单级放大电路的设计与仿真
- 格式:doc
- 大小:494.00 KB
- 文档页数:10
单级放大电路的设计与仿真单级放大电路是指只有一个放大器的放大电路。
在设计和仿真单级放大电路时,需要考虑电路中的放大器类型、工作点的选择、输入输出阻抗的设计以及电源电压的确定等因素。
以下是一个关于单级放大电路的设计与仿真的详细步骤和原理。
首先,确定放大器类型。
常见的放大器有晶体管放大器和操作放大器。
晶体管放大器可以分为共射极、共基极和共集电极三种类型。
选择合适的放大器类型取决于电路的具体要求,例如增益、频率响应、输入输出阻抗等。
接下来,确定放大器的工作点。
工作点是放大器在信号输入时的直流工作条件。
通过选择合适的偏置电压,可以确保放大器在正常工作范围内,避免信号失真和过偏等问题。
工作点的选择可以通过分析放大器的静态特性来确定,例如估算晶体管的静态工作电流和电压。
然后,设计输入输出阻抗。
输入输出阻抗是指放大器的输入和输出端口对外部电路的负载影响程度。
合理的输入输出阻抗可以保证信号的传输效果,并防止信号反射和失真。
输入阻抗可以通过调整输入电路的电阻和电容来实现,输出阻抗可以通过调整输出端口的负载电阻和耦合电容来实现。
最后,确定电源电压。
电源电压是放大器工作所需的直流电压。
根据放大器的类型和工作点的选择,可以确定放大器所需的电源电压。
通常情况下,电源电压应足够提供放大器的工作所需电流,同时保持稳定。
在设计和仿真过程中,可以使用软件工具进行辅助。
常用的仿真软件有PSpice、Multisim等,它们可以模拟电路中的各个元件并计算电路的性能。
在仿真过程中,可以通过改变电路参数和元件的值来观察电路的响应和性能,并根据需要进行优化调整。
在完成电路设计和仿真后,还需要进行实际电路的制作和测试。
在制作电路时,需要注意布线和连接的准确性,以及元件的选择和安装质量。
在测试电路时,可以使用信号发生器和示波器等仪器进行输入信号的发生和输出信号的测量,从而评估电路的性能和工作效果。
综上所述,单级放大电路的设计和仿真涉及放大器类型的选择、工作点的确定、输入输出阻抗的设计和电源电压的确定等。
基于Multisim的单极共射放大电路的仿真设计齐龙友( 安庆师范学院物理与电气工程学院安徽安庆 246011)指导教师:王鹏摘要: 随着计算机技术的发展,计算机辅助分析与设计在电子电路的设计中得到越来越广泛的应用。
文章叙述了利用Multisim软件对NPN型三极管进行输出特性曲线测试的方法和步骤,及对基本共射放大电路进行静态和动态分析的方法和设计过程。
关键词: Multisim,单极共射放大电路,仿真设计一、引言传统的电子线路分析主要是根据经验和成熟的电路数据来分析、计算、判断,若想更进一步地得到电路的相关数据或波形等参数,则需要搭建试验电路来进行测试,但这种方法费用高、效率低。
随着计算机技术的发展,采用计算机仿真来代替实际的实验电路,可以大大减少工作量,提高工作效率,还能保持仿真过程中产生的大量数据、图形,为电子线路整体分析与改进提供方便。
实验所需时间较长,加上仪器本身的缺陷,所采集到的数据量较少且误差较大, 使用Multisim软件能很好的解决这些问题,它具有直观的图形界面、丰富的元器件库、丰富的测试仪器、完备的分析手段和强大的仿真能力等特点。
Multisim 软件用虚拟的元件搭建各种电路、用虚拟的仪表进行各种参数和性能的测试。
本文将以三极管的单极共射放大电路为例,用Multisim 进行单极共射放大电路的性能设计并进行分析。
二、Multisim相关介绍1 Multisim简介Multisim是加拿大图像交互技术公司(Interactive Image Technoligics简称IIT公司)推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。
它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力,它以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。
它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。
EDA设计(一) 实验报告——实验一单级放大电路的设计与仿真一.实验内容1.设计一个分压偏置的单管电压放大电路,要求信号源频率2kHz(峰值5mV) ,负载电阻Ω,电压增益大于50。
2.调节电路静态工作点,观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
3.调节电路静态工作点,要求输入信号峰值增大到10mV电路输出信号均不失真。
在此状态下测试:①电路静态工作点值;②三极管的输入、输出特性曲线和 、r be 、r ce值;③电路的输入电阻、输出电阻和电压增益;④电路的频率响应曲线和f L、f H值。
二.单级放大电路原理图单级放大电路原理图三.饱和失真、截止失真和不失真1、不失真不失真波形图不失真直流工作点静态工作点:i BQ=, i CQ=, v CEQ=2、饱和失真饱和失真电路图饱和失真波形图饱和失真直流工作点静态工作点:i BQ=,i CQ=,v CEQ=3、截止失真截止失真电路图截止失真波形图截止失真直流工作点静态工作点:i BQ=,i CQ=,v CEQ=四.三极管输入、输出特性曲线和 、r be 、r ce值1、β值静态工作点:i BQ=,i CQ=,v CEQ=V BEQ=β=i C/i B=2、输入特性曲线及r be值:由图:dx=,dy=r be=dx/dy=输入特性曲线3、输出特性曲线及r ce值:由图dx=, 1/dy=r ce=dx/dy=输出特性曲线五.输入电阻、输出电阻和电压增益1、输入电阻测输入电阻电路图由图:v= ,i=μAR i=v/i=μA=Ω2、输出电阻测输出电阻电路图1测输出电阻电路图2 由图:v o’= v o=R o=(v o’/v o-1)R L==Ω3、电压增益测电压增益电路图由图可得A V=六.幅频和相频特性曲线、f L、f H值由图可得f L= f H=Δf= f H - f L=七.实验结果分析1、R iR i理论=[r be+(1+β)R E]//R b1//R b2 =[2976+(1+220)x10]//127k//110k=ΩE1=、R oR o理论=R c=3 kΩE2=/3=1%3、AvI E理论=V B/R E=[ V cc R5/(R2+R5)]/( R6+R1)=[10x110/(127+110)]/2010=r be理论=200+26(1+β)/ I E =2976ΩAv理论=β(R C//R L)/[ r be+(1+β)R E]=220(3kΩ//Ω)/[2976+(220+1)x10]= E3=、V1=10mV时,会出现失真,但加一个小电阻即可减少偏差。
单级阻容耦合晶体管放大器电路设计与仿真单级阻容耦合晶体管放大器是一种常见的放大电路,用于增强信号的幅度。
通过适当的电路设计,我们能够实现理想的电压放大效果,并通过仿真验证其性能。
在电子技术领域中,放大器被广泛应用于各种电子设备中。
单级阻容耦合晶体管放大器具有简单、稳定、易于调整的特点,因此备受关注。
本文将介绍单级阻容耦合晶体管放大器的电路设计原理及其仿真方法,希望能给电子技术爱好者提供一些参考。
二、电路设计原理1. 选择晶体管型号在开始设计之前,我们需要选择适合的晶体管型号。
不同的应用场景可能需要不同的参数要求,因此需要根据具体的需求选择合适的型号。
2. 电路基本原理单级阻容耦合晶体管放大器的基本原理是利用晶体管的放大特性,通过控制基极电流来实现信号放大。
通过阻容耦合方式将输入信号耦合到晶体管的基极,然后通过集电极电阻来输出放大后的信号。
3. 电路参数计算根据放大器的设计要求,我们需要计算出合适的电路参数。
这些参数包括输入电阻、输出电阻、放大倍数等。
通过合理地选择电阻和电容的数值,可以获得较好的电路性能。
三、电路仿真方法1. 选择仿真软件在进行电路仿真之前,需要选择一款合适的仿真软件。
常用的仿真软件有Multisim、LTspice等,可以根据实际情况选择最适合的软件。
2. 构建电路模型根据设计原理和计算结果,利用仿真软件搭建出单级阻容耦合晶体管放大器的电路模型。
确保连接正确并符合设计要求。
3. 设置仿真参数在进行仿真前,需要设置仿真参数。
这些参数包括输入信号的幅度、频率、直流偏置电压等。
确保仿真环境与实际应用场景相符。
4. 仿真结果分析进行仿真后,我们可以分析输出信号的波形、频谱,以及电压增益等性能指标。
通过这些结果,可以评估电路设计的合理性,并在需要时进行调整。
单级阻容耦合晶体管放大器是一种常见且实用的电路结构,通过合理的设计和仿真可以获得较好的放大效果。
在实际应用中,需要根据具体要求选择合适的晶体管型号,并进行电路参数计算和仿真分析,以保证电路的性能。
南京理工大学EDA设计(Ⅰ)实验报告作者: 周竹青学号:914000720215 学院(系):教育实验学院专业: 自动化吴少琴指导老师:实验日期: 10.10--- 10.132016年 10月摘要本次EDA实验主要由四个实验组成,分别是单级放大电路的设计与仿真、差动放大电路的设计与仿真、负反馈放大电路的设计与仿真、阶梯波发生器电路的设计。
通过电路的设计和仿真过程,进一步强化对模拟电子线路知识的理解和应用,增强实践能力和对仿真软件的运用能力。
关键词EDA 设计仿真AbstractThe EDA experiment mainly consists of four experiments, respectively. The design and Simulation of single stage amplifier, differential amplifier circuit,the negative feedback amplifier circuit and ladder wave generator circuit. Through the circuit design and simulation process, We can further strengthen the understanding and application of analog electronic circuit knowledge and enhance practical ability and the ability to use simulation software.Keywords EDA simulation design目录实验一单级放大电路的设计与仿真 (4)实验二差动放大电路的设计与仿真 (17)实验三负反馈放大电路的设计与仿真 (26)实验四阶梯波发生器电路的设计与仿真 (38)结论 (58)参考文献 (58)实验一单级放大电路的设计与仿真一、实验目的1、掌握放大电路静态工作点的调试方法。
单级放大电路的设计与仿真一、设计原理2. 放大器参数:设计单级放大电路时,需要根据应用的需求确定一些重要的放大器参数,如放大器的增益(amplification gain)、输入电阻(input resistance)和输出电阻(output resistance)等。
这些参数的选择要根据具体应用来确定。
二、常用类型1.共射放大器:共射放大器是最常用的单级放大电路之一,具有较高的电压增益和输入电阻,适用于电压放大的应用。
它的基本结构是将放大管(一般是NPN型的晶体管)的基极作为输入端,发射极作为输出端,集电极接地。
2.共基放大器:共基放大器是一种低输入电阻、高输入电流和低输出电阻的放大器,适用于电流放大的应用。
它的基本结构是将放大管(一般是NPN型的晶体管)的发射极作为输入端,集电极作为输出端,基极接地。
3.共集放大器:共集放大器是一种输入电阻高、输出电阻低、电压增益小的放大器,适用于低噪声和宽带应用。
它的基本结构是将放大管(一般是NPN型的晶体管)的基极作为输出端,发射极作为输入端,集电极接地。
三、仿真过程仿真是电路设计的重要工具之一,可以通过仿真软件进行单级放大电路的设计验证和性能分析。
1. 选择仿真软件:根据个人偏好和实际需求选择一款电路仿真软件,如Multisim、LTSpice等。
2.绘制电路图:使用仿真软件将所设计的单级放大电路绘制出来。
根据放大器类型和应用需求选择合适的元件和参数。
3.设置仿真参数:为了对电路进行仿真分析,需要设置电源电压、信号源信号频率和幅度等参数。
这些参数应与实际应用相符。
4.运行仿真:运行仿真软件进行电路仿真。
仿真结果会显示电路的输入输出波形、频率响应和频谱分析等。
5.优化和改进:根据仿真结果,分析电路性能,如增益、频率响应等,并进行必要的优化和改进,如调整元件参数、改变电路拓扑等。
6.验证和测试:通过实际的搭建和测试,验证设计的单级放大电路的性能和可靠性。
根据实际测试结果,对仿真模型进行验证。
实验一单级放大电路的设计和仿真一、实验目的1、掌握放大电路静态工作点的调整和测试方法。
2、掌握放大电路的动态参数的测试方法。
3、观察静态工作点的选择对输出波形及电压放大倍数的影响。
二、实验要求1、设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(幅度1mV) ,负载电阻5.1kΩ,电压增益大于50。
2、调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
3、加入信号源频率5kHz(幅度1mV) ,调节电路使输出不失真,测试此时的静态工作点值。
测电路的输入电阻、输出电阻和电压增益;4、测电路的频率响应曲线和f L、f H值。
三、设计原理图Rb1=160kΩ,Rb2=80.6kΩ,Rc=2.2kΩ,Re=1.65kΩ,C1=C2=10uF,Ce=100uF,RL=3,9kΩ,R1=10Ω四、实验过程1、观测饱和失真、截止失真与不失真<1饱和失真的观测使Rb1=51kΩ,用示波器观测波形,并做直流工作点分析。
此时的静态工作点,ICQ=3.05334mA,IBQ=49.41790uA,VCEQ=130.534mV静态工作点<2截止失真的观测使Rb2=20.0k ,信号源电压峰值40mv,用示波器观测波形,并做直流工作点分析。
此时的静态工作点,ICQ=418.088uA,IBQ=1.88563uA,VCEQ=10.382913V不失真静态工作点<2不截止失真的观测用示波器观测波形,并做直流工作点分析。
此时的静态工作点,ICQ=1.78125mA,IBQ=8.28494uA,VCEQ=5.18389V静态工作点2、峰值10mV单级放大电路的观测与测量(1) 10mV单级放大电路设计原理图Rb1=160kΩ,Rb2=80.6kΩ,Rc=3.9kΩ,Re=1.65kΩ,C1=C2=10uF,Ce=100uF,RL=3,9kΩ,R1=20Ω(2)静态工作点波形与直流工作分析如下图所示,可得:静态工作点,ICQ=1.74639mA,IBQ=8.35250uA,VCEQ=2.2586V,不失真度2.1%静态工作点(2)输入曲线、输出曲线的观察在VCE=2.2586V下三极管的输入曲线在IBQ=8.35250uA下三极管的输出曲线(2)β、be r、ce r的测量<1 β的测量根据输出曲线及输出数据可算出2.2586 1.74642098.3525|c V V ce bm uii β===≈<2be r 的测量如下图电路测量be r ,据所得数据计算得77.9896 2.83627.4972Vbe ube k Ib nr ∆===Ω∆<2ce r 的测量如下图电路测量ce r ,据所得数据计算得1.315862.521.0526Vce mce k Ic nr ∆===Ω∆(3) 输入电阻、输出电阻与电压增益的测量 <1 输入电阻的测量如下图电路测量输入电阻,据所得数据计算得 6.4227.0711.101k UmRi I u ==Ω=Ω<2输出电阻的测量如下图电路测量输入电阻,据所得数据计算得 3.79707.104186.377k UmRo I u ==Ω=Ω<2电压放大倍数的测量如下图电路测量电压放大倍数,据所得数据计算得385.19454.4757.071mAvm==(4) 电路的频率响应曲线和L f 、H f 的测量对电路做交流分析,可得如下图所示的频率响应曲线,从而可获得转折频率:48.2891L f Hz =15.8012H f MHz =五、数据分析1、误差分析r的误差如下表所示输入电阻、输出电阻、电压增益以及be2、总结本次试验的测量值与理论值相对误差不大,基本都在容许的范围以内。
单级放大电路的设计与仿真实验报告参考文献在设计和仿真单级放大电路的实验报告中,可以参考以下文献:1. Sedra, A. S., & Smith, K. C. (2010). Microelectronic circuits. Oxford University Press. 这本书是微电子电路设计的经典教材,其中包含了关于放大电路设计的详细内容。
2. Razavi, B. (2016). Design of analog CMOS integrated circuits. McGraw-Hill Education. 这本书对模拟CMOS集成电路的设计进行了全面而详细的介绍,包括放大电路的设计。
3. Gray, P. R., Hurst, P. J., Lewis, S. H., & Meyer, R. G. (2009). Analysis and design of analog integrated circuits. Wiley. 这本书讲解了模拟集成电路的分析和设计方法,包括放大电路的设计原理。
4. Franco, S. (2015). Design with operational amplifiers and analog integrated circuits. McGraw-Hill Education. 这本书重点介绍了运算放大器和模拟集成电路的设计方法,对于单级放大电路的设计有很好的参考价值。
5. Horowitz, P., & Hill, W. (2015). The art of electronics. Cambridge University Press. 这本书是电子工程师的经典参考书,其中包含了大量实用的电路设计技巧和实例,对于单级放大电路的设计也有相关内容。
除了上述文献,还可以参考相关的学术论文和研究报告,以了解最新的研究进展和设计方法。
单级放大电路的设计与仿真
一、实验目的
1)掌握放大电路静态工作点的调整与测试方法。
2)掌握放大电路的动态参数的测试方法。
3)观察静态工作点的选择对输出波形及电压放大倍数的影响。
二、实验器材
1mV 5KHz 正弦电压源,15mV 5KHz 正弦电压源,12V直流电压源,2N2222A三极管,10uF 电容(3个),10KΩ电阻(2个),3.0KΩ电阻,1.5KΩ电阻,5.1KΩ电阻,250KΩ电位器,万用表,示波器等。
三、实验原理与要求
三极管工作在放大区时具有电流放大作用,只有给放大电路中的三极管提供合适的静态工作点才能保证三极管工作在放大区。
如果静态工作点不合适,输出波形则会产生非线性失真——饱和失真和截止失真,而不能正常放大。
静态工作点合适时,三极管有电流放大特性,通过适当的外接电路,可实现电压放大。
表征放大电路放大特性的交流参数有电压放大倍数、输入电阻、输出电阻。
对于不同频率的输入交流信号,电路的电压放大倍数不同,电压放大倍数与频率的关系定义为频率特性,频率特性包括:幅频特性——即电压放大倍数的幅度与频率的关系;相频特性——即电压放大倍数的相位与频率的关系。
设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(幅度1mV) ,负载电阻5.1kΩ,电压增益大于50。
调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
加入信号源频率5kHz(幅度1mV) ,调节电路使输出不失真,测试此时的静态工作点值。
测电路的输入电阻、输出电阻和电压增益。
测电路的频率响应曲线和fL、fH值。
设计图如下:
四、实验内容与步骤
1.饱和失真
为了使得到的饱和、截止失真的波形图更加明显,用15mV的交流电压源代替了原先的1mV 的电源。
调节电位器的百分比至0%,观察波形。
测试饱和失真下的静态工作点
可知I B=227.374uA,I C=2.576mA, U CE=69.657mV。
2.截止失真
调节电位器的百分比至91%,观察波形。
原理图如下:
波形如下:
测试截止失真下的静态工作点
可知I B=55.511nA,I C=5.329 uA, U CE=11.979V。
3.不失真且信号幅度最大时的输出信号
将电位器调为4%,观察波形,输出波形不失真。
而在3%和5%时分别出现饱和失真和截止失真,加大输入信号,输出波形出现明显的失真,因此最大不失真输出在输入信号等于15mV时。
把输入信号的幅度调为1mV。
不失真时静态工作点的测试
可知I B=10.214uA,I C=2.179mA, U CE=2.18V。
4.测试电路的放大倍数,原理图如下:
测试结果如下:
测量输入电压与输出电压,得U i=0.999599mV, Uo=144.636mV. 则电压增益Au=
Uo/U i=144.7。
经测试,该三极管的参数如下:r be=2.714K , β=213.通过计算可得电
压增益理论值为:Au′=β(R c//R L)/r be=145.44。
则实验的相对误差为:E=∣Au- Au′∣/ Au′×100%=0.509%.
5.测试输入电阻
原理图如下:
测量输入电压与输入电流,得U i≈0.999599mV,I i=524.087nA, 根据输入电阻的定义得R i=U i/ I i=1.907KΩ,通过计算可得输入电阻理论值为:R i′=(R1+R3)//R2// r be=1.916KΩ, 则实验的相对误差为:E=∣R i- R i′∣/ R i′×100%=0.470%.
6.测试输出电阻
原理图如下:
测量输出电压与输出电流,Uo≈0.999972mV, Io=352.753nA, 根据定义得Ro= Uo/Io=2.835KΩ,通过计算可得输入电阻理论值为:Ro′=Rc=3.0KΩ,则实验的相对误差为:E=∣Ro- Ro′∣/ Ro′×100%=0.550%.
7.测试放大电路的频率特性
放大电路的频率特性测试电路如下:
对电路进行频率特性仿真,得到其幅频和相频特性仿真结果如下:
可知下限频率f L=111.6787Hz, 上限频率f H=29.6705 MHz
四、实验结果分析
虽然以前也对Multisim软件有所了解,但真正将其用在EDA设计中时还是有很多不了解的地方,也犯了一些小错误。
实验一其实就是模电的基本知识,但并不只要求我们掌握书本中的知识,还要进行三极管管号及相关电阻的选取等内容,这就要求我们对现实中的材料有一定的了解。
在观察截止失真时,由于信号过小,造成结果不明显,通过调节信号的大小
可清楚看出失真现象。
通过仿真软件来模拟结果,不仅巩固了书本中所学的知识,也了解了更多使用的知识。