+-令112223332,3,2,y x xy x xy x=+⎧⎪⎪=+⎨⎪=⎪⎩则11232233323,3,2,x y y yx y yx y=-+⎧⎪⎪=-⎨⎪=⎪⎩这样,二次型212311223(,,)43f x x x x x x x x=+-化为标准形222123123(,,)49f x x x y y y=-+,所用的坐标变换为x Cy=,其中1233012001C-⎛⎫⎪⎪=-⎪⎪⎝⎭。
(2)1213233x x x x x x+-解:因为二次型中没有平方项,无法配方,所以先做一个坐标变换,使其出现平方项。
根据12x x ,利用平方差公式,令11221233,,,x y y x y y x y =+⎧⎪=-⎨⎪=⎩则令11322333,2,,z y y z y y z y =-⎧⎪=-⎨⎪=⎩则11322333,2,,y z z y z z y z =+⎧⎪=+⎨⎪=⎩这样,二次型123121323(,,)3f x x x x x x x x x =+-化为标准形222123123(,,)3f x x x z z z =-+,所用的变换为1x C y =和2y C z =,即x Cz =,其中1110110001C ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,2101012001C ⎛⎫ ⎪= ⎪ ⎪⎝⎭,12113111001C C C ⎛⎫ ⎪==-- ⎪ ⎪⎝⎭。
(3) 222123122331254484x x x x x x x x x +++--解: 222123123122331(,,)254484f x x x x x x x x x x x x =+++--令 112322333,2,3,y x x x y x x y x =+-⎧⎪⎪=-⎨⎪=⎪⎩则 1123223331,32,3,x y y y x y y x y ⎧=-+⎪⎪⎪=+⎨⎪=⎪⎪⎩这样,二次型222123123122331(,,)254484f x x x x x x x x x x x x =+++--转化为标准形2221231232(,,)233f x x x y y y =++,所用的变换为x Cy =,其中11132013001C ⎛⎫- ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎝⎭。
11.用初等变换法将下列二次型化为标准形,并求相应的坐标变换。
(1) 122331x x x x x x ++解:()1123122331123231102211(,,),,02211022x f x x x x x x x x x x x x x x ⎛⎫ ⎪⎛⎫ ⎪ ⎪⎪=++= ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭,则初等变换可以写成于是,做坐标变换x Cy =,其中11121112001C ⎛⎫-- ⎪⎪⎪=- ⎪⎪ ⎪ ⎪⎝⎭,则二次型123(,,)f x x x 化为标准形 2221231231(,,)4T f x x x y y y y y =Λ=--。
(2) 2221231213232242x x x x x x x x x -++++解:()122212312312132312323112(,,)2242,,121211x f x x x x x x x x x x x x x x x x x ⎛⎫⎛⎫ ⎪⎪=-++++=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,则初等变换可以写成于是,做坐标变换x Cy =,其中51131013001C ⎛⎫-- ⎪ ⎪⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭,则二次型123(,,)f x x x 化为标准形2221231238(,,)33T f x x x y y y y y =Λ=--。
(3) 2222123412132434546448x x x x x x x x x x x x ++-+---解:2222123123412132434(,,)546448f x x x x x x x x x x x x x x x =++-+---()1212343413203502,,,20440241x x x x x x x x -⎛⎫⎛⎫ ⎪ ⎪- ⎪⎪= ⎪ ⎪-- ⎪ ⎪---⎝⎭⎝⎭, 则初等变换可以写成[2][1]3[3][1]232[2][1]313201020350204622044264402410241100013000100010000100010********A I -⨯+⨯⨯⨯-⨯--⎛⎫⎛⎫ ⎪ ⎪--- ⎪ ⎪ ⎪⎪---- ⎪⎪------⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪=−−−−→ ⎪ ⎪⎪ ⎪- ⎪ ⎪⎝⎭ ⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭②-①③+①[3][1]21[2]21[3][2]3321[3[2]21004620604024113200100001000011000013103040141312021000200100001+⨯⨯+⨯⨯⨯⨯⎛⎫⎪-- ⎪⎪-⎪--- ⎪⎪−−−−→⎪- ⎪ ⎪⎪⎪ ⎪⎝⎭⎛⎫ ⎪-- ⎪ ⎪- ⎪--- ⎪ ⎪ ⎪−−−→ ⎪- ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭②③+②][2]3[4][4][2][4][2]1000010100970171351022150022001000011000010000970070353122215102220010001+⨯--⎛⎫⎪-- ⎪ ⎪-⎪--- ⎪⎪ ⎪−−−−→ ⎪-- ⎪⎪⎪ ⎪ ⎪⎪⎪⎝⎭⎛⎫⎪- ⎪ ⎪- ⎪- ⎪ ⎪ ⎪−−−→ ⎪--⎪ ⎪ ⎪- ⎪⎪ ⎪ ⎪⎝⎭④-②7[3]9797[4][3]9100001000090490009.39412291513022970019001C +⨯⨯+⨯⎛⎫ ⎪- ⎪ ⎪ ⎪ ⎪- ⎪⎪Λ⎛⎫ ⎪ ⎪−−−−→= ⎪ ⎪--- ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭④+③于是,做坐标变换x Cy =,其中394122915130229700190001C ⎛⎫--- ⎪⎪ ⎪⎪=⎪ ⎪⎪ ⎪⎝⎭,则二次型123(,,)f x x x 化为标准形22221234123449(,,,)99T f x x x x y y y y y y =Λ=-+-。