七年级数学第二学期开学第一课
- 格式:docx
- 大小:19.39 KB
- 文档页数:14
初一数学开学第一课教案初一数学开学第一课教案篇1教学目标:1、通过师生之间的交流,营造一个温馨舒适的师生氛围。
2、通过师生交流和讨论,明确数学的重要性,有意识地引导学生学好数学要关注数学学习的方法,明确怎样做一个会学习的人。
3、通过讲故事,让孩子们明白每天的学习每天的作业都是在为自己打基础,学习不是为他人,而是为自己而学,每天做事做作业的态度都决定着自己未来的发展。
4、通过教材的梳理让学生对本学期所学知识有一个明确的认识,激发学习的兴趣。
教学过程:(一)说说自己暑假中的见闻。
师:大家在暑假里肯定过得非常愉快,非常充实吧。
你能将自己记忆最深刻的一段与大家一起分享吗?可以说说自己游玩的事情,可以说自己在假期里的小插曲,也可以说说自己取得的收获。
同学们畅所欲言。
借此拉近师生间的距离,创设良好的师生氛围。
(二)讲故事,让学生知道态度决定自己的未来。
讲故事《木匠的房子》。
“一个上了年纪的木匠准备退休了。
他告诉雇主,他不想再盖房子了,想和他的老伴过一种更加悠闲的生活。
他虽然还留恋那份优厚的报酬,但他该退休了。
雇主看到他的好工人要退休了,感到非常惋惜,就问他能不能再建一栋房子,就算是给他个人帮忙。
木匠答应了。
可是木匠的心思已经不在干活上,他不仅手艺退步,而且还偷工减料。
木匠完工了。
雇主来了,拍拍木匠的肩膀,诚恳地对他说:房子送给你了,这是我送给你的礼物。
木匠感到十分震惊,太丢人了……要是他知道他是在为自己盖房子,他干活的方式就完全不同了。
”你就是那个木匠。
你每天钉一枚钉子,放一块木板,垒一面墙,但往往没有竭尽全力。
终于,你吃惊的发现,你将不得不住在自己建的房子里。
如果可以重来…… 但你无法回头。
人生就是一项自己做的工程,我们今天做事的态度,决定了明天住的房子。
听后,让学生说说想法,明白什么?老师为什么讲这样一个故事?我想让孩子们明白每天的学习每天的作业都是在为自己打基础,学习不是为他人,而是为自己而学,每天做事做作业的态度都决定着自己未来的发展。
初一下册数学春季开学第一课教案•相关推荐初一下册数学春季开学第一课教案(精选10篇)作为一名教师,时常需要用到教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。
那么大家知道正规的教案是怎么写的吗?以下是小编帮大家整理的初一下册数学春季开学第一课教案,欢迎阅读与收藏。
初一下册数学春季开学第一课教案篇1教学目标1,通过对数“零”的意义的探讨,进一步理解正数和负数的概念;2,利用正负数正确表示相反意义的量(规定了指定方向变化的量)3,进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。
教学难点:深化对正负数概念的理解知识重点:正确理解和表示向指定方向变化的量教学过程:(师生活动)设计理念知识回顾与深化回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示。
这就是说:数的范围扩大了(数有正数和负数之分)。
那么,有没有一种既不是正数又不是负数的数呢?问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论。
(数0既不是正数又不是负数,是正数和负数的分界,是基准。
这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。
那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数.那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?“数0耽不是正数,也不是负数”也应看作是负数定义的一部分。
在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界。
七年级数学开学第一课完整版课件一、教学内容1. 认识数学:了解数学的定义、发展简史以及数学在现实生活中的应用。
2. 数学的表示方法:学习数学符号、数学公式和数学图形等表示方法。
3. 数学的分类:了解数学的分支,如算术、代数、几何、三角、概率等。
二、教学目标1. 让学生了解数学的基本概念,认识到数学在生活中的重要性。
2. 培养学生运用数学语言进行表达和交流的能力。
3. 激发学生学习数学的兴趣,树立学好数学的信心。
三、教学难点与重点难点:数学的分类和数学在实际生活中的应用。
重点:数学的基本概念和表示方法。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:教材、笔记本、文具。
五、教学过程1. 导入:通过展示生活中的数学现象,如建筑物的几何形状、购物时的价格计算等,引发学生对数学的思考。
2. 讲解:讲解数学的定义、发展简史以及数学在现实生活中的应用。
3. 互动:让学生举例说明生活中的数学,分享自己的发现。
4. 演示:展示数学符号、数学公式和数学图形等表示方法,让学生了解数学的表达方式。
5. 练习:让学生进行随堂练习,巩固所学知识。
7. 作业布置:布置课后作业,巩固所学知识。
六、板书设计1. 《生活中的数学》2. 内容:数学的基本概念数学的发展简史数学在现实生活中的应用数学的表示方法数学的分类七、作业设计1. 作业题目:(1)请列举出生活中的三个数学例子,并简要说明其数学原理。
2. 答案:(1)示例:购物时计算折扣、平面几何图形的面积计算、时间的计算等。
(2)答案:a + b = c,表示两个数a和b相加等于另一个数c。
八、课后反思及拓展延伸1. 反思:本节课通过生活中的数学现象,引导学生了解数学的基本概念,培养了学生的数学兴趣。
2. 拓展延伸:(1)让学生课后观察生活中的数学,记录下来,下节课分享。
(2)推荐学生阅读数学故事、数学家的故事,了解数学的发展历程。
重点和难点解析1. 教学内容的选择与安排2. 教学目标的设定3. 教学难点与重点的把握4. 教学过程的实践情景引入5. 作业设计的生活化与实际应用6. 课后反思与拓展延伸的深度与广度一、教学内容的选择与安排教学内容应紧密联系学生的生活实际,以激发学生的学习兴趣。
七年级下册数学开学第一课教案第五章相交线与平行线教材简析本章主要内容是:相交线和平行线,以及平移变换的内容.本章知识是学习线和角的继续,也是学习几何知识的重要基础,以后几乎所有几何图形的学习都用到本章知识.首先研究了相交的情形,探索了两条直线相交所成角的位置和大小关系,给出了邻补角和对顶角的概念,得出了“对顶角相等”的结论,并着重研究了相交的特殊情形——垂直,探索了垂直的性质,给出了点到直线的距离的概念.接着研究了平行的情形,教材首先引入了一个基本事实(平行公理),以此为出发点探讨了两条直线平行的判定和性质,并给出了两条平行线间的距离的概念,还对命题以及命题的构成作了简单的介绍.最后研究了平移的概念和性质,以及利用平移设计图案和分析解决实际生活中的问题.本章在中考中考查并不多,主要考点有邻补角与对顶角、点到直线的距离、平行线的判定和性质、命题与定理、平移,主要以选择题和填空题为主,难度较小.教学指导【本章重点】相交线与平行线的概念和性质.【本章难点】平行线的判定和性质的综合应用.【本章思想方法】1.体会和掌握方程的思想方法,如:在计算与相交线有关的角度问题时,常利用设未知数列方程的方法解决.2.掌握转化的思想方法,如:利用平移的方法求解组合图形的面积就是运用转化的思想方法.课时计划5.1相交线3课时5.2平行线及其判定2课时5.3平行线的性质2课时5.4平移1课时5.1 相交线5.1.1相交线(第1课时)教学目标一、基本目标【知识与技能】1.理解邻补角、对顶角的概念,能在图形中辨认邻补角和对顶角.2.掌握对顶角的性质及其推证过程,并能运用它进行计算.【过程与方法】经历邻补角、对顶角的概念及对顶角的性质的探索过程,体会分类思想,在探究过程中发展学生的抽象概括能力,进一步培养说理能力.【情感态度与价值观】激发学生求知欲,感受数学与生活的联系,培养学生独立思考与合作交流的能力,让学生享受成功的喜悦,感悟数学学习是一种美的享受.二、重难点目标【教学重点】邻补角和对顶角的概念,对顶角的性质及其应用.【教学难点】对顶角性质的探索,在复杂图形中找出邻补角和对顶角.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P2~P3的内容,完成下面练习.【3 min反馈】1.如果两条直线有一个公共点,就说这两条直线相交,公共点叫做这两条直线的交点.两条直线相交,形成4个角.如图,∠1与∠2是直线AB、CD相交得到的,有公共顶点O,且有一条公共边OC,它们的另一边互为反向延长线,像这样的两个角叫做邻补角.∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,像这样的两个角叫做对顶角.2.下列图形中∠1与∠2互为对顶角的是(C)3.如图,下列判断正确的是(D)A.图(1)中∠1与∠2是一组对顶角B.图(2)中∠1与∠2是一组对顶角C.图(3)中∠1与∠2是一组邻补角D.图(4)中∠1与∠2是一组邻补角4.已知∠A与∠B是一组邻补角,如果∠A=36°,那么∠B的度数为144°.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,直线AB、CD相交于点O,若∠BOD=42°,OA平分∠COE,求∠DOE的度数.【互动探索】(引发学生思考)根据对顶角的性质,可得∠AOC与∠BOD的关系,根据OA平分∠COE,可得∠COE与∠AOC的关系,根据邻补角的性质,可得答案.【解答】由对顶角相等,得∠AOC=∠BOD=42°.因为OA平分∠COE,所以∠COE=2∠AOC=84°.由邻补角的性质,得∠DOE=180°-∠COE=180°-84°=96°.【互动总结】(学生总结,老师点评)解决此类问题的关键是在图中找出对顶角和邻补角,根据两种角的性质找出已知角和未知角之间的数量关系.【例2】如图,直线AC、EF相交于点O,OD是∠AOB的平分线,OE在∠BOC内,且∠BOE=12∠EOC,∠DOE=72°,求∠AOF的度数.【互动探索】(引发学生思考)因为已知量与未知量的关系较复杂,所以想到列方程解答,根据观察可设∠BOE=x,则∠EOC=2x,然后根据对顶角和邻补角找到等量关系,列方程解答.【解答】设∠BOE =x ,则∠EOC =2x . 因为∠AOB 与∠BOC 互为邻补角, 所以∠AOB =180°-3x . 因为OD 平分∠AOB , 所以∠DOB =12∠AOB =90°-32x . 因为∠DOE =72°,所以90°-32x +x =72°,解得x =36°. 所以∠AOF =∠EOC =2x =72°.【互动总结】(学生总结,老师点评)在相交线中求角的度数时,就要考虑使用对顶角相等或邻补角互补.若已知关系较复杂,比如出现比例或倍分关系时,可列方程解决角度问题.活动2 巩固练习(学生独学)1.如图,直线AB 、CD 相交于点O ,已知∠AOD =160°,则∠BOC 的大小为( D )A .20°B .60°C .70°D .160°2.如图,直线AB 和CD 相交所成的四个角中,∠1的邻补角是∠2和∠4.3.如图,直线AB与CD相交于点O,已知∠BOD=30°,OE是∠BOC的平分线,则∠EOA=105°.4.如图,已知直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD∶∠BOC=1∶5,求∠AOE的度数.解:(1)∠BOE=180°-∠AOC-∠COE=180°-36°-90°=54°.(2)因为∠BOD∶∠BOC=1∶5,∠BOD+∠BOC=180°,所以∠BOD=30°.因为∠AOC=∠BOD,所以∠AOC=30°,所以∠AOE=∠COE+∠AOC=90°+30°=120°.活动3拓展延伸(学生对学)【例3】我们知道:两条直线交于一点,对顶角有2对;三条直线交于一点,对顶角有6对;四条直线交于一点,对顶角有12对……(1)10条直线交于一点,对顶角有________对;(2)n (n ≥2)条直线交于一点,对顶角有________对.【互动探索】(1)如图1,两条直线交于一点,图中共有(4-2)×44=2(对)对顶角;如图2,三条直线交于一点,图中共有(6-2)×64=6(对)对顶角;如图3,四条直线交于一点,图中共有(8-2)×84=12(对)对顶角……按这样的规律,10条直线交于一点,那么对顶角共有(20-2)×204=90(对).(2)由(1)得n (n ≥2)条直线交于一点,对顶角的对数为2n (2n -2)4=n (n -1).【答案】(1)90 (2)n (n -1)【互动总结】(学生总结,老师点评)解决探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数据的变化特征.环节3 课堂小结,当堂达标 (学生总结,老师点评)相交线⎩⎨⎧邻补角:邻补角之和为180°对顶角:对顶角相等练习设计请完成本课时对应练习!。
七年级数学开学第一课完整版课件一、教学内容1. 有理数的定义与分类2. 有理数的表示方法3. 有理数的基本性质二、教学目标1. 让学生掌握有理数的概念,了解有理数的分类及表示方法。
2. 使学生理解有理数的基本性质,并能运用性质解决相关问题。
3. 培养学生的逻辑思维能力和数学运算能力。
三、教学难点与重点1. 教学难点:有理数的分类及表示方法,有理数的基本性质。
2. 教学重点:有理数的概念,有理数的运算规则。
四、教具与学具准备1. 教具:多媒体课件,黑板,粉笔。
2. 学具:学生每人一本教材,练习本,铅笔。
五、教学过程1. 实践情景引入:以气温变化为例,让学生了解有理数的实际应用。
2. 新课导入:通过气温变化实例,引出有理数的概念。
3. 例题讲解:(1)讲解有理数的定义,分类及表示方法。
(2)讲解有理数的基本性质。
4. 随堂练习:(1)让学生判断一些数是否为有理数,并说明理由。
(2)让学生举例说明有理数在实际生活中的应用。
5. 知识巩固:(1)讲解有理数的运算规则。
(2)让学生进行有理数运算的练习。
六、板书设计1. 有理数的定义、分类、表示方法。
2. 有理数的基本性质。
3. 有理数的运算规则。
七、作业设计1. 作业题目:(2)计算:(2)×(3/4)。
2. 答案:(1)3/4是有理数,因为它可以表示为分数;5是有理数,因为它可以表示为整数;√2不是有理数,因为它不能表示为分数或整数。
(2)(2)×(3/4) = 3/2。
八、课后反思及拓展延伸1. 反思:本节课学生对有理数的概念、分类、表示方法掌握情况较好,但在有理数运算方面还需加强练习。
2. 拓展延伸:(1)探讨无理数的概念。
(2)研究有理数的乘方和开方运算。
重点和难点解析1. 教学内容的详细程度与结构安排。
2. 教学目标的明确性与可达成性。
3. 教学难点与重点的识别与处理。
4. 教学过程中的实践情景引入与例题讲解。
5. 板书设计的系统性与清晰度。
2024年七年级数学开学第一课完整版课件一、教学内容本节课选自七年级数学教材第一章《走进数学世界》的第1节《数学的魅力》。
详细内容包括数学的起源、发展,数学在日常生活中的应用,以及数学符号和基础术语的认识。
二、教学目标1. 让学生了解数学的起源和发展,认识到数学在生活中的重要性。
2. 培养学生对数学的兴趣,激发学习数学的热情。
3. 让学生掌握基本的数学符号和术语,为后续学习打下基础。
三、教学难点与重点教学难点:数学符号和术语的认识。
教学重点:数学在日常生活中的应用,以及数学符号和术语的掌握。
四、教具与学具准备教具:PPT课件、黑板、粉笔学具:笔记本、教材五、教学过程1. 导入(5分钟)利用PPT展示数学在日常生活中的应用实例,引发学生对数学的思考,为新课的学习营造氛围。
2. 知识讲解(20分钟)(1)介绍数学的起源和发展,让学生了解数学的历史。
(2)讲解数学在日常生活中的应用,让学生认识到数学的重要性。
(3)讲解数学符号和基础术语,让学生掌握基本的数学表达方式。
3. 例题讲解(10分钟)结合教材中的例题,详细讲解数学符号和术语的使用方法,引导学生学会运用所学知识。
4. 随堂练习(10分钟)设计基础练习题,让学生巩固所学知识,提高运用能力。
六、板书设计1. 板书数学的魅力2. 内容:(1)数学的起源和发展(2)数学在日常生活中的应用(3)数学符号和基础术语七、作业设计1. 作业题目:(1)列举3个生活中的数学应用实例。
(2)认识并写出5个数学符号和对应的含义。
2. 答案:(1)答案不唯一,合理即可。
(2)如:+(加号)、(减号)、×(乘号)、÷(除号)、=(等于号)(3)答案见教材P2页。
八、课后反思及拓展延伸本节课通过讲解数学的起源、发展以及在日常生活中的应用,让学生对数学有了更深入的了解。
课后,教师应关注学生对数学符号和术语的掌握情况,及时进行辅导。
同时,鼓励学生探索生活中的数学问题,将所学知识运用到实际中,提高数学素养。
初一下册数学春季开学第一课教案1教学目标1,通过对数“零”的意义的探讨,进一步理解正数和负数的概念;2,利用正负数正确表示相反意义的量(规定了指定方向变化的量)3,进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。
教学难点:深化对正负数概念的理解知识重点:正确理解和表示向指定方向变化的量教学过程:(师生活动)设计理念知识回顾与深化回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示。
这就是说:数的范围扩大了(数有正数和负数之分)。
那么,有没有一种既不是正数又不是负数的数呢?问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论。
(数0既不是正数又不是负数,是正数和负数的分界,是基准。
这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。
那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数.那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?“数0耽不是正数,也不是负数”也应看作是负数定义的一部分。
在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界。
了解。
的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。
所举的例子,要考虑学生的可接受性。
“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明。
这个问题只要初步认识即可,不必深究。
分析问题解决问题问题3:教科书第6页例题说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。
这种描述在实际生活中有广泛的应用,应予以重视。
教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。
归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页)。
类似的例子很多,如:水位上升-3m,实际表示什么意思呢?收人增加-10%,实际表示什么意思呢?可视教学中的实际情况进行补充。
这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健。
这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出。
巩固练习教科书第6页练习阅读思考教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流小结与作业课堂小结以问题的形式,要求学生思考交流:1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?2,怎样用正负数表示具有相反意义的量?(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数。
)本课作业1,必做题:教科书第7页习题1.1第3,6,7,8题2,选做题:教师自行安排本课教育评注(课堂设计理念,实际教学效果及改进设想)1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指定方向变化的量。
2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分。
在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。
了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助。
由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课。
3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解。
4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识。
通过实际例子的学习激发学生学习数学的兴趣。
初一下册数学春季开学第一课教案2教学目标1.使学生正确理解数轴的意义,掌握数轴的三要素;2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;3.使学生初步理解数形结合的思想方法.教学重点和难点重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的.点表示有理数.难点:正确理解有理数与数轴上点的对应关系.课堂教学过程设计一、从学生原有认知结构提出问题1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2.用“射线”能不能表示有理数?为什么?3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.二、讲授新课让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…提问:我们能不能用这条直线表示任何有理数?(可列举几个数)在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.三、运用举例变式练习例1画一个数轴,并在数轴上画出表示下列各数的点:例2指出数轴上A,B,C,D,E各点分别表示什么数.课堂练习示出来.2.说出下面数轴上A,B,C,D,O,M各点表示什么数?最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.四、小结指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.五、作业1.在下面数轴上:(1)分别指出表示-2,3,-4,0,1各数的点.(2)A,H,D,E,O各点分别表示什么数?2.在下面数轴上,A,B,C,D各点分别表示什么数?3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};初一下册数学春季开学第一课教案3教学目标(一)教学知识点1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.(二)能力训练要求1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.3.通过学生共同观察和讨论,培养大家的合作交流意识.(三)情感与价值观要求1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2.具有初步的创新精神和实践能力.教学重点1.体会方程与函数之间的联系.2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.教学难点1.探索方程与函数之间的联系的过程.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.教学方法讨论探索法.教具准备投影片二张第一张:(记作§2.8.1A)第二张:(记作§2.8.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。
通过学生的讨论,使学生更清楚以下事实:(1)分解因式与整式的乘法是一种互逆关系;(2)分解因式的结果要以积的形式表示;(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;(4)必须分解到每个多项式不能再分解为止。
活动5:应用新知例题学习:P166例1、例2(略)在教师的引导下,学生应用提公因式法共同完成例题。
让学生进一步理解提公因式法进行因式分解。
活动6:课堂练习1.P167练习;2.看谁连得准x2-y2(x+1)29-25x2y(x-y)x2+2x+1(3-5x)(3+5x)xy-y2(x+y)(x-y)3.下列哪些变形是因式分解,为什么?(1)(a+3)(a-3)=a2-9(2)a2-4=(a+2)(a-2)(3)a2-b2+1=(a+b)(a-b)+1(4)2πR+2πr=2π(R+r)学生自主完成练习。
通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。