香豆素类化合物
- 格式:docx
- 大小:435.97 KB
- 文档页数:31
2022年第12期现代园艺香豆素类化合物是具有芳香气味的天然产物,通过植物酪氨酸衍生出苯丙烷内酯,从细菌次生代谢产物中鉴定出多种香豆素。
目前,在豆科等74科植物中发现香豆素类化合物,自然界发现香豆素具有抗病毒保护心脏等药理作用,影响多种植物的生长发育,具有调节根系微生物群落结构等作用。
根据化合物母核结构分为简单香豆素、异香豆素类等,在自然界中主要分布于菊科、瑞香科等植物中,香豆素类化合物具有光学活性用作荧光增白剂等,合成新型香豆素化合物应用前景广阔,香豆素生物合成主要细节处于探索阶段,本文综述香豆素植物体内相关功能,介绍关键酶基因研究进展,为后续研究提供理论参考。
1香豆素类化合物简介1.1香豆素类型香豆素是重要的有机杂环化合物,其衍生物具有多种生理学性质,如抗凝血作用等,某些香豆素衍生物具有抗HIV活性,有些在临床上作为口服抗凝血药广泛应用。
香豆素分子存在C=C双键及内酯结构,具有优异的光学性能,使其呈现荧光量子收率高等特点,是荧光传感器分子设计中的优秀候选荧光团,在医化生等领域广泛应用。
香豆素具有芬芳气味,可在饮料食品中作为芳香剂[1]。
天然香豆素类化合物主要存在于瑞香科、芸香科等高等植物中。
目前发现天然香豆素类化合物有近千种,可分为简单香豆素,吡喃香豆素等类型。
简单香豆素是在苯环上具有取代基香豆素,苯环上的C-6位电负荷性较高,含氧取代基多出现在C-6位上。
呋喃香豆素类结构中呋喃环是6位异戊烯基于7位羟基环合成,根据呋喃环与母体骈合位置分为线性与角型,常见线型有补骨脂素等[2]。
吡喃香豆素是6位异戊烯形成2,2-二甲基-a-吡喃环结构化合物,常见线型吡喃香豆素有独活中的花椒内酯,角型吡喃香豆素有白花前胡中的邪蒿内酯。
1.2香豆素化合物的功能香豆素是最简单的植物次生代谢物,细胞受损后释放,香豆素化合物具有抗病毒、抗HIV等多种药理作用[3]。
香豆素主要功能包括参与植物生长过程,香豆素可通过抑制水稻脱落酸分解代谢延迟种子萌发,可抑制超氧化合物歧化酶活性,破坏小麦糊粉层氧化还原稳态,可能在基因转录中起诱导因子作用,香豆素对许多杂草种子萌发具有较强抑制作用。
216科技资讯 SCIENCE & TECHNOLOGY INFORMATION2010 NO.32SCIENCE & TECHNOLOGY INFORMATION学 术 论 坛香豆素(coumairn)类化合物是一类具有芳香气味的天然产物,是重要的药用天然活性化合物。
香豆素广泛存在于高等植物的次生代谢产物,尤其是芸香科和伞型科,1820年,VOGEL发现了第一个天然香豆素,从此香豆素类化合物引起了植物化学家极大的兴趣,许多有生理活性的香豆素类化学物也相继被发现。
香豆素在植物体内的存在形式多样,大部分以单香豆素形式存在,少部分以双分子或三分子的聚合物形式存在。
香豆素化合物单体的结构如图1。
香豆素化合物由于存在C3-C4双键、CO双键及内酯结构,是一类具有广阔应用范围的有机化合物。
首先,香豆素及其衍生物在可见光区范围内具有很强的荧光性,这样使得他们可作为激光燃料和非线性光学生色团,是很好的荧光增白剂、激光燃料、荧光探针及非线性光学材料;其次,大多数类香豆素类化合物都具有明显的生物活性,有抗凝结,抗癌症及抗HIV等作用。
近年来香豆素类化合物被广泛应用在香料工业、医药工业及农药工业等方面,广大科研工作者对一系列结构新颖、具有学术价值的和应用前景的香豆素化合物进行了大量的研究。
1 香豆素类化合物作为染料的研究进展香豆素及衍生物主要用作荧光溶剂染料、荧光有机颜料和激光染料。
这类激光染料的特性是具有极高的荧光效率、Stokes位移大、随溶液的pH值增高激光波长红移,它们主要用于水下电视、通讯、照明、监视、测距等,尤其在军事上也有应用,所以近些年来研究香豆素类激光染料的合成、应用、新品种的开发的文献很多。
在香豆素类染料的合成方面,1982年Bayer公司的Seng Folrin,1991年前苏联的Knopachev A.V.,1992年乌克兰的TolmachevaV.S.,先后分别合成了结构不同的香豆素类荧光染料。
香豆素6结构-概述说明以及解释1.引言1.1 概述香豆素6是一种具有特殊结构的有机化合物,属于香豆素类化合物。
香豆素是一类重要的天然产物,在自然界中广泛存在着。
而香豆素6是在香豆素基础上结构发生变化而形成的。
香豆素6具有一个6元环的结构,其化学式为C9H6O2。
在这个环结构中,包含了一个苯环和一个呋喃环,并且两个环之间通过一个双键连接在一起。
作为香豆素类化合物的一种,香豆素6具有独特的物理化学性质。
它可以作为一种强有力的光稳定剂应用于塑料材料中,能够有效地提高塑料材料抗紫外线辐射的能力。
此外,香豆素6还具有抗菌、抗炎和抗氧化等生物活性,因此在药物研究和医学领域也有着广泛的应用前景。
本文将详细介绍香豆素6的结构特点和相关的研究进展,以期能够更全面地了解香豆素6的性质和潜在应用。
在接下来的章节中,我们将通过对香豆素6的结构要点进行分析,并总结相关研究的最新成果。
最后,我们将在结论部分对香豆素6的应用前景进行展望,希望能够为相关领域的研究提供一些启示和参考。
1.2 文章结构文章结构是指文章的组织架构和布局方式。
一个良好的文章结构可以使读者更容易理解和消化文章的内容。
本文主要讨论香豆素6的结构,按照以下三个部分进行组织。
1. 引言:在这一部分,将给出香豆素6结构的概述,并介绍本文的结构和目的。
香豆素6是一种具有重要生物活性的有机化合物,它在医药和农业领域有着广泛的应用。
本文旨在了解香豆素6的结构特征,并探讨其对生物活性的影响。
2. 正文:这一部分将重点讨论香豆素6的结构要点。
因为篇幅有限,本文将聚焦于以下两个结构要点:2.1 香豆素6的结构要点1:首先介绍香豆素6的分子式、分子量和IUPAC命名法命名。
然后详细描述其分子结构,包括它的骨架结构和功能基团的分布情况。
此外,还可以探讨香豆素6的立体构型是否具有手性,并讨论其可能的对映体。
2.2 香豆素6的结构要点2:在这一部分,可以探讨香豆素6的化学性质和反应特点。
《天然产物化学》课程作业题目:香豆素类化合物关键词:香豆素结构性质制备吸收代谢应用食品学院2011级研究生农产品加工与储藏专业香豆素类化合物1. 概述香豆素研究概况香豆素(cornn arin)是具有苯骈a-吡喃酮母核的一类天然化合物的总称,在结构上可以看作是顺邻羟基桂皮酸失水而成的内酯。
其具有芳甜香气的天然产物,是药用植物的主要活性成分之一。
在结构上应与异香豆素类(isacoumarin)相区分,异香豆素分子中虽也有苯并吡喃酮结构,但它可看做是邻羧基苯乙烯醇所成的酯。
如下分子结构图所示:顺式邻羟基桂皮酸香豆素异香豆素香豆素类化合物可以游离态或成苷形式广泛的存在于植物界中,只有少数来自于动物和微生物,其中以双子叶植物中的伞形科(Umbelliferae),芸香科(Rutaceae)和桑科(Moraceae)含量最多,其他在豆科(Leguminosae)、木犀科(Oleaeeae)、茄科(Solanaceae)、菊科(Compositae)和兰科(Orchidaeeae)中也较多。
研究表明,香豆素类化合物具有明显的药理活性,如抗HIV、抗癌、对心血管的影响、抗炎及平滑肌松弛、抗凝血等。
,近年来,随着现代色谱和波潜技术的应用和发展,发现了不少新的结构类型,如色原酮香豆素(chromonacoumarin),倍半萜类香豆素(sesquiterpenyl coumarin),以及prenyl-furocoumarin型倍半萜衍生物等。
此外,也发现某些罕见的结构,如香豆素的硫酸酯、无含氧取代如3, 4, 7-三甲基香豆素和四氧取代的香豆素。
在香豆素的多聚体上,尚发现混合型二聚体,如由香豆素与吖啶酮、喹诺酮或萘醌等组成的二聚体。
在分离和鉴定手段上,不少新方法、新技术近年也被应用。
例如,超临界流体被用于提取;多种制备型加压(低、中、高)和减压色潜被应用于分离;毛细管电泳应用于分析;在结构鉴定上,2D-NMR被普遍采用及负离子质谱的使用等。
香豆素类农药发展现状摘要:香豆素类化合物广泛分布于高等植物中,尤其是芸香科和伞型科为多,在豆科、兰科、木樨科和菊科植物中也广泛存在,少数发现于动物和微生物中(在植物体内,它们往往以游离状态或与糖结合成苷的形式存在)。
游离的香豆素多数有较好的结晶,且大多有香味。
香豆素中分子量小的有挥发性,能随水蒸气蒸馏,并能升华。
香豆素苷多数无香味和挥发性,也不能升华。
游离的香豆素能溶于沸水,难溶于冷水,易溶于甲醇、乙醇、氯仿和乙醚另外,香豆素类化合物还具有荧光性质(香豆素母体本身无荧光,而羟基香豆素在紫外光下多显出蓝色荧光)。
本文就香豆素类农药的发展和研究,生产合成,理化性质,毒性,应用等问题作了综述,同时最后阐述了自己的看法。
关键词:香豆素类农药,发展,现状,生产合成,理化性质,毒性,药理作用,应用正文:一、香豆素类化合物的概述香豆素类化合物广泛存在于植物的各个部分中。
一般结构简单的化合物如香豆素、东莨菪素、伞形酮等广泛存在于很多不同的植物科中;而一些复杂的化合物如补骨脂素、花椒树皮素等仅分布在有限的的科属中,但不限于单一的属或种。
一般情况下,香豆素化合物分为简单香豆素类,呋哺香豆素类,吡喃香豆素类,异香豆素类和其他香豆素类。
这些化合物都进行了农药研究,而且香豆素类农药在农业上起到了很广泛的作用,下面就会进一步阐述香豆素类农药在农业上的的发展和研究,以及现在取得的成就。
二、香豆素类农药在农业上的发展与研究2.1 对植物的生长调节作用香豆素化合物作为植物保护素,还控制植物的生长过程,调节植物生长活动[1,2]。
Baskin 等(1967)从Psoralea subacaulis种皮提取到的香骨脂素(Psoralen),能够抑制自身植物种子的萌发和其它植物种子的萌发和根的伸长;P soralea和Angelica属植物果实中的Psoralen可以作为自我萌发抑制剂,此外该类化合物对其他植物有异株克生作用[3]。
Juntilla(1975)研究发现东莨菪素和伞形酮是中国白菜苗非常有效的生长抑制剂[4]。
简述碱溶酸沉法提取分离香豆素类成分的基本原理碱溶酸沉法是提取和分离香豆素类化合物的常用方法之一。
香豆素是一类天然存在于植物中的化合物,具有芳香味和独特的风味,广泛应用于食品、香精、药物等领域。
碱溶酸沉法利用了香豆素类化合物在碱性溶液和酸性溶液中的不同溶解度差异,通过逐步调节溶液的pH值,实现对香豆素类成分的提取和分离。
香豆素类化合物在水中的溶解度较低,但在碱性溶液中可生成高溶解度的碱盐形式。
因此,碱溶酸沉法首先将原料样品与碱性溶液混合搅拌,使香豆素类化合物以其碱盐形式溶解于溶液中。
常用的碱溶液为氢氧化钠(NaOH)溶液,pH值一般控制在8-9左右。
提取完成后,可以通过酸化溶液将香豆素类化合物从碱盐状态转变为酸态,从而实现分离。
一般使用盐酸(HCl)作为酸化剂,将盐酸溶液逐渐滴加到碱溶液中,使pH值下降到2-3可以沉淀出香豆素类化合物的范围。
香豆素类化合物在酸性条件下易生成无色或微黄色的沉淀,并与水相分离。
此时,可以通过离心或过滤的方式将香豆素类化合物沉淀物分离出来。
然后,可通过洗涤和干燥等处理步骤,获得纯净的香豆素类化合物。
除了基本的提取分离原理外,碱溶酸沉法还受到其他因素的影响,如温度、提取时间和溶液浓度等。
通常情况下,提取时间和温度越长、温度越高,提取效果越好。
另外,溶液浓度的选择也会影响提取效果和分离效率。
低浓度的碱性溶液可以增加化合物的溶解度,但过高的浓度可能导致一些杂质的提取和溶解。
碱溶酸沉法在实际应用中有良好的适用性和可行性,可以用于提取和分离不同来源的香豆素类化合物,甚至可以用于复杂基质中的香豆素类成分的提取。
此外,由于操作简单、成本低廉,并且在商业化生产中得到广泛应用,所以碱溶酸沉法在提取和分离香豆素类化合物过程中具有重要意义。
总之,碱溶酸沉法通过逐步调节溶液的pH值,利用香豆素类化合物在碱性溶液和酸性溶液中的不同溶解度差异,实现了香豆素类成分的提取和分离。
这种方法操作简单、成本低廉,并且在实际生产中应用广泛,对于香豆素类化合物的研究和产业化生产具有重要意义。
《天然产物化学》课程作业题目:香豆素类化合物关键词:香豆素结构性质制备吸收代谢应用食品学院2011级研究生农产品加工与储藏专业香豆素类化合物1. 概述1.1 香豆素研究概况香豆素(cornn arin)是具有苯骈a-吡喃酮母核的一类天然化合物的总称,在结构上可以看作是顺邻羟基桂皮酸失水而成的内酯。
其具有芳甜香气的天然产物,是药用植物的主要活性成分之一。
在结构上应与异香豆素类(isacoumarin)相区分,异香豆素分子中虽也有苯并吡喃酮结构,但它可看做是邻羧基苯乙烯醇所成的酯。
如下分子结构图所示:顺式邻羟基桂皮酸香豆素异香豆素香豆素类化合物可以游离态或成苷形式广泛的存在于植物界中,只有少数来自于动物和微生物,其中以双子叶植物中的伞形科(Umbelliferae),芸香科(Rutaceae)和桑科(Moraceae)含量最多,其他在豆科(Leguminosae)、木犀科(Oleaeeae)、茄科(Solanaceae)、菊科(Compositae)和兰科(Orchidaeeae)中也较多。
研究表明,香豆素类化合物具有明显的药理活性,如抗HIV、抗癌、对心血管的影响、抗炎及平滑肌松弛、抗凝血等。
,近年来,随着现代色谱和波潜技术的应用和发展,发现了不少新的结构类型,如色原酮香豆素(chromonacoumarin),倍半萜类香豆素(sesquiterpenyl coumarin),以及prenyl-furocoumarin型倍半萜衍生物等。
此外,也发现某些罕见的结构,如香豆素的硫酸酯、无含氧取代如3, 4, 7-三甲基香豆素和四氧取代的香豆素。
在香豆素的多聚体上,尚发现混合型二聚体,如由香豆素与吖啶酮、喹诺酮或萘醌等组成的二聚体。
在分离和鉴定手段上,不少新方法、新技术近年也被应用。
例如,超临界流体被用于提取;多种制备型加压(低、中、高)和减压色潜被应用于分离;毛细管电泳应用于分析;在结构鉴定上,2D-NMR被普遍采用及负离子质谱的使用等。
在合成上,近年也报道了不少更简便,得率更高的方法,包括某些一步合成法。
在生物活性上,近年也取得了不少进展,如分离得到一系列能抑制HIV-1逆转录酶的胡桐内酯类(calanolide),能显著扩张血管的凯林内酯(khellactone)类化合物,最近又发现某些香豆素能抑制NO合成和具有植物雌激素活性等。
不少香豆素类的构效关系也被进一步研究。
1.2 香豆素结构类型香豆素最早由Vogel于1820年报道从圭亚那的零陵香豆(tonka bean) ,即黄香草木犀(Melilotus officinalis)中获得,香豆素名称就起源于零陵香豆的加勒比词“coumarou”。
香豆素一般可分为四大类:简单香豆素、呋喃香豆素、吡喃香豆素和其他香豆素类。
1.2.1 简单香豆素类简单香豆素类是指只在苯环上有取代基的香豆素,已知绝大部分的香豆素在C-7都有含氧官能团存在,仅少数例外,故7-羟基香豆素即伞形花内酯(umbelliferone)可认为是香豆素类的母体。
香豆素母体在植物体内可来自苯丙氨酸(phenylalanine)或酪氨酸(tyrosinc),伞形花内酯的可能生源途径之一可表示如下:伞形花内酯中苯环的C-5、C-6、C-8位都可能有含氧基团取代,常见的为羟基、甲氧基、亚甲二氧基、异戊烯氧基等,并可分为一氧、二氧、三氧、四氧取代物。
异戊烯基除接在氧上外,也可直接连在碳上。
常见的简单香豆素列举如下:(1) 一氧取代:R基伞形花内酯(umbelliferone) H赫尼亚林(herniarin) Me黄芋苷(skimmin) glu(2) 二氧取代:5,7-二-O:R1 R2白柠檬素(limettin)H H九里香内酯(coumarrayin)H当归内酯(angelicone)H6,7-二-O:R1 R2七叶内酯(esculentin)H H东茛菪内酯(scopoletin)Me H东茛菪苷(scopolin)Me β-glu滨蒿内酯(scoparone)Me Me 7,8-二-O:R瑞香内酯(daphnetin)HHydranngetin Me1.2.2 呋喃香豆素类在7-羟基香豆素的6位或8位有异戊烯基时,易与邻位酚羟基环合形成呋喃环或吡喃环,前者为呋喃香豆素类(furancocoumarin),后者为吡喃香豆素类(pyarnocoumarin),每类中因成环后与母体稠合的位置不同,又可再分成两种,如该环处于与香豆素母体同一直线上,称为线型(linear);如环处于香豆素母体的折角线上,称之为角型(angular)。
1.2.2.1 6,7-呋喃骈香豆素类补骨脂内酯是6,7-呋喃骈香豆素即线型呋喃香豆素类的代表,故该类又称补骨脂内酯型香豆素。
在线型呋喃香豆素中的含氧基或异戊烯氧基常位于C-5和C-8位。
例如:线型呋喃香豆素也可以未降解的二氢呋喃香豆素形式存在。
1.2.2.2 7,8-呋喃骈香豆素类白芷内酯又名异补骨脂内酯(isopsoralen )是角型的7,8-呋喃骈香豆素类的代表,故该类又称异补骨脂内酯香豆素。
角型呋喃香豆素中的含氧基或异戊烯氧基常位于C-5和C-6位。
例如: 角型呋喃香豆素同样也可以未降解的二氢呋喃香豆素存在。
1.2.3 吡喃香豆素类吡喃香豆素也有线型和角型两种,即6,7-吡喃骈香豆素和7,8-吡喃骈香豆素。
此外,也有少数在5,6位形成吡喃环或同时在5,7位和7,8位存在两个吡喃环,形成双吡喃骈香豆素。
R 1 R 2白芷内酯(angelicin ) H H6-羟基白芷内酯(heratonol ) H OH6-甲氧基白芷内酯(sphondin ) H OMe异香柑内酯(isobergapten ) OMe H茴芹内酯(pimpinellin ) OMe OMeR 1 R 2补骨脂内酯(psoralen ) H H花椒毒酚(xanthotoxol ) H OH香柑内酯(bergapten ) OMe H花椒毒内酯(xanthotoxin ) H OMe异茴芹内酯(isopimpinellin ) OMe OMe 欧前胡内酯(imperatorin ) H异欧前胡内酯(isoimperatorin ) H1.2.3.1 6,7-吡喃骈香豆素类6,7-吡喃骈香豆素类以花椒内酯为代表,常见的化合物是在花椒内酯的C-5, C-8上连有含氧基或异戊烯基。
例如:近年发现另一类吡喃香豆素,属五环含萜结构,以bruceol 为代表。
1.2.3.2 7,8-吡喃骈香豆素类7,8-骈香豆素类以邪蒿内酯为代表,含氧基常见连于C-5或C-6上,例如:近年从前胡属植物根中分离得到一系列角型二氢吡喃骈香豆素化合物,它们为凯林内酯(khellactone )的一酰化或二酰化衍生物,其中有的具有显著的冠状动脉扩张作用。
1.2.4 其他香豆素类这是一类α-吡喃酮环的C-3 , C-4位上有取代基的香豆素,以及香豆素的二聚体等。
1.2.4.1 3-或4-苯代衍生物除3-苯代和4-苯代外,也有以3,4-苯骈的结构存在。
例如:异甘草香豆素 胀果香豆素甲(isoglycycoumarin ) (inflacoumarin A ) autumnariniolR 1 R 2花椒内酯(xanthyetin ) H H美花椒内酯(xanthoxyletin ) OMe OH鲁望菊内酯(luvangetin ) H OMe枸橘内酯(poncitrin ) OMeR 1 R 2邪蒿内酯(seselin ) H H5-羟基邪蒿内酯(5-hydroxyseselin ) OH H去甲布拉易林(norbraylin ) H OH5-甲氧基邪蒿内酯(5-methoxyseselin ) OMe H布拉易林(braylin ) H OMe1.2.4.2 4-氧代衍生物4-氧代香豆素常以-OH或-OMe取代存在,4-氧代也可与3-苯代同时存在于结构中。
4-羟基和3-苯代两者尚能构成一类称为香豆草醚类(coumestan)化合物,如最近我国学者张金生等从中药旱莲草中分离得到一系列蟛蜞菊内酯( wedelolactone)衍生物,其中包括新化合物异去甲蟛蜞菊内酯。
蟛蜞菊内酯( wedelolactone) R=CH3 异去甲蟛蜞菊内酯去甲蟛蜞菊内酯( demethywedelolactone) R=H (isodemethywedelolactone) 新生霉素(novobiocin)则是4,7-二羟基香豆素的含N糖苷,为链霉菌的代谢产物,用作抗菌素。
4-OH尚可与3位的异戊二烯单位链形成一类新的prenyl-furocoumarin型倍半萜衍生物,如最近从多伞阿魏中分离得到多种此类化合物。
4-OH也可在3,4位构成一类色原酮香豆素,如存在于远志属植物Polygala fruticosa中的fruitnone A。
Poiygala-fruticosa type sesquiterpenoid derivative fruitnone A1.2.4.3 胡桐内酯类胡桐内酯类(calanolide)是近年从藤黄科(Guttiferae)胡桐属(Calophyllum L.)植物中分离得到的一类香豆素,这是一类新的非核苷型HIV-I逆转录酶抑制剂。
其基本结构为4-烷基(甲基或丙基)或苯基取代的双吡喃骈香豆素,胡桐属中这类香豆素可分为三种类型,即偕二甲基可在C环(如calanolide A) ,或在D环(如pseudocordatolide C),或D环未成环(如callophylloide)。
分自Calophyllum lanigerum var.austrocoriaceum的(+)-calanolide A是该类活性结构的代表物。
(+)-calanolide A (+)-pseudocordatolide C 海棠果内酯Callophylloide1.2.4.4二聚体类Dicoumarol是早在1914年就被发现具抗血小板聚集活性的双香豆素,其后不少新二聚体相继被发现。
既有简单香豆素之间相连,也有吡喃香豆素之间以线一线型或线一角型相连。
连接方式既可以是直接相连,也可以是通过氧、亚甲基或某一结构单位相连。
连接的位置也不尽相同,但较多的是一个香豆素的C-8与另一香豆素的C-3,C-5,C-6,C-8直接相连,也有如dicoumarol以C-3—CH2—C-3,形式连接。
1.3 香豆素理化性质游离香豆素通常为结晶固体,具芳香气味,有一定熔点,能随水蒸气挥发或升华。
香豆素不溶或难溶于水,但可溶于石油醚、苯、乙醚、氯仿或乙醇等溶剂中。
1.3.1 荧光荧光是香豆素的一个特有物理性质,在紫外光下,常显蓝色荧光。