有效追问教学设计分式第一课时2
- 格式:docx
- 大小:25.77 KB
- 文档页数:2
一、指导思想与理论依据本节课紧紧围绕目标的达成进行设计,根据这节课的知识特点,重点放在促使学生不断思考,不断寻求解决途径,让学生会经历探索结论的过程。
不但训练学生的知识技能,也让学生体会转化思想,感受方程的模型作用。
同时,在过程中引领学生形成科学主动的学习方式,提高学生学习兴趣,促进学生的长远发展。
二、教学背景分析(一)首先是对教材的分析。
本节教材内容为“人教版八年级下册第十六章第三节“分式方程”第一课时,可化为一元一次方程的分式方程的解法。
本节教材的地位作用我是这样理解的:方程是七八九年级数学知识系统中很重要的部分,也是中学学段需要学生了解的实用数学模型之一。
学生在七年级已经学习过一元一次方程的解法和应用,而本节分式方程是与整式方程并列的另一类型,且分式方程的解法步骤中包含了整式方程的步骤并体现了转化的数学思想,同时也是解决实际问题的工具之一,不但对下一节列分式方程解应用题做好铺垫,而且对训练学生知识技能和理解应用数学思想方面起到双重作用。
(二)学情分析:学生的知识基础方面:能熟练准确地解一元一次方程;已学过分式的定义;了解分式有意义的条件;能利用分式的基本性质进行约分通分;课前预习知晓分式方程的概念。
在情感态度和能力基础方面:八年级的学生已经具备了一定的自主探究能力和分析问题的能力,并对发现新问题以及寻求解决办法有相当的兴趣和积极的愿望。
三、教学目标与重难点分析课标对本节内容对学生的要求是“会解可化为一元一次方程的分式方程的解法),根据这个要求和我对教材的分析,我把本节的教学重点设置为分式方程的解法和一般步骤。
此外,分式方程与整式方程之间既有联系又有区别,由于教材并不明确讲解方程的同解原理,因此学生对于增根的理解有一定困难,所以我把本节难点设置为增根及其产生的原因。
紧接着,我把教学目标设置为以下三个:教学目标:1.使学生掌握可化为一元一次方程的分式方程解法和一般步骤;2.了解解分式方程时可能产生增根的原因,并掌握解分式方程的验根方法.3. 使学生通过观察,分析,综合,归纳,在动手动脑并参与讨论等探索研究的学习过程中,学会发现问题,分析问题和解决问题并上升为理性认识,从而培养其创新能力。
分式第一课时教案一、教学目标:通过本节课的学习,学生将能够:1. 理解分数的概念,并能用自己的话语言表达;2. 掌握分数的基本概念,包括分子、分母、相等分数等;3. 能够将分数绘制成图形,并理解分数在图形中的意义。
二、教学重点:1. 分数的定义及基本概念;2. 分数在图形中的表示方法。
三、教学难点:1. 分数的定义和概念的理解;2. 分数在图形中的表示方法的掌握。
四、教学过程:Step 1:导入活动(5分钟)1. 向学生展示一块巧克力,并将其折成两等分。
问学生这两个部分是否相等,并引导学生回答是相等的。
2. 接着将巧克力折成四等分,再次问学生这四个部分是否相等,并引导学生回答是相等的。
Step 2:引入分数的概念(10分钟)1. 向学生解释巧克力被折成几等分后,每一份的概念,即分子和分母的概念。
分子表示被分得的块数,分母表示被分成的总块数。
2. 通过类似的例子,引导学生理解分数的基本概念。
Step 3:分数的读法(5分钟)1. 向学生展示一些常见的分数表达方式,如1/2, 1/4, 3/4等,并引导学生读出这些分数。
2. 培养学生熟练读取和书写分数的能力。
Step 4:分数的比较(10分钟)1. 向学生展示两块巧克力,一块被分为1/2,另一块被分为1/4,问学生哪块巧克力的分数更大。
2. 引导学生使用分子和分母的大小来比较分数的大小。
Step 5:绘制分数的图形表示(10分钟)1. 向学生展示一个长方形图形,并向他们解释如何用分数表示图形中的部分。
2. 引导学生根据给定的分数在图形中绘制出相应的部分。
Step 6:小组讨论(10分钟)1. 让学生分成小组,每个小组选择一个分数,绘制出相应的图形表示。
2. 引导学生围绕这个图形进行讨论,包括图形的面积、分数的大小等。
Step 7:梳理知识点(5分钟)1. 向学生总结本节课学习的主要知识点,包括分数的定义、分子和分母的概念等。
2. 确保学生掌握了重要的知识点,对他们进行巩固和复习。
《认识分式》教学设计
第1课时
教学目标
1.理解分式的概念,会判断一个代数式是否为分式.
2.会求分式的值.
3.理解分式有意义、无意义的条件.
4.会确定分式值为零的条件.
二、教学重难点
重点:理解分式的概念.
难点:通过类比的方法,抽象出分式的概念,分式有意义的条件等内容.三、教学用具
电脑、多媒体、课件
四、教学过程设计
子分母都是整式,其中分式的分母中都含有字母. 【归纳】
一般地,如果A ,B 表示两个整式,A B ÷可以表示成
A
B
的形式.如果B 中含有字母,那么称A
B
为分式(fraction),其中A 称为分式的分
子,B 称为分式的分母. 注意:
(1)分式是不同于整式的另一类式子,两类式子的区别是分母是否含有字母.
(2)分式的分子A 可以含有字母,也可以不含字母,分母B 中必须含有字母.
(3)由于字母可以表示不同的数,所以分式比分数更具有一般性. 例如:
2
3
仅表示2÷3的商,而分式x y 既可以表
示2÷3,又可表示(–5)÷2,8÷(– 9)等. 【做一做】
下列式子中,哪些是分式?哪些是整式?
57x -(整式) 1x (分式) 3x
(整式)
3435b +(分式) 25
3
a -(整式) 22x x y -(分式) m n m n
-+(分式) 2
221
21x x x x ++-+(分式) 3π
(整式)
1x x
+(分式) ()3c
a b -(分式)
注意:判断时,注意含有π的式子,π是常数,不是字母.
x+
2。
分式方程(第1课时)教学设计一、教学目标知识与能力(1)了解分式方程的概念。
(2)了解需要对分式方程的解进得检验的原因。
过程与方法会用去分母的方法解可化为一元一次方程的简单分式方程,体会化归思想和程序化思想。
情感态度与价值观通过对本节课的学习使学生养成严谨的数学思维,培养学生发现问题,分析问题,解决问题的能力。
二、教学重难点重点利用去分母的方法解分式方程。
难点了解用去分母的方法解分式方程产生增根的原因。
三、学情及学法分析这是八年级学生第一次接触分式方程,在对整式方程的认识还不够深入的情况下,就遇到比解整式方程复杂的求解过程和可能产生增根的新情况,学生对此内容的接受会有很大困难,特别是产生增根的原因,学生没有认知准备。
四、教学过程1、创设情境,引入课题问题1 为了解决引言中的问题,我们得到了方程90603030v v=+-。
仔细观察这个方程,未知数的位置有什么特点?师生活动:学生独立思考并作答。
设计意图:由实际问题引出分母中含有未知数胡方程,让学生了解研究分式方程的必要性。
追问1:方程1223x x=+,2110525x x=--,21133x xx x=+++与上面的方程有什么共同特征?追问2:你能再写出几个分式方程吗?设计意图:让学生进一步巩固对分式方程概念的认识。
2、思考探索,获取新知问题2 你能试着解分式方程90603030v v=+-吗?师生活动:学生分组讨论,相互交流。
教师适当给出提示和纠正。
并派出学生代表将不同的解法展示在黑板上,学生相互交流。
设计意图:让学生在已有的知道经验基础上,尝试解分式方程。
问题3 这些解法有什么共同特点?师生活动:学生讨论之后,教师总结,这些解法的共同点是先去分母将分式方程转化为整式方程式,再解整式方程,进而通过以下几个问题明确解分式方程的方法和依据:(1)如何把它转化为整式方程?(2)怎样去分母?(3)在方程两过乘什么样的式子才能把每一个分母都约去?(4)这样做的依据是什么?学生思考后得出结论:分母中含有未知数的方程,通过去分母就化为整式方程了。
《分式(第2课时)》教学设计【教材内容分析】本节的主要内容是:分式的基本性质。
分式的基本性质是分式的约分、通分、运算等恒等变形的依据。
课本通过具体的例子,用分数的基本性质引入分式的基本性质易于学生理解、接受。
与传统教材不同的是课本中没有明确给出分式的符号法则,而是在想一想中渗透的,所以在教学中应注意让学生体会。
【教学目标】1、通过类比分数的基本性质,说出分式的基本性质,并能用字母表示。
2、理解并掌握分式的基本性质和符号法则。
3、能运用分式的基本性质和符号法则对分式进行变性和约分。
【教学重点】分式的基本性制及利用基本性质进行约分【教学难点】对符号法则的理解和应用及当分子、分母是多项式时的约分。
【教学过程】(一)类比引入,探求新知下面这些式子成立吗?依据是什么?23 =2×53×5 =1015 1642 =16÷242÷2 =821待学生讲出分数的基本性质后,再让学生讲出分数的基本性质的内容。
类似地,分式也有以下基本性质:(板书)分式的分子与分母都乘以(或除以)同一个不等于0的整式,分式的值不变。
(并举例对性质中的关键词:都、同一个、不等于0的整式加以理解)设计说明:分式与分数有许多相似之处,通过类比几个浅显的例子,直观易懂,让学生经历分式的基本性质的得来过程;对几个关键词的理解,目的是让学生更好的掌握和应用性质。
用式子表示为A B =A ×M B ×M ,A B =A ÷M B ÷M(其中M 是不等于零的整式) (二)应用新知,巩固新知想一想:下列等式成立吗?为什么?-a -b =a b -a b =a -b =-a b先让学生讨论,待学生回答后,教师引导学生得出结论:(板书)分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
做一做:(课内练习)1、不改变分式的值,把下列各式的分子与分母中的各项子数都化为整数。
15.1分式(第1课时)一、内容和内容解析1、内容分式的概念及分式有意义的条件.2、内容解析一般地,如果A,B表示两个整式,并且B中含有字母,那么式子A/B叫做分式。
它是分数抽象化的结果,是整式的延伸和发展.分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即分式有意义的条件是分母不能为0.从运算的角度看,分式表示两个整式相除的商,这与分数表示两个整数相除的商类似。
因此,分式与分数具有相似的基本性质和运算法则、相似的研究思路和方法。
分式比分数更具有一般性,分数是分式中字母取一些特殊值时的结果。
通过与分数的类比引入分式概念,并利用类比的数学思想理解分式概念的基本特征;通过概念的实际背景及其应用,体会分式的建模思想,由数到式的演变体现从具体到抽象、从特殊到一般的思想方法.基于以上分析,确定本节课的教学重点:分式概念的形成及分式有意义的条件.二、目标和目标解析1、目标(1)了解分式的概念及分式有意义的条件.(2)在类比分数抽象分式的概念及探索分式有意义条件的过程,体会类比的数学思想,感悟从具体到抽象、从特殊到一般地研究问题的方法.2、目标解析达成目标(1)的标志是:要求学生能判断一个代数式是否是分式,能确定分式有意义的字母的取值范围。
达成目标(2)的标志是:要求类比分数得到分式的概念,在利用表格中的数据研究分式有意义的过程中,感悟从具体到抽象、从特殊到一般地研究问题的方法.三、教学问题诊断分析学生可以通过解决实际问题获得新的代数式,但是通过观察代数式的结构特征,抽象出共同的本质属性是有一定困难的.关键是要引导学生通过与分数进行类比,从式子的形式上寻找它们的共同点;再从分子、分母单独看,分式的分子、分母都是整式,并且分母中都含有字母,通过这个过程经历从特殊到一般,从具体到抽象的思维过程,实现从分数到分式的过渡,从而归纳出分式的概念,体会研究代数问题的一般思路.本节课的教学难点是:分式概念的形成.四、教学过程设计1、创设情境,感受新知幻灯片播放新疆喀纳斯景区的美丽图片:每年一到9月,新疆喀纳斯就进入了纯金的时节,天高云淡、层林尽染、远处的雪山、近处的美湖、漫步的牛羊、小木屋的炊烟袅袅,呈现出一个童话般的五彩世界!“古尔邦节”小长假,我终于踏上了喀纳斯之旅.....问题1:我们到达乌鲁木齐机场,办理完登机手续后还有时间,便走进了一家新疆特产店,映入眼帘的是墙上一幅面积约为8000cm2的具有民族特色的挂毯,长约110cm ,则宽约为 cm ;若有一长方形面积为S ,长为a ,则宽为 . 问题2:乌鲁木齐到喀纳斯的航程约为540千米,飞机无风时的平均航速约为580千米/小时,若当天风速约为30千米/小时,从乌鲁木齐逆风飞往喀纳斯,则 约 小时到达喀纳斯机场.乌鲁木齐到喀纳斯的航程约为540千米,飞机无风时的平均航速约为580千米/小时,若当天风速约为v 千米/小时,从乌鲁木齐逆风飞往喀纳斯,则约 小时到达喀纳斯机场. 问题3:午饭我们品尝了烤鱼,喝了格瓦斯.饭后剩余约500cm3的格瓦斯没喝完,我倒入了底面积约60cm2的圆柱形水杯(高20㎝)中带走,杯中格瓦斯的高度达到 ㎝.若把体积为V 的格瓦斯倒入底面积为S 的圆柱形水杯后,我又喝掉杯中体积为X 的格瓦斯,此时其高度为 .师生活动:教师创设喀纳斯之旅的故事情境中,给出以上三个问题,学生独立思考给出答案,体会类比分数写出新的式子表示问题中的数量关系,同时也为从分数到分式的抽象提供样例.设计意图:以创设具体的喀纳斯之旅的故事情境为背景,类比分数表示两个整数商,发现两个整式相除的商不是整式时产生了新的式子.这里情境导入的主线是“从分数到分式”,符合知识拓展、延续的过程.这样的问题情境不仅能激发学生探究新知的欲望,而且让学生初步体会到新知识是由实际需要产生的,体现数学来源于生活又服务于生活的课程理念. 2、类比发现,形成概念问题:,11800,a S ,5554,-580540v ,325S XV -以上这些式子哪些是你们熟悉的、学过的? 追问1:,-580540v ,a S S X V -与分数,11800,5554325有什么相同点?有什么不同点?(先独立思考,再三人或四人小组讨论交流)师生活动:先独立思考,再三人或四人小组讨论交流.教师巡视对孩子们的讨论结果做到心中有数.孩子们以小组为单位汇报讨论结果,互相补充.得到以下结论:相同点:都是 BA (即A ÷B )的形式.不同点:分数的分子A 与分母B 都是整数,而这些式子中的分子A 与分母B 都是整式,并且分母 B 中含有字母.教师明确将这样的式子叫做分式,告诉学生从今天起开始学习第十五章分式,今天这节课研究从分数到分式,板书课题.概括分式概念.设计意图:以上教学环节旨在通过学生的自主思考、小组讨论、交流等活动让学生从已有的认知——分数,引导到本节课所要学习的新知——分式,类比分数,逐步发现、揭示、归纳、概括分式的概念。
八年级数学下册第五章《分式与分式方程》1.认识分式(一)[教学设计]一、教学目标知识与技能:通过用分式表示现实情境中数量关系的过程,体会分式的模型思想,进一步发展符号感;能用分式表示实际问题中的数量关系。
过程与方法:通过自主探索、小组合作交流的过程,归纳分式的概念,明确分式与整式的区别;进一步培养学生代数表达能力和有条理地思考问题的能力。
情感态度与价值观:培养学生观察、类比、讨论、交流的思想,感受知识的内在价值。
二、教学重、难点重点:分式的概念难点:分式有无意义、分式值为零条件的讨论三、教法、学法教学方法:合作交流、探究发现学法指导:分式是分数的代数化,学生可以通过类比进行分式的学习。
在教学中,教师引导学生学会观察、归纳,培养探究、自主学习能力。
四、教学过程(一)情境引入1.姚明与罚球命中率设计目的:一是通过计算罚球命中率及与分数的类比引出本节学习内容——分式,明确本节学习目标;二是通过学生喜欢的体育明星,也是2012年感动中国人物——姚明进行德育渗透,引导学生做有行动的追梦人!2.完成下列填空:(1)长方形长为a,宽为b,则这个长方形周长为___ ,面积为__。
(2)某县决定在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前完成原计划的任务.如果设原计划每月固沙造林x 公顷,那么原计划完成造林任务需要_______个月。
实际完成造林任务用了_____个月。
(3) 2010年上海世博会吸引了成千上万的参观者,某一时段内的统计结果显示,前 a 天日均参观人数 35 万人,后 b 天日均参观人数 45 万人,这(a + b)天日均参观人数为________万人。
(4)文林书店库存一批图书,其中一种图书的原价是每册 a 元,现每册降价 x 元销售,当这种图书的库存全部售出时,其销售额为 b 元.降价销售开始时,文林书店这种图书的库存量是____册。
(5)乐乐超市新进柠檬、草莓两种口味水果奶糖,每斤进价分别为a元、b元,超市将18斤柠檬味和12斤草莓味两种糖混合成了“缤纷果香”奶糖,则这种混合奶糖的定价为____________元。
分式教案第一课时分式教案第一课时主要讲了教学导入的基本原则和导入方法。
一、数学课堂教学导入的基本原则1、针对性原则。
导入应当针对教学实际有两方面:一是要针对教学内容而设计,不能游离于教学内容之外,要因课型的不同而不同。
二是指针对学生的知识构成、心理状态、年龄特点、兴趣爱好的差异程度。
2、启发性原则。
启发性的导入设计即老师在课堂教学中采取引导、启发式的教学方式,给学生足够的想象空间,培养学生的发散性思维,学生在课堂学习中能由此及彼、由因到果、由表及里、由个别到一般。
3、新颖性原则。
课堂导入要保持其新颖性、独特性,保持学生旺盛的好奇心和求知欲,让学生的学习由“让我学”转变成“我要学”,提高学生的学习效果。
4、趣味性原则。
爱因斯坦说:“兴趣是最好的老师。
”只要把握好每节课起始阶段触发兴趣的契机,学生的学习效果就有了一半的保障。
趣味性导入不仅能充分调动学生积极性,提高学生学习兴趣,又能引导学生笑过之后进一步深思,加深对所学知识的理解。
5、简洁性原则。
导入的设计要短小精悍,有画龙点睛之妙。
力争用最少的话语、最短的时间,迅速而巧妙地缩短师生间的距离以及学生与教材间的距离。
将学生的注意力迅速地集中到听课上来,一般两三分钟就要转入正题,时间过长就会喧宾夺主。
二、数学课堂教学导入的方法1、开门见山。
单刀直入―点题式导入。
有些课是无须“引”的过程,就不必绕弯子。
2、承上启下。
以旧引新―复习式导入。
3、以石击浪。
启发思维―提问式导入。
心理学中认为思维过程通常是从需要应付某种困难、解决某个问题开始的,概括地说,思维总是从问题开始的。
提问式导入课题,容易唤起学生的自觉思维,使课题集中,目标明确,一旦所提问题被解决,对新授内容也就开始有所领悟了。
如讲正数和负数这课时。
一开始即向学生提出“5-3=?”“3-5=?”的问题。
4、感悟出发,联系实际――实例式导入。
为了测量一个池塘的宽度AB,有人在池外取一点C,连接AC,BC,及其中点D,E,量得DE的长度。
15.1分式教案第一课时15.1分式教案第一课时是高中数学教学中比较重要的一节课程,对于学生来说,这是一次深入学习分式知识的机会。
本文将从分式的定义和性质、分式的化简、分式的乘除法等几个方面来详细介绍这节课的教学内容。
一、分式的定义和性质分式是指分子和分母都是整式的代数式,以横线将分子与分母分开表示。
分式有两种类型:真分式和带分式。
其中真分式是指分子次数小于分母次数的分式,带分式是指分子次数大于或等于分母次数的分式。
在教学中,我们需要通过实例来让学生了解分式的定义和性质,并且要说明分式是一个有限个有理数的和或差。
可以让学生通过观察分式的形式来判断是否是真分式或者带分式,这样可以帮助学生更好地理解分式的基本概念和性质。
二、分式的化简化简在分式中是非常重要的一步,化简后的分式更加简洁明了,便于计算,所以我们需要重点讲解化简的方法和技巧。
首先,要让学生掌握约分的方法,这是化简分式中非常常见的一种技巧。
其次,还需要教给学生通分的方法,这种方法可以让分子与分母都乘上相应的因式,从而化简分式。
此外,还需要让学生掌握提公因式的方法以及合并同类项的方法,这样才能够更好地应对分式化简中出现的各种情况。
需要注意的是,化简分式时要先将分子与分母进行因式分解,然后再进行约分或通分等操作。
三、分式的乘除法分式的乘除法一般来说对学生来说会比较困难,因为需要掌握一定的运算技巧。
在教学中,我们需要给学生一些实例进行练习,以帮助学生更好地理解分式的乘除法。
乘法的运算首先要将分子与分母分别相乘,然后再将乘积约分;而除法的运算则要将被除式与除式分别乘以除式的倒数,然后再将积约分。
需要注意的是,进行乘除法运算时,一般要先将分式化简,以便更好地进行运算。
四、学生自主学习与作业布置在教学结束后,我们需要给学生一定时间进行自主学习,再根据学生的实际情况来布置相应的作业。
一般来说,可以选取一些习题或者真题进行练习,以锻炼学生运用分式知识进行解题的能力。
16.1.1分式
教学目标
1、经历实际问题的解决过程,从中认识分式,并能概括分式;
2、使学生能正确地判断一个代数式是否是分式;
3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。
教学重点
探索分式的意义及分式的值为某一特定情况的条件。
教学难点
能通过回忆分数的意义,探索分式的意义及分式的值为某一特定情况的条件。
教学过程
反思:分式的引入,可以类比分数,在上课时可以先回忆小学分数有意义的要求:分母不为零,结合小学知识判断分数怎样才会变为零。
本节课的知识可以类比以前的基础,教师可以尝试追问学生,分数与分式的区别与联系,从而为分式的加减乘除做铺垫。