超声加工是利用超声振动工具在有磨料的液体介质中或干磨料中产生磨料的冲击
- 格式:doc
- 大小:35.00 KB
- 文档页数:6
超声波加工技术1.绪论人耳能感受到的声波频率在20—20000HZ范围内,声波频率超过20000HZ被称为超声波。
超声波加工(Ultrasonic Machining简称USM)是近几十年来发展起来的一种加工方法,它是指给工具或工件沿一定方向施加超声频振动进行加工的方法,或利用超声振动的工具在有磨料的液体介质或干磨料中产生磨料的冲击、抛磨、液压冲击及由此产生的气蚀来去除材料,又或利用超声振动使工件相互结合的加工方法。
它弥补了电火花加工的电化学加工的不足。
电火花加工和电化学加工一般只能加工导电材料,不能加工不导电的非金属材料。
而超声波加工不仅能加工硬脆金属材料,而且更适合于加工不导电的硬脆非金属材料,如玻璃、陶瓷、半导体锗和硅片等。
同时超声波还可用于清洗、焊接和探伤等。
1.1超声波加工的发展状况超声波加工是利用超声振动的工具在有磨料的液体介质中或干磨料中产生磨料的冲击、抛磨、液压冲击及由此产生的气蚀作用来去除材料,或给工具或工件沿一定方向施加超声频振动进行振动加工,或利用超声振动使工件相互结合的加工方法。
超声加工系统由超声波发生器、换能器、变幅杆、振动传递系统、工具、工艺装置等构成。
超声波发生器的作用是将220V或380V的交流电转换成超声频电振荡信号;换能器的作用是将超声频电振荡信号转换为超声频机械振动;变幅杆的作用是将换能器的振动振幅放大;超声波的机械振动经变幅杆放大后传给工具,使工具以一定的能量与工件作用,进行加工。
超声加工技术是超声学的一个重要分支。
超声加工技术是伴随着超声学的发展而逐渐发展的。
早在1830年,为探讨人耳究竟能听到多高的频率,F.Savrt曾用一多齿的齿轮,第一次人工产生了2.44HZ的超声波,1876年加尔顿的气哨实验产生的超声波的频10率达到了34⨯HZ.这些实验使人们开始对超10⨯HZ,后改用氢气时,其频率达到了8410声波的性质有了一定的认识。
对超声波的诞生起重大推进作用的是1912年豪华客轮泰坦尼克号在首航中碰撞冰山后沉没,这个当时震惊世界的悲剧促使科学家提出用声学方法来探测冰山。
什么是超声波加工超声波加工(USM,Ultrasonic Machining)是利用超声振动的工具在有磨料的液体介质中或干磨料中,产生磨料的冲击、抛磨、液压冲击及由此产生的气蚀作用来去除材料,以及利用超声振动使工件相互结合的加工方法。
超声波加工技术是随着机械制造和仪器制造中各种脆硬材料(如玻璃,陶瓷,半导体,铁氧体等)和难以加工材料(如高温及难溶合金,硬质合金等)的不断出现而应用和发展起来的新加工方法。
当经过液体介质传播时,将以极高的频率压迫液体质点振动,连续形成压缩和稀疏区域产生液体冲击和空化现象,引起邻近固体物质分散,破碎等效应。
超声波加工比电火花,电解加工的生产效率低,但加工精度和表面粗糙度比前者好。
并且能加工半导体和非半导体。
因此,当前国内模具行业一般先用电火花加工和半精加工,最后用超声波进行抛磨精加工。
早期的超声加工主要依靠工具作超声频振动,使悬浮液中的磨料获得冲击能量,从而去除工件材料达到加工目的。
但加工效率低,并随着加工深度的增加而显著降低。
后来,随着新型加工设备及系统的发展和超声加工工艺的不断完善,人们采用从中空工具内部向外抽吸式向内压人磨料悬浮液的超声加工方式,不仅大幅度地提高了生产率,而且扩大了超声加工孔的直径及孔深的范围。
近20多年来,国外采用烧结或镀金刚石的先进工具,既作超声频振动,同时又绕本身轴线以1000—5000r/min的高速旋转的超声旋转加工,比一般超声波加工具有更高的生产效率和孔加工的深度,同时直线性好、尺寸精度高、工具磨损小,除可加工硬脆材料外,还可加工碳化钢、二氧化钢、二氧化铁和硼环氧复合材料,以及不锈钢与钛合金叠层的材料等。
目前,已用于航空、原子能工业,效果良好。
1 超声波加工基本原理加工时工具以一定的静压力作用于工件上,在工具和工件之间加入磨料悬浮液(水或煤油和磨料的混合物)。
超声波换能器产生16kHz以上的超声频轴向振动,并借助变幅杆把振幅放大到0.02~0.08mm,迫使工作液中悬浮的磨粒以很大的速度不断撞击,抛磨被加工表面,把加工区的材料粉碎成非常小的微粒。
真诚为您提供优质参考资料,若有不当之处,请指正。
毕业设计(论文)开题报告题 目 超声变幅杆及其性能参数测试平台设计学院机械工程学院专业机械设计制造及其自动化姓名班级学号指导教师1 / 11真诚为您提供优质参考资料,若有不当之处,请指正。
一、课题研究的依据和意义1.1 超声变幅杆综述 超声加工是利用超声振动的工具在有磨料的液体介质或干磨料中产生磨料的冲击、抛磨、液压冲击及由此产生的气蚀来去除材料,或给工具或工件沿一定方向施加超声频 振动进行加工,或利用超声振动使工件相互结合的加工方法[1]。
如图 1.1。
图 1.1 超声加工示意图[2]近几十年以来,超声加工,包括复合加工的发展极为迅速,工艺技术在深小孔加工、 难加工材料加工方面有极为广泛的应用,尤其是在难加工材料领域解决了很多的技术问 题,得到了良好的效果。
难加工材料的研究促进了超声加工技术的发展,从而进一步促 进了新材料的发展,不难发现,超声加工技术的应用会越来越广泛[3]。
而本课题所要研究的超声变幅杆是超声波振动系统中一个重要的组成部分。
它与超 声波换能器一起共同组成了超声波振子。
超声波换能器是一种能把高频电能转化为机械 能的装置,超声波变幅杆是一个无源器件,本身不产生振动,只是将超声波换能器输入 的振动改变振幅后再传递出去,完成了阻抗变换。
超声波换能器在合适的电场激励下能产生有规律的振动,其振幅一般在 10 m左右,这样的振幅要直接完成焊接和加工工序是远远不够的。
因此将换能器合理地连接一个超2 / 11真诚为您提供优质参考资料,若有不当之处,请指正。
声变幅杆,超声波的振幅便能在很大的范围内变化,只要材料强度足够,振幅可以超过100 m。
超声波变幅杆亦可起到提高振速比、提高效率,提高机械品质因数,加强耐热性,扩大适应温度范围,延长换能器的使用寿命的作用。
超声波换能器通过安装变幅 杆(超声波变幅器)调整了换能器与超声波工具头之间的负载匹配,减小了谐振阻抗,使 其在谐振频率工作提高了电声转换效率,有效降低了超声波换能器的发热量,提高使用 寿命。
精密与特种加工试题库及参考答案一、名词解释:1.极性效应在电火花加工中,把由于正负极性接法不同而蚀除速度不同的现象叫极性效应。
2.线性电解液如NaCl电解液,其电流效率为接近100%的常数,加工速度v L和与电流密度i的曲线为通过原点的直线(v L=ηωi),生产率高,但存在杂散腐蚀,加工精度差。
3.平衡间隙(电解加工中)当电解加工一定时间后,工件的溶解速度vL和阴极的进给速度v相等,加工过程达到动态平衡,此时的加工间隙为平衡间隙Δb 。
4.快速成形技术是一种基于离散堆积成形原理的新型成形技术,材料在计算机控制下逐渐累加成形,零件是逐渐生长出来的,属于“增材法”。
5.激光束模式激光束经聚焦后光斑内光强的分布形式。
二、判断题:01.实验研究发现,金刚石刀具的磨损和破损主要是由于111晶面的微观解理所造成的。
(√)02.电解加工时由于电流的通过,电极的平衡状态被打破,使得阳极电位向正方向增大(代数值增大)。
(√)03.电解磨削时主要靠砂轮的磨削作用来去除金属,电化学作用是为了加速磨削过程。
(×)04.与电火花加工、电解加工相比,超声波加工的加工精度高,加工表面质量好,但加工金属材料时效率低。
(√)05.从提高生产率和减小工具损耗角度来看,极性效应越显著越好,所以,电火花加工一般都采用单向脉冲电源。
(√)06.电火花线切割加工中,电源可以选用直流脉冲电源或交流电源。
(×)07.阳极钝化现象的存在,会使电解加工中阳极溶解速度下降甚至停顿,所以它是有害的现象,在生产中应尽量避免它。
(×)08.电子束加工是利用电能使电子加速转换成动能撞击工件,又转换成热能来蚀除金属的。
(√)09.电火花线切割加工中,电源可以选用直流脉冲电源或交流电源。
(×)10.电火花加工是非接触性加工(工具和工件不接触),所以加工后的工件表面无残余应力。
(×)11.电化学反应时,金属的电极电位越负,越易失去电子变成正离子溶解到溶液中去。
特种加工课题:超声加工学校:院级:专业:指导老师:班级:姓名:学号:目录1、前言 (2)2、超声加工的基本原理与特点 (2)3、超声波复合加工 (3)4、微细超声加工技术 (3)1.前言超声加工是利用超声振动的工具,带动工件和工具间的磨料悬浮液,冲击和抛磨工件的被加工部位,使其局部材料被蚀除而成粉末,以进行穿孔、切割和研磨等,以及利用超声波振动使工件相互结合的加工方法。
超声加工有时候也称超声波加工,是特种加工的一种。
有些特种加工,像电火花加工和电化学加工都只能加工金属导电材料,不易加工不导电的非金属材料。
然而超声加工不仅能加工硬质合金、淬火刚等硬脆金属材料,而且更适合于加工玻璃、陶瓷、半导体锗和硅片等不导电的非金属脆硬材料,同时还可以用于清洗、焊接和探伤等。
2.超声加工的基本原理与特点超声加工是利用工具端面作超声频振动,通过磨料悬浮液加工脆硬材料的一种方法。
原理如图,在工具和工件之间加入液体(水或煤油等)和磨料混合悬浮液,并使工具以很小的力F轻轻压在工件上。
超声换能器产生16000Hz以上的超声频纵向振动,并借助于变幅杆把振幅放大到0.05~0.1mm左右,驱动工具端面作超声振动,迫使工作液中悬浮的磨粒以很大的速度和加速度不断地撞击、抛磨被加工表面,把被加工表面的材料粉碎成很细的微粒,从工件上打击下来。
虽然每次打击下来的材料很少,但由于每秒钟打击的次数多达16000次以上,所以仍有一定的加工速度。
与此同时,工作液受工具端面超声振动作用而产生的高频、交变的液压正负冲击波和“空化”作用,促使工作液钻入被加工材料的细微裂缝处,加剧了机械破坏作用。
既然超声加工是基于局部撞击作用,因此就不难理解,越是脆硬的材料,受撞击作用所受破坏就越大,越易超声加工。
相反,脆性和硬度不大的韧性材料,由于它的缓冲作用而难以加工。
基于它的工作原理,超声加工主要有一下特点:(1)不受材料是否导电的限制;(2)工具对工件的宏观作用力小、热影响小,表面粗糙度好,因而可加工薄壁、窄缝薄片工件;(3)被加工材料的脆性越大越容易加工,材料越硬或强度、韧性越大则越难加工;(4)由于工件材料的碎除主要靠磨料的作用,磨料的硬度应比被加工材料的硬度高,而工具的硬度可以低于工件材料;(5)可以与其他多种加工方法结合应用,如超声振动切削、超声电火花加工和超声电解加工等。
河南机电高等专科学校先进制造技术课程论文论文题目:超声波加工在复合加工中的实际应用分析系部:机械工程系专业:机械制造与自动化班级:机制122学生姓名:学号:指导教师:2014年11月3日摘要:通过对超声波和超声技术的解释举例,以及对超声复合技术的理解,更深入的体会超声波在超生复合技术中的应用,对超声复合的作用,起关键作用,对这一方面的认知和超声复合的定义。
关键词:超声波超声复合一超声波1.超声波定义我们知道,当物体振动时会发出声音。
科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。
我们人类耳朵能听到的声波频率为20~20,000赫兹。
因此,当物体的振动超过一定的频率,即高于人耳听阈上限时,人们便听不出来了,这样的声波称为“超声波”。
通常用于医学诊断的超声波频率为1~5兆赫。
超声波具有方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远等特点。
可用于测距,测速,清洗,焊接,碎石等虽然说人类听不出超声波,但不少动物却有此本领。
它们可以利用超声波“导航”、追捕食物,或避开危险物。
大家可能看到过夏天的夜晚有许多蝙蝠在庭院里来回飞翔,它们为什么在没有光亮的情况下飞翔而不会迷失方向呢?原因就是蝙蝠能发出2~10万赫兹的超声波,这好比是一座活动的“雷达站”。
蝙蝠正是利用这种“雷达”判断飞行前方是昆虫,或是障碍物的。
2.超声波的特点:1、超声波在传播时,方向性强,能量易于集中。
2、超声波能在各种不同媒质中传播,且可传播足够远的距离。
3、超声与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息(诊断或对传声媒质产生效应。
(治疗)超声波是一种波动形式,它可以作为探测与负载信息的载体或媒介(如B超等用作诊断);超声波同时又是一种能量形式,当其强度超过一定值时,它就可以通过与传播超声波的媒质的相互作用,去影响,改变以致破坏后者的状态,性质及结构(用作治疗)。
3.超声波加工原理超声波加工是利用工具断面的超声振动,通过磨料悬浮液加工脆硬材料的一种成型方法,加工原理如图1.1所示。
摘要现阶段,先进制造技术不断发展,作为先进制造技术中的重要的一部分,特种加工对制造业的作用日益凸显,对什么是特种加工、特种加工的特点、种类以及发展趋势等作了描述。
阐述了特种加工在现代社会发展过程中的重要地位,大力发展特种加工的必要性。
关键词:特种加工技术,特点,变革,发展趋势。
1.1 概况特种加工是20世纪40年代发展起来的,由于材料科学、高新技术的发展和激烈的市场竞争、发展尖端国防及科学研究的急需,不仅新产品更新换代日益加快,而且产品要求具有很高的强度重量比和性能价格比,并正朝着高速度、高精度、高可靠性、耐腐蚀、高温高压、大功率、尺寸大小两极分化的方向发展。
为此,各种新材料、新结构、形状复杂的精密机械零件大量涌现,对机械制造业提出了一系列迫切需要解决的新问题。
例如,各种难切削材料的加工;各种结构形状复杂、尺寸或微小或特大、精密零件的加工;薄壁、弹性元件等刚度、特殊零件的加工等。
对此,采用传统加工方法十分困难,甚至无法加工。
于是,人们一方面通过研究高效加工的刀具和刀具材料、自动优化切削参数、提高刀具可靠性和在线刀具监控系统、开发新型切削液、研制新型自动机床等途径,进一步改善切削状态,提高切削加工水平,并解决了一些问题;另一方面,则冲破传统加工方法的束缚,不断地探索、寻求新的加工方法,于是一种本质上区别于传统加工的特种加工便应运而生,并不断获得发展。
后来,由于新颖制造技术的进一步发展,人们就从广义上来定义特种加工,即将电、磁、声、光、化学等能量或其组合施加在工件的被加工部位上,从而实现材料被去除、变形、改变性能或被镀覆等的非传统加工方法统称为特种加工。
1.2特点1、不用机械能,与加工对象的机械性能无关,有些加工方法,如激光加工、电火花加工、等离子弧加工、电化学加工等,是利用热能、化学能、电化学能等,这些加工方法与工件的硬度强度等机械性能无关,故可加工各种硬、软、脆、热敏、耐腐蚀、高熔点、高强度、特殊性能的金属和非金属材料。
USM1.定义USM(Ultrasonic Machining)超声加工是利用超声振动工具在有磨料的液体介质中或干磨料中产生磨料的冲击、抛磨、液压冲击及由此产生的气蚀作用来去除材料,或给工具或工件沿一定方向施加超声频振动进行振动加工,或利用超声振动使工件相互结合的加工方法。
几十年来,超声加工技术发展迅速,在超声振动系统、深小孔加工、拉丝模及型腔模具研磨抛光、超声复合加工领域均有较广泛的研究和应用,尤其是在难加工材料领域解决了许多关键性的工艺问题,取得了良好的效果。
2.超声加工原理超声加工的基本装置主要由超声波发生器、换能振动系统、磨料供给系统、进给压力施加系统和工作台等部分组成。
超声波发生器的作用是将220V 或380V 的交流电转换成超声频电振荡信号;换能器的作用是将超声频电振荡信号转换为超声频机械振动;并借助于变幅杆把振幅扩大到0.05~0.1mm 左右(超声发生器产生的超声频振幅很小,仅0.005~0.01mm,一般情况下不能直接用于去除材料的加工),驱动工具作超声振动。
超声加工原理如图所示。
超声加工时,在工件和工具之间加入液体(水或煤油)和磨料混合的悬浮液,并使工具以很小的力F轻轻压在工件上。
超声波发生的超声频振荡,通过换能器转换成16000Hz以上的超声频纵向振动,并借助于变幅杆把振幅放大到0.05~0.1mm左右。
变幅杆驱动工具作超声振动,并以工具端面迫使工作液中悬浮的磨粒以很大的速度不断撞击和研磨工件表面,把工件加工区域内的材料破碎成很细的微粒并打击下来。
虽然每次打击下来的材料很少,但由于每秒钟打击次数多达16000次以上,所以仍有一定的加工速度。
与此同时,工作液受工具端面超声振动作用而产生的高频、交变的液压正负冲击波和“空化”作用,促使工作液钻入被加工材料的微裂缝处,加剧了机械破坏作用。
所谓空化作用,是指当工具端面以很大的加速度离开工件表面时,加工间隙内形成负压和局部真空,在工作液体内形成许多微空腔,当工件端面以很大的加速度接近工件表面时,空泡闭合,引起极强的液压冲击波,可以强化加工过程。
超声加工是利用超声振动工具在有磨料的液体介质中或干磨料中产生磨料的冲击、抛磨、液压冲击及由此产生的气蚀作用来去除材料,或给工具或工件沿一定方向施加超声频振动进行振动加工,或利用超声振动使工件相互结合的加工方法。
<BR> 几十年来,超声加工技术的发展迅速,在超声振动系统、深小孔加工、拉丝模及型腔模具研磨抛光、超声复合加工领域均有较广泛的研究和应用,尤其是在难加工材料领域解决了许多关键性的工艺问题,取得了良好的效果。
<BR> <BR>1 超声振动系统的研究进展及其应用<BR> <BR> 超声振动系统由换能器、变幅杆和工具头等部分组成,是超声设备的核心部分。
在传统应用中,超声振动系统大都采用一维纵向振动方式,并按“全调谐”方式工作。
但近年来,随着超声技术基础研究的进展和在不同领域实际应用的特殊需要,对振动系统的工作方式和设计计算、振动方式及其应用研究都取得了新的进展。
<BR> 日本研究成功一种半波长弯曲振动系统,其切削刀具安装在半波长换能振动系统细端,该振动系统换能器的压电陶瓷片采用半圆形,上下各两片,组成上下两个半圆形压电换能器(压电振子),其特点是小型化,结构简单,刚性增强。
<BR> 日本还研制成一种新型“纵-弯”型振动系统,并已在手持式超声复合振动研磨机上成功应用。
该系统压电换能器也采用半圆形压电陶瓷片产生“纵-弯”型复合振动。
<BR> 日本金泽工业学院的研究人员研制了加工硬脆材料的超声低频振动组合钻孔系统。
将金刚石中心钻的超声振动与工件的低频振动相结合,制造了一台组合振动钻孔设备,该设备能检测钻孔力的变化以及钻孔精度和孔的表面质量,并用该组合设备在不同的振动条件下进行了一系列实验。
实验结果表明,将金刚石中心钻的超声振动与工件的低频振动相结合是加工硬脆材料的一种有效方法。
<BR> 东南大学研制了一种新型超声振动切削系统。
该系统采用压电换能器,由超声波发生器、匹配电路、级联压电晶体、谐振刀杆、支承调节机构及刀具等部分组成。
当发生器输出超声电压时,它将使级联晶体产生超声机械伸缩,直接驱动谐振刀杆实现超声振动。
该装置的特点是:能量传递环节少,能量泄漏减小,机电转换效率高达90%左右,而且结构简单、体积小,便于操作。
<BR> 沈阳航空工业学院建立了镗孔用超声扭转振动系统,采用磁致伸缩换能器,将超声波发生器在扭转变幅杆的切向作纵向振动时在扭振变幅杆的小端就输出沿圆周方向的扭转振动,镗刀与扭振变幅杆之间采用莫氏锥及螺纹连接,输出功率小于500W,频率为16~23 kH z,具有频率自动跟踪性能。
</SPAN></DIV><DIV><SPAN></SPAN> </DIV><DIV><SPAN> 西北工业大学设计了一种可在内圆磨床上加工硬脆材料的超声振动磨削装置。
该装置由超声振动系统、冷却循环系统、磨床连接系统和超声波发生器等组成,其超声换能器采用纵向复合式换能器结构,冷却循环系统中使用磨削液作为冷却液;磨床连接系统由辅助支承、制动机构和内圆磨床连接杆等组成。
该磨削装置工具头旋转精度由内圆磨床主轴精度保证,结构比专用超声波磨床的主轴系统要简单得多,因此成本低廉,适合于在生产中应用。
<BR> 另一种超声扭转振动系统已在“加工中心”用超声扭转振动装置上应用。
主要用作电火花加工后的模具异形(如三角形、多边形)孔和槽底部尖角研磨抛光,以及非导电材料异形孔加工。
该振动系统的换能器是采用按圆周方向极化的8块扇形压电陶瓷片构成,产生扭转振动。
<BR> <BR>2 超声加工技术应用研究<BR> <BR>2.1 深小孔加工<BR> 众所周知,在相同的要求及加工条件下,加工孔比加工轴要复杂得多。
一般来说,孔加工工具的长度总是大于孔的直径,在切削力的作用下易产生变形,从而影响加工质量和加工效率。
特别是对难加工材料的深孔钻削来说,会出现很多问题。
例如,切削液很难进入切削区,造成切削温度高;刀刃磨损快,产生积屑瘤,使排屑困难,切削力增大等。
其结果是加工效率、精度降低,表面粗糙度值增加,工具寿命短。
采用超声加工则可有效解决上述问题。
<BR> 前苏联在20世纪60年代就生产出带磨料的超声波钻孔机床。
在美国,利用工具旋转同时作轴向振动进行孔加工已取得了较好的效果。
日本已经制成新型UMT-7三坐标数控超声旋转加工机,功率450 W,工作频率20 kHz,可在玻璃上加工孔径1.6 mm、深150 mm的深小孔,其圆度可达0.005 mm,圆柱度为0.02 mm。
英国申请了电火花超声复合穿孔的专利,该装置主要用于加工在导电基上有非导电层的零件,如在金属基上涂有压电陶瓷层的零件。
整个加工过程分两个阶段进行:首先用超声振动将非导电层去除掉,当传感器感知金属层出现时,即改用电加工或电火花与超声复合的方法进行加工。
该装置有效地解决了具有导电层和非导电层零件孔的加工问题。
<BR> 1996年,日本东京大学在超声加工机床上,利用电火花线切割加工工艺在线加工出微细工具,并成功地利用超声加工技术在石英玻璃上加工出直径为φ15μm的微孔。
1998年又成功地加工出直径为φ5μm的微孔。
<BR> 湘潭大学进行了内圆表面的超声光整强化研究。
该方法是在钻孔后对孔进行精加工处理,通过机械——超声强化处理,在普通机床上达到精铰、研磨的精度,可实现机械化。
初步实验结果表明,该方法加工效果显著,表面粗糙度值可大大降低,内圆表面形成有益的残余压应力,有较高的显微硬度,提高了工件的耐用度,同时内圆表面呈网状纹络,特别适合像轴瓦等表面贮油工件的精加工,并可大大降低生产成本。
<BR><BR>(源自:)</SPAN></DIV> <DIV><SPAN></SPAN> </DIV><DIV><SPAN></SPAN> </DIV><DIV><SPAN> 哈尔滨工业大学研究了Ti合金深小孔的超声电火花复合加工。
该工艺将超声振动引入到精密电火花加工中,通过研究超声振动对电火花精加工过程的影响,开发出了一种将超声和电火花结合在一起的新型4轴电火花加工装置。
实验研究表明,应用该装置可以在Ti合金上加工出φ<0.2 mm、且深径比>15的深小孔。
<BR> 兵器工业五二研究所研究了陶瓷深孔精密高效加工的新方法——超声振动磨削,进行了超声振动磨削和普通磨削陶瓷深孔的对比实验。
结果表明,超声振动磨削可明显提高陶瓷加工效率,能有效地消除普通磨削产生的表面裂纹和凹坑,是陶瓷深孔精密高效加工的新方法。
<BR>2.2 拉丝模及型腔模具研磨抛光<BR> 聚晶金刚石拉丝模超声研磨抛光技术在国内外已获得广泛应用,新的超声研磨抛光方法和设备已出现。
北京市电加工研究所提出的“超硬工具材料电火花超声波复合抛光方法”,其特点是:采用超声频信号调制高频电火花脉冲电源与超声加工复合进行聚晶金刚石拉丝模研磨抛光。
该技术已获得国家专利,并在生产中获得应用。
<BR> 台湾的H.Hocheng等人对模具钢的超声抛光进行了基础性研究,研制了一套高效的超声抛光系统,应用该系统对模具钢进行了抛光试验,研究结果表明此系统大大提高了模具钢的抛光质量。
<BR> 日本研制的UMA-1型数控超声研磨机,其研磨时间在1~999 s范围内可任意设定;频率自动跟踪;研磨钢针夹持可靠,发热少,钢针磨耗能自动修整;钢针以固定速度进给,具有研磨时间短、精度高的优点。
<BR> 浙江大学进行了超声波-电化学复合研磨硬质合金拉丝模的实验研究。
<BR> 吉林大学对机器人超声-电火花复合加工模具曲面进行了研究,结果证明该方法可改善加工质量,模具曲面精加工效率提高4倍以上。
<BR> 哈尔滨工业大学针对目前模具光整加工难以实现高精度、高效率加工的实际问题,将电解加工、机械研磨及超声加工相复合,提出了一种新型的光整加工方法——电化学超精密研磨技术,开发研制了一种数控展成超精密光整加工的新工艺及设备。
通过对模具型腔高效镜面加工的实验,表明选配适当工艺参数进行光整加工,可以获得表面粗糙度R a0.025μm 的镜面,效率较普通研磨提高10倍以上,较电解研磨提高1倍以上。
<BR>2.3 难加工材料的超声加工<BR> 金属和非金属硬脆材料的使用越来越广泛,尤其是陶瓷材料,具有高硬度、耐磨损、耐高温、化学稳定性好、不易氧化、腐蚀等优点。
然而,由于工程陶瓷等难加工材料具有极高的硬度和脆性,其成形加工十分困难,特别是成形孔的加工尤为困难,严重阻碍了应用推广。
因此,国内外许多学者展开了对难加工材料加工方法的研究,其中以超声加工较多。
</SPAN></DIV><DIV><SPAN></SPAN> </DIV><DIV><SPAN> 英国阿伯丁大学国王学院研究了超声钻削难加工材料时工艺参数对材料去除率的影响,建立了间断性冲击过程的非线性模型,对冲击力的特性进行了研究,提出了一种新的材料去除率的计算方法,这种方法首次解释了材料去除率在较高的静态力作用下减小的原因。
<BR> 美国内布拉斯加大学和内华达大学对Al2O3陶瓷材料微去除量精密超声加工技术进行了研究。
通过模拟陶瓷材料超声加工的力学特性对材料去除机制进行分析,研究发现,低冲击力会引起陶瓷材料结构的变化和晶粒的错位,而高冲击力会导致中心裂纹和凹痕。
美国内布拉斯加大学还第一次分析了Al2O3陶瓷精密超声加工的机理、过程动力学以及发展趋势,并详细讨论了超声技术在陶瓷加工方面的应用情况。
<BR> 巴西的研究人员对石英晶体的超声研磨技术进行了研究,发现石英晶体的材料去除率取决于晶体的晶向,研磨晶粒的尺寸影响材料去除率和表面粗糙度。
研究指出,加工过程中材料产生微裂纹是材料去除的主要原因。
<BR> 美国堪萨斯州立大学提出了一种超声旋转加工陶瓷材料去除率模型的计算方法,并将其应用到氧化锆陶瓷的加工中,确定了材料去除率和加工参数之间的关系,该研究大大推动了陶瓷材料旋转加工技术的发展。