不同元件的伏安特性曲线(精)
- 格式:pdf
- 大小:41.57 KB
- 文档页数:2
线性电阻和非线性电阻的伏安特性曲线一、实验原理当一个元件两端加上电压,元件内有电流通过时,电压与电流之比称为该元件的电阻。
若一个元件两端的电压与通过它的电流成比例,则伏安特性曲线为一条直线,该类元件称为线性元件。
若元件两端的电压与通过它的电流不成比例,则伏安特性曲线不再是直线,而是一条曲线,这类元件称为非线性元件。
一般金属导体的电阻是线性电阻,它与外加电压的大小和方向无关,其伏安特性是一条直线(见图1)。
从图上看出,直线通过一、三象限。
它表明,当调换电阻两端电压的极性时,电流也换向,而电阻始终为一定值,等于直线斜率的倒数VR。
I常用的晶体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。
下面对它的结构和电学性能作一简单介绍。
图1线性电阻的伏安特性图2晶体二极管的p-n结和表示符号晶体二级管又叫半导体二极管。
半导体的导电性能介于导体和绝缘体之间。
如果在纯净的半导体中适当地掺入极微量的杂质,则半导体的导电能力就会有上百万倍的增加。
加到半导体中的杂质可分成两种类型:一种杂质加到半导体中去后,在半导体中会产生许多带负电的电子,这种半导体叫电子型半导体 (也叫n型半导体);另一种杂质加到半导体中会产生许多缺少电子的空穴(空位),这种半导体叫空穴型半导体 (也叫p型半导体)。
晶体二极管是由两种具有不同导电性能的n型半导体和p型半导体结合形成的p-n结构成的。
它有正、负两个电极,正极由p型半导体引出,负极由n型半导体引出,如图2(a)所示。
p-n结具有单向导电的特性,常用图2(b)所示的符号表示。
关于p-n结的形成和导电性能可作如下解释。
图3 p-n结的形成和单向导电特性如图3(a)所示,由于p区中空穴的浓度比n区大,空穴便由p区向n区扩散;同样,由于n区的电子浓度比p区大,电子便由p区扩散。
随着扩散的进行,p区空穴减少,出现了一层带负电的粒子区(以Ө表示);n区的电子减少,出现了一层带正电的粒子区(以⊕表示)。
第3节电阻、电容、电感元件及其特性在我们研究的电路中一般含有电阻元件、电容元件、电感元件和电源元件(如图1.11所示),这些元件都属于二端元件,它们都只有两个端钮与其它元件相连接。
其中电阻元件、电容元件、电感元件不产生能量,称为无源元件;电源元件是电路中提供能量的元件,称为有源元件。
上述二端元件两端钮间的电压与通过它的电流之间都有确定的约束关系,这种关系叫作元件的伏安特性。
该特性由元件性质决定,元件不同,其伏安特性不同。
这种由元件的性质给元件中通过的电流、元件两端的电压施加的约束又称为元件约束。
用来表示伏安特性的数学方程式称为该元件的特性方程或约束方程。
1.3.1 电阻元件及欧姆定律1.电阻元件的图形、文字符号电阻器是具有一定电阻值的元器件,在电路中用于控制电流、电压和控制放大了的信号等。
电阻器通常就叫电阻,在电路图中用字母“R”或“r”表示,电路图中常用电阻器的符号如图1.12所示。
电阻器的SI(国际单位制)单位是欧姆,简称欧,通常用符号“Ω”表示。
常用的单位还有“KΩ”“MΩ”,它们的换算关系如下:1MΩ=1000KΩ=1000000Ω电阻元件是从实际电阻器抽象出来的理想化模型,是代表电路中消耗电能这一物理现象的理想二端元件。
如电灯泡、电炉、电烙铁等这类实际电阻器,当忽略其电感等作用时,可将它们抽象为仅具有消耗电能的电阻元件。
电阻元件的倒数称为电导,用字母G表示,即电导的SI单位为西门子,简称西,通常用符号“S”表示。
电导也是表征电阻元件特性的参数,它反映的是电阻元件的导电能力。
2.电阻元件的特性电阻元件的伏安特性,可以用电流为横坐标,电压为纵坐标的直角坐标平面上的曲线来表示,称为电阻元件的伏安特性曲线。
如果伏安特性曲线是一条过原点的直线,如图1.13(a)所示,这样的电阻元件称为线性电阻元件,线性电阻元件在电路图中用图1.13(b)所示的图形符号表示。
在工程上,还有许多电阻元件,其伏安特性曲线是一条过原点的曲线,这样的电阻元件称为非线性电阻元件。
某一个金属导体,在温度没有显著变化时,电阻是不变的,它的伏安特性曲线是通过坐标原点的直线,具有这种伏安特性的电学元件叫做线性元件。
因为温度可以决定电阻的大小。
欧姆定律是个实验定律,实验中用的都是金属导体。
这个结论对其它导体是否适用,仍然需要实验的检验。
实验表明,除金属外,欧姆定律对电解质溶液也适用,但对气态导体(如日光灯管、霓虹灯管中的气体)和半导体元件并不适用。
也就是说,在这些情况下电流与电压不成正比,这类电学元件叫做非线性元件。
研究小灯泡伏安特性曲线方法:【目的和要求】通过实验绘制小灯泡的伏安曲线,认识小灯泡的电阻和电功率与外加电压的关系。
【仪器和器材】学生电源(J1202型或J1202-1型),直流电压表(J0408型或J0408-1型),直流电流表(J0407型或J0407-1型),滑动变阻器(J2354-1型),小灯泡(6.3伏、0.3安或6伏、3瓦),小灯座(J2351型),单刀开关(J2352型),导线若干。
实验方法伏安法1.连接电路,开始时,滑动变阻器滑片应置于最小分压端,使灯泡上的电压为零。
2.接通开关,移动滑片C,使小灯泡两端的电压由零开始增大,记录电压表和电流表的示数。
3.在坐标纸上,以电压U为横坐标,电流强度I为纵坐标,利用数据,作出小灯泡的伏安特性曲线。
4.由R=U/I计算小灯泡的电阻,将结果填入表中。
以电阻R为纵坐标,电压U为横坐标,作出小灯泡的电阻随电压变化的曲线。
5.由P=IU计算小灯泡的电功串,将结果填入表中。
以电功率P为纵坐标,电压U为横坐标,作出小灯泡电功率随电压变化的曲线。
6,分析以上曲线。
实验原理由于小灯泡钨丝的电阻随温度而变化,因此可利用它的这种特性进行伏安特性研究。
实验中小灯泡的电阻等于灯泡两端的电压与通过灯泡电流的比值。
改变小灯泡两端的电压,测出相应的电流值,可以得到小灯泡的电阻、电功率与外加电压的关系。
注意事项:1.由于小灯泡电阻为几欧-几十欧,测小灯泡的电阻宜用电流表外接法。
伏安特性曲线伏安特性曲线是加在PN结两端的电压和流过二极管的电流之间的关系曲线,u>0的部分称为正向特性,u<0的部分称为反向特性。
伏安特性曲线图常用纵坐标表示电流I、横坐标表示电压U,以此画出I-U图像,这种图像常被用来研究导体电阻的变化规律,是物理学常用的图像法之一。
快速导航目录∙1基本定义∙2存在原理∙3实验举例∙4实验方法∙5实验原理∙6参考资料1基本定义二极管伏安特性曲线某一个金属导体,在温度没有显著变化时,电阻是不变的,它的伏安特性曲线是通过坐标原点的直线,具有这种伏安特性的电学元件叫做线性元件。
因为温度可以决定电阻的大小。
欧姆定律是个实验定律,实验中用的都是金属导体。
这个结论对其它导体是否适用,仍然需要实验的检验。
实验表明,除金属外,欧姆定律对电解质溶液也适用,但对气态导体(如日光灯管、霓虹灯管中的气体)和半导体元件并不适用。
也就是说,在这些情况下电流与电压不成正比,这类电学元件叫做非线性元件。
2存在原理二极管伏安特性曲线加在PN结两端的电压和流过二极管的电流之间的关系曲线称为伏安特性曲线。
如图所示:正向特性:u>0的部分称为正向特性。
反向特性:u<0的部分称为反向特性。
反向击穿:当反向电压超过一定数值U(BR)后,反向电流急剧增加,称之反向击穿。
势垒电容:耗尽层宽窄变化所等效的电容称为势垒电容Cb。
变容二极管:当PN结加反向电压时,Cb明显随u的变化而变化,而制成各种变容二极管。
如下图所示。
平衡少子:PN结处于平衡状态时的少子称为平衡少子。
非平衡少子:PN结处于正向偏置时,从P区扩散到N区的空穴和从N区扩散到P区的自由电子均称为非平衡少子。
扩散电容:扩散区内电荷的积累和释放过程与电容器充、放电过程相同,这种电容效应称为Cd3实验举例研究小灯泡伏安特性曲线方法:【目的和要求】通过实验绘制小灯泡的伏安曲线,认识小灯泡的电阻和电功率与外加电压的关系。
【仪器和器材】学生电源(J1202型或J1202-1型),直流电压表(J0408型或J0408-1型),直流电流表(J0407型或J0407-1型),滑动变阻器(J2354-1型),小灯泡(6.3伏、0.3安或6伏、3瓦),小灯座(J2351型),单刀开关(J2352型),导线若干。
伏安特性曲线基本定义二极管伏安特性曲线导体A、B的伏安特性曲线定义:在实际生活中,常用纵坐标表示电流I、横坐标表示电压U,这样画出的I-U图像叫做导体的伏安特性曲线。
某一个金属导体,在温度没有显著变化时,电阻是不变的,它的伏安特性曲线是通过坐标原点的直线,具有这种伏安特性的电学元件叫做线性元件。
欧姆定律是个实验定律,实验中用的都是金属导体。
这个结论对其它导体是否适用,仍然需要实验的检验。
实验表明,除金属外,欧姆定律对电解质溶液也适用,但对气态导体(如日光灯管、霓虹灯管中的气体)和半导体元件并不适用。
也就是说,在这些情况下电流与电压不成正比,这类电学元件叫做非线性元件。
实验例子研究小灯泡伏安特性曲线方法:【目的和要求】通过实验绘制小灯泡的伏-安曲线,认识小灯泡的电阻和电功率与外加电压的关系。
【仪器和器材】学生电源(J1202型或J1202-1型),直流电压表(J0408型或J0408-1型),直流电流表(J0407型或J0407-1型),滑动变阻器(J2354-1型),小灯泡(6.3伏、0.3安或6伏、3瓦),小灯座(J2351型),单刀开关(J2352型),导线若干。
实验方法伏安法1.连接电路,开始时,滑动变阻器滑片应置于最小分压端,使灯泡上的电压为零。
2.接通开关,移动滑片C,使小灯泡两端的电压由零开始增大,记录电压表和电流表的示数。
3.在坐标纸上,以电压U为横坐标,电流强度I为纵坐标,利用数据,作出小灯泡的伏安特性曲线。
4.由R=U/I计算小灯泡的电阻,将结果填入表中。
以电阻R为纵坐标,电压U为横坐标,作出小灯泡的电阻随电压变化的曲线。
5.由P=IU计算小灯泡的电功串,将结果填入表中。
以电功率P为纵坐标,电压U为横坐标,作出小灯泡电功率随电压变化的曲线。
6,分析以上曲线。
实验原理由于小灯泡钨丝的电阻随温度而变化,因此可利用它的这种特性进行伏安特性研究。
实验中小灯泡的电阻等于灯泡两端的电压与通过灯泡电流的比值。
第12讲伏安特性曲线的理解与应用【方法指导】1.伏安特性曲线的理解导体的伏安特性曲线是指电流与电压的关系曲线,用纵坐标表示电流I,用横坐标表示电压U,即得导体的I-U图象。
(1)线性元件:导体的伏安特性曲线为过原点的直线,即电流与电压成正比的线性关系,具有这种特点的元件称为线性元件,如金属导体、电解质溶液等.(2)非线性元件:伏安特性曲线不是直线的,即电流与电压不成正比的电学元件,称为非线性元件,如气态导体、半导体元件等.(3)I-U曲线上各点与原点连线的斜率表示电阻的倒数,而U-I曲线上各点与原点连线的斜率表示电阻.如图所示:甲图中斜率表示导体电阻的倒数,所以RⅠ<RⅡ;乙图中斜率表示导体的电阻,所以RⅠ>RⅡ.2.伏安特性曲线问题的分析方法(1)分析图像是要看准是I-U图像还是U-I图像。
I-U图像中,各点与原点连线的斜率表示电阻的倒数,而U-I曲线上各点与原点连线的斜率表示电阻。
(2)分清图线的斜率和图线上的点与原点连线的斜率。
两种图像中计算电阻时都是利用的图线上的点与原点连线的斜率,而不是图线的斜率。
(3)不可用直线倾角的正切来求物理图线的斜率。
物理图像中,横轴和纵轴的标度选取一般不同,且同一问题两次作图时标度也有可能不同,因此物理图线的斜率不一定等于数学上直线倾角的正切。
【对点题组】1.有a、b、c、d四个电阻,它们的U-I关系图象如图所示,则电阻最大的是()A .aB .bC .cD .d2.某导体中的电流随其两端电压的变化如图所示,则下列说法中正确的是( )A .加5 V 电压时,导体的电阻为5 ΩB .加11 V 电压时,导体的电阻为1.4 ΩC .由图可知,随着电压的增大,导体的电阻不断减小D .由图可知,随着电压的减小,导体的电阻不断减小3.如图所示为一小灯泡的伏安特性曲线,横轴和纵轴分别表示电压U 和电流I .图线上点A 的坐标为(U 1、I 1),过点A 的切线与纵轴交点的纵坐标为I 2,小灯泡两端的电压为U 1时,电阻等于 ( )A.I 1U 1B.U 1I 1C.U 1I 2D.U 1I 1-I 24.甲、乙两个电阻,它们的伏安特性曲线画在一个坐标系中如下图所示,则( )A .甲的电阻是乙的电阻的1/3B .把两个电阻两端加上相同的电压,通过甲的电流是通过乙的两倍C .欲使有相同的电流通过两个电阻,加在乙两端的电压是加在甲两端电压的3倍D .甲的电阻是乙的电阻的2倍5.图示是某导体的I -U 图线,图中倾角为α=45°,下列说法正确的是( )A .通过电阻的电流与其两端的电压成正比B .此导体的电阻R =2 ΩC .IU 图线的斜率表示电阻的倒数,所以电阻R =cot 45°=1.0 ΩD.在R两端加6.0 V电压时,每秒通过电阻截面的电量是6.0 C6.如下图所示为两电阻R A、R B的伏安特性曲线,由图可知:(1)这两电阻大小之比为R A∶R B=________.A.1∶3 B.3∶1C.1 D. 1(2)当这两个电阻分别加上相同电压时,通过的电流之比为I A∶I B=________.A.1∶3 B.3∶1C.1 D. 1(3)当这两个电阻分别通上相同电流时,电阻两端的电压之比为U A∶U B=________.A.1∶3 B.3∶1C.1 D. 17.如图所示的图象所对应的两个导体:(1)电阻R1∶R2为多少?(2)若两个导体中的电流相等(不为零)时,电压之比U1∶U2为多少?(3)若两个导体中的电压相等(不为零)时,电流之比I1∶I2为多少?答案精析【对点题组】1.【答案】A 2.【答案】AD【解析】对某些电学元件,其伏安特性曲线不是直线,但曲线上某一点的UI 值仍表示该点所对应的电阻值.本题中给出的导体在加5 V 电压时,UI 值为5,所以此时电阻为5 Ω;当电压增大时,UI 值增大,即电阻增大,综合判断可知B 、C 项错误.3.【答案】B【解析】本题考查利用小灯泡的伏安特性曲线求电阻,意在考查学生对小灯泡的伏安特性曲线以及对电阻定义式的理解.由电阻的定义式R =U /I 可知,B 正确,其他选项错误.要特别注意R ≠ΔU /ΔI . 4.【答案】AC 5.【答案】AB【解析】通过电阻的电流I 与其两端的电压U 成正比.A 正确;导体的电阻R =U I =10 V/5 A=2 Ω.B 正确;I U 图线的斜率等于电阻的倒数,而斜率k =ΔyΔx =0.5,所以电阻为2 Ω,而cot 45°=1,所以电阻R ≠cot 45°.故C 错误;在R 两端加6.0 V 电压时,电流I =U R =62 A =3 A ,每秒通过电阻截面的电量是q =It =3×1 C =3 C .故D 错误.故选A 、B. 6.【答案】(1)A (2)B (3)A 【解析】(1)由R =U I =U I ∆∆得,R A =1030Ω=13 Ω,R B =1010 Ω=1 Ω. 所以R A ∶R B =1∶3,故选项A 正确. (2)由I =UR知,I A ∶I B =R B ∶R A =3∶1,故选项B 正确. (3)由U A =I A R A ,U B =I B R B ,I A =I B ,得U A ∶U B =R A ∶R B =1∶3,故选项A 正确. 7.【答案】(1)3∶1 (2)3∶1 (3)1∶3【解析】(1)因为在IU 图象中,R =1k =ΔUΔI ,所以R 1=10×10-35×10-3Ω=2 Ω, R 2=10×10-315×10-3 Ω=23 Ω, 所以R 1∶R 2=2∶(23)=3∶1.(2)由欧姆定律得 U 1=I 1R 1,U 2=I 2R 2,由于I 1=I 2,则U 1∶U 2=R 1∶R 2=3∶1. (3)由欧姆定律得 I 1=U 1R 1,I 2=U 2R 2,由于U 1=U 2,则I 1∶I 2=R 2∶R 1=1∶3.。
电子元件的伏安特性曲线实验报告实验一电子元件伏安特性的测定一、实验目的1.掌握电压表、电流表、直流稳压电源等仪器的使用方法2.学习电阻元件伏安特性曲线的测量方法3.加深理解欧姆定律,熟悉伏安特性曲线的绘制方法二、原理若二端元件的特性可用加在该元件两端的电压U 和流过该元件的电流I 之间的函数关系I =f (U )来表征,以电压U 为横坐标,以电流I 为纵坐标,绘制I-U 曲线,则该曲线称为该二端元件的伏安特性曲线。
电阻元件是一种对电流呈阻力特性的元件。
当电流通过电阻元件时,电阻元件将电能转化为其它形式的能量,例如热能、光能等,同时,沿电流流动的方向产生电压降,流过电阻R 的电流等于电阻两端电压U 与电阻阻值之比,即RU I(1-1)这一关系称为欧姆定律。
若电阻阻值R 不随电流I 变化,则该电阻称为线性电阻元件,常用的普通电阻就近似地具有这一特性,其伏安特性曲线为一条通过原点的直线,如图1-1所示,该直线斜率的倒数为电阻阻值R 。
线性电阻的伏安特性曲线对称于坐标原点,说明在电路中若将线性电阻反接,也不会不影响电路参数。
这种伏安特性曲线对称于坐标原点的元件称为双向性元件。
白炽灯工作时,灯丝处于高温状态,灯丝的电阻随温度升高而增大,而灯丝温度又与流过灯丝的电流有关,所以,灯丝阻值随流过灯丝的电流而变化,灯丝的伏安特性曲线不再是一条直线,而是如图1-2所示的曲线。
半导体二极管的伏安特性曲线取决于PN 结的特性。
在半导体二极管的PN 结上加正向电压时,由于PN 结正向压降很小,流过PN 结的电流会随电压的升高而急剧增大;在PN 结上加反向电压时,PN 结能承受和大的压降,流过PN 结的电流几乎为零。
所以,在一定电压变化范围内,半导体二极管具有单向导电的特性,其伏安特性曲线如图1-3所示。
图1-1 线性电阻元件的伏安特性曲线图1-2 小灯泡灯丝的伏安特性曲线图1-4 稳压二极管的伏安特性曲线稳压二极管是一种特殊的二极管,其正向特性与普通半导体二极管的特性相似。
电学元件伏安特性曲线的研究[实验目的]1.通过晶体二极管伏安特性曲线,了解半导体整流特性。
2.通过晶体二极管与电阻R串、并接时的伏安特性曲线,了解伏安特性曲线的图形相加。
3.通过比较整流二极管与稳压二极管的伏安特性,了解并区别它们的不同点。
[实验原理]1.晶体二极管的整流原理(参见教材或有关资料)图1 晶体二极管的正反向伏安特性曲线当p型半导体与n型半导体互相接触时,由于扩散作用在两者之间形成阻挡层称为p-n结,该结的电场是由n区指向p区。
当p-n结正向连接(即p接正,n接负)时,外电场的方向与该结原来的电场方向相反,它减弱了结的电场,使阻挡层变薄。
正向电流也就随之迅速增大。
这时通过晶体二极管两端的电压与电流的关系称为晶体二极管的正向伏安特性,如图1中的○1所示。
而当p-n结反向连接(即p接负,n接正)时,外电场的方向与该结原来电场方向一致,使阻挡层增厚。
此时,仅仅是少数载流子在外电场的作用下起导电作用,形成微弱的反向电流。
这时反向特性如图1中的○2所示,称晶体二极管反向伏安特性曲线。
2. 晶体二极管与电阻R 串联、并联时的正向伏安特性曲线晶体二极管与电阻R 串联时,晶体二极管可看成一个(非线性)电阻。
因此晶体二极管与电阻R 串联即为两个电阻串联。
这时总电压等于晶体二极管两端的电压加电阻R 两端的电压,通过它们的电流是相同的。
所以,晶体二极管与电阻R 串联时的伏安特性曲线,等于晶体二极管的特性曲线与电阻R 串联的伏安特性曲线,在电流相同的情况下,两个图形的相加,如图2所示。
晶体二极管与电阻并联接,可视为两电阻并联。
这时它们的电压相同,其电流等于流过晶体二极管的电流与电阻R 的电流之和,因此,晶体二极管与电阻R 并联时的伏安特性曲线等于单独测的晶体二极管伏安特性曲线与电阻R 的伏安特性曲线,在电压相同情况下两个图形的相加,如图3所示。
2. 晶体二极管的稳压原理稳压管的特性曲线如图4所示。
它的特性和整流晶体二极管相似,不同的是稳压晶体二极管都是工作在反向击穿区,在A-B 这一段它的电流从几毫安增加到几十毫安,但它的电压基本不变。