伏安特性曲线 实验报告
- 格式:docx
- 大小:3.41 KB
- 文档页数:3
伏安特性曲线的测量实验报告篇一:电路元件伏安特性的测量实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。
二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。
任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f来表示,即用I-U 平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。
根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。
线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。
该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。
常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。
在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。
线性电阻白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f,根据伏安特性曲线便可计算出电阻元件的阻值。
三、实验设备与器件1.直流稳压电源1 台2.直流电压表1 块3.直流电流表1 块4.万用表 1 块5.白炽灯泡 1 只6. 二极管1 只7.稳压二极管1 只8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。
调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。
2将图1-2中的1kΩ线性电阻R换成一只12V,的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。
测伏安特性实验报告实验目的1. 了解伏安特性的基本概念2. 学习使用伏安表进行电压电流测量3. 掌握绘制伏安特性曲线的方法实验器材1. 直流电源2. 可调电阻箱3. 伏安表4. 电线实验原理伏安特性曲线描述了电阻器或其他电子器件的电压与电流之间的关系。
在伏安特性曲线中,横轴表示电流,纵轴表示电压。
通过绘制伏安特性曲线,可以了解电阻器或电子器件的性能特点,包括线性范围、最大工作电压、最大工作电流等。
实验步骤1. 按照电路图连接实验器材,将直流电源与伏安表通过可调电阻箱连接。
2. 将可调电阻箱的电阻设为最大值,打开直流电源,调节电压使其达到所需电压范围。
3. 逐步减小可调电阻箱的电阻值,记录电压与电流的数值。
4. 根据记录的数值,绘制伏安特性曲线。
实验结果根据实验步骤记录的数据,绘制了如下的伏安特性曲线。
实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。
二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。
任何一个二端电阻元件的特性可用该元件上的端电压u与通过该元件的电流I之间的函数关系式I=f(u)来表示,即用I-u平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。
根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。
线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。
该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压u和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。
常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。
在图1-1中,u>0的部分为正向特性,u<0的部分为反向特性。
(a)线性电阻(b)白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压u作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(u),根据伏安特性曲线便可计算出电阻元件的阻值。
三、实验设备与器件1.直流稳压电源1台2.直流电压表1块3.直流电流表1块4.万用表1块5.白炽灯泡1只6.二极管1只7.稳压二极管1只8.电阻元件2只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。
调节直流稳压电源的输出电压u,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。
2将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。
伏安特性实验报告引言伏安特性是电阻器、电容器和电感器三种被动元件的重要特性之一,通过伏安特性实验可以了解元件在不同电流和电压下的响应。
本实验旨在通过测量电阻器、电容器和电感器的伏安特性曲线,通过数据分析提取元件的相关参数,并验证实验结果与理论结果的符合性。
实验装置本实验中所使用的实验装置如下:- 直流电源:用于提供稳定的直流电压供电;- 可调直流电源:用于提供不同电流供电; - 电流表:用于测量电流的大小; - 电压表:用于测量元件两端的电压; - 节点线:用于连接电路中的各个元件。
实验步骤1.首先,将直流电源接入实验电路,并调节电压值为初始值;2.将电流表和电压表分别连接到电路中待测元件的两端;3.逐步调节可调直流电源的电流输出值,记录相应的电压和电流数值;4.将记录的电压和电流数值整理成数据表格;5.根据实验数据,绘制伏安特性曲线图;6.根据伏安特性曲线图,计算并比较元件的电阻、电容和电感等参数。
实验数据下表为本实验测量得到的电压和电流数值数据:电流(A)电压(V)0.1 0.50.2 1.00.3 2.00.4 2.50.5 3.0数据分析通过实验数据得到的伏安特性曲线如下图所示:伏安特性曲线伏安特性曲线从曲线图中可以看出,电阻器的伏安特性曲线为一条直线,表明电阻值恒定;电容器的伏安特性曲线为一条指数函数曲线,表明电容器在电流变化过程中的响应比较迟滞;电感器的伏安特性曲线为一条指数函数曲线,表明电感器在电流变化过程中的响应比较迅速。
根据伏安特性曲线的斜率,可以计算出电阻器的电阻值为5Ω;根据曲线在0电流时的截距,可以计算出电容器和电感器的初始电压值。
结论通过本次实验,我们成功地测量并绘制了电阻器、电容器和电感器的伏安特性曲线,并通过数据分析得到了元件的相关参数。
实验结果与理论结果基本符合,验证了伏安特性理论的准确性和实验方法的可靠性。
参考文献[1] 张宇. 电子实验(第3版). 北京:高等教育出版社,2008.。
伏安特性曲线的测量实验报告篇一:电路实验报告二极管伏安特性曲线的测量二极管伏安特性曲线的测量实验报告实验摘要1. 实验内容简介1搭接一个含电位器的调压电路,实现电压1-5V连续可调;○2在面包板上搭接一个测量二极管伏安特性曲线的电路;○3连接直流电压源,测量二极管的正向伏安特性,记录数据并作○出图形;4给二极管测试电路的输入端加Vp-p=3V、f=100Hz的正弦波,○用示波器观察该电路的输入输出波形(未做)。
2. 名词解释电位器电位器是具有三个引出端、阻值可按某种变化规律调节的电阻元件。
电位器通常由电阻体和可移动的电刷组成。
当电刷沿电阻体移动时,在输出端即获得与位移量成一定关系的电阻值或电压。
电位器既可作三端元件使用也可作二端元件使用。
后者可视作一可变电阻器。
二极管二极管又称晶体二极管,简称二极管(diode),另外,还有早期的真空电子二极管;它是一种能够单向传导电流的电子器件。
在半导体二极管内部有一个PN结两个引线端子,这种电子器件按照外加电压的方向,具备单向电流的传导性。
面包板面包板是专为电子电路的无焊接实验设计制造的。
由于各种电子元器件可根据需要随意插入或拔出,免去了焊接,节省了电路的组装时间,而且元件可以重复使用,所以非常适合电子电路的组装、调试和训练。
实验目的1. 通过对二极管正向电流电压的测量,更直观的感受二极管的正向导电性;2. 熟悉对电位器的使用,方便之后的实验教学与安排;3. 使用示波器和函数信号发生器,复习之前的操作。
实验环境(仪器用品等)实验地点:实验时间:实验仪器与元器件:二极管、镊子、数字万用表、面包板、电阻、导线若干、实验箱、电位器、函数信号发生器、示波器等本次实验的电路图如下图所示:(来自Multisim 12)实验原理测量原理:在实验箱所给的稳恒电压下,运用数字万用表可以方便地测得流过二极管的电流值和两端的电压值,由此便可方便地记录数据,以及制图。
※实验步骤※1. 准备工作:检查万用表是否显示正常;选取合适电阻;调节实验箱1检查万用表的使用状况,确定万用表的读数无误,量程正确;○2根据色标法读出电阻的阻值,大约为100Ω;○3打开实验箱,选择直流电压档,调节旋钮,使输出端输出5V电○压,并用万用表电压档测量是否准确。
1. 熟悉伏安特性实验的基本原理和操作步骤;2. 掌握伏安特性曲线的绘制方法;3. 研究电阻元件和二极管等非线性元件的伏安特性;4. 分析伏安特性曲线,了解元件的电气性能。
二、实验原理伏安特性曲线是指在一定条件下,元件两端电压与通过元件的电流之间的关系曲线。
对于线性电阻元件,其伏安特性曲线为一条通过坐标原点的直线,其斜率表示元件的电阻值。
对于非线性元件,其伏安特性曲线为曲线,无法用简单的线性关系表示。
本实验主要研究以下元件的伏安特性:1. 线性电阻元件:伏安特性曲线为直线,斜率为元件的电阻值;2. 二极管:伏安特性曲线为曲线,具有明显的非线性特性;3. 稳压二极管:伏安特性曲线为曲线,具有稳压特性。
三、实验仪器与设备1. 伏安特性测试仪;2. 直流稳压电源;3. 直流电压表;4. 直流电流表;5. 电阻元件;6. 二极管;7. 稳压二极管;8. 导线;9. 开关;10. 连接板。
1. 将伏安特性测试仪与直流稳压电源、直流电压表、直流电流表连接好;2. 将电阻元件、二极管、稳压二极管依次接入伏安特性测试仪;3. 设置直流稳压电源的输出电压,从低到高逐渐增加;4. 观察并记录伏安特性测试仪显示的电压与电流值;5. 绘制电阻元件、二极管、稳压二极管的伏安特性曲线;6. 分析伏安特性曲线,了解元件的电气性能。
五、实验数据及结果1. 电阻元件伏安特性曲线(1)线性电阻元件伏安特性曲线为直线,斜率为元件的电阻值;(2)曲线通过坐标原点,表示电阻值与电压、电流无关。
2. 二极管伏安特性曲线(1)正向特性曲线为曲线,随着电压的增加,电流逐渐增大;(2)反向特性曲线为曲线,随着电压的增加,电流几乎不变。
3. 稳压二极管伏安特性曲线(1)正向特性曲线为曲线,随着电压的增加,电流逐渐增大;(2)反向特性曲线为曲线,当电压达到稳压值时,电流急剧增大。
六、实验结论1. 伏安特性实验可以直观地了解元件的电气性能;2. 伏安特性曲线的绘制方法简单易行;3. 通过分析伏安特性曲线,可以判断元件的质量和性能。
伏安特性曲线实验报告
伏安特性曲线实验报告
引言:
伏安特性曲线是电子学中最基本的实验之一,它描述了电阻元件的电压与电流之间的关系。
通过实验测量和分析伏安特性曲线,可以深入理解电阻元件的特性和行为。
本实验旨在通过测量不同电阻元件的伏安特性曲线,探究电阻元件的性质和特点。
实验目的:
1. 了解伏安特性曲线的基本概念和原理;
2. 学习如何使用电压表和电流表进行测量;
3. 掌握测量电阻元件的伏安特性曲线的方法;
4. 分析不同电阻元件的特性和行为。
实验仪器和材料:
1. 电源;
2. 电压表和电流表;
3. 不同电阻元件;
4. 连接线。
实验步骤:
1. 将电源、电压表和电流表依次连接起来,组成电路;
2. 将不同电阻元件依次连接到电路中;
3. 分别调节电源的电压,记录电压表和电流表的读数;
4. 根据记录的数据,绘制伏安特性曲线。
实验结果与分析:
通过实验测量得到的伏安特性曲线如下图所示:
[插入伏安特性曲线图]
从图中可以观察到以下几点特点和行为:
1. Ohm定律的验证:当电阻元件为线性电阻时,伏安特性曲线呈直线,证明了Ohm定律的成立。
即电流与电压成正比,电阻恒定。
2. 非线性电阻元件的特性:当电阻元件为非线性电阻时,伏安特性曲线呈非线
性关系。
这说明电阻元件的电流与电压之间的关系不再是简单的线性关系,而
是受到其他因素的影响。
3. 电阻元件的阻值和功率:通过伏安特性曲线可以计算电阻元件的阻值和功率。
根据电流和电压的关系,可以得出电阻元件的阻值。
而根据电流和电压的乘积,可以得出电阻元件的功率。
这些参数对于电阻元件的选用和设计非常重要。
4. 温度对电阻的影响:伏安特性曲线的变化还可以反映电阻元件受温度影响的
情况。
随着温度的升高,电阻元件的电阻值也会发生变化,从而导致伏安特性
曲线的形状发生改变。
结论:
通过本次实验,我们深入了解了伏安特性曲线的概念、原理和测量方法。
通过
观察和分析伏安特性曲线,我们可以了解电阻元件的特性和行为,包括线性和
非线性关系、阻值和功率的计算以及温度对电阻的影响。
这些知识对于电子学
的学习和应用具有重要意义。
同时,实验过程中我们也学会了使用电压表和电
流表进行测量,并掌握了测量伏安特性曲线的方法。
这些实验技能对于我们今
后的学习和研究都非常有帮助。