2013年七年级数学 6.1.1算术平方根1
- 格式:ppt
- 大小:498.00 KB
- 文档页数:12
人教版七年级数学下册6.1.1《算术平方根》教案一. 教材分析《算术平方根》是人教版七年级数学下册第六章第一节的内容。
本节课主要让学生掌握算术平方根的定义,理解求一个数的算术平方根的方法,以及熟练运用算术平方根解决实际问题。
教材通过引入大量的生活实例,激发学生的学习兴趣,引导学生探究、发现算术平方根的规律,培养学生的抽象思维能力。
二. 学情分析七年级的学生已经掌握了实数的概念,具备了一定的数学基础。
但在计算能力和数学思维方面,学生之间存在较大差异。
因此,在教学过程中,要关注学生的个体差异,引导他们积极参与课堂活动,提高他们的数学素养。
三. 教学目标1.理解算术平方根的定义,掌握求一个数的算术平方根的方法。
2.能够运用算术平方根解决实际问题,提高学生的应用能力。
3.培养学生的抽象思维能力,提高学生的计算能力。
4.激发学生的学习兴趣,培养他们积极探究数学规律的精神。
四. 教学重难点1.算术平方根的定义及其求法。
2.运用算术平方根解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生发现算术平方根的规律。
2.探究教学法:引导学生积极参与课堂讨论,自主发现算术平方根的求法。
3.练习法:通过大量练习,巩固学生对算术平方根的理解和运用。
六. 教学准备1.教学课件:制作精美的课件,辅助教学。
2.练习题:准备适量的一定难度的练习题,用于课堂练习和课后作业。
3.教学道具:准备一些实物,如正方形、长方形等,用于直观展示。
七. 教学过程1.导入(5分钟)利用生活实例,如衣服的尺码、房屋面积等,引导学生思考:如何快速找到一个数的平方根?从而引出本节课的主题——算术平方根。
2.呈现(10分钟)介绍算术平方根的定义,并通过PPT展示一些图片,让学生直观地感受算术平方根的应用。
3.操练(10分钟)让学生分组讨论,探索如何求一个数的算术平方根。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成。
人教版七年级下册6.1.1《算术平方根》(教学设计)一. 教材分析《算术平方根》是人教版七年级下册数学教材第六章第一节的内容。
本节课主要介绍了算术平方根的概念、性质及其求法。
通过学习本节课,学生能够理解算术平方根的定义,掌握求算术平方根的方法,并能够应用算术平方根解决实际问题。
教材通过例题和练习题的形式,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了有理数、整数、分数等基础知识,具备了一定的逻辑思维能力和运算能力。
但部分学生对平方根的概念可能还比较模糊,需要通过实例和练习来进一步理解。
此外,学生可能对算术平方根的求法存在一定的困惑,需要通过教师的引导和同学的讨论来掌握。
三. 教学目标1.知识与技能目标:理解算术平方根的概念,掌握求算术平方根的方法,能够熟练运用算术平方根解决实际问题。
2.过程与方法目标:通过自主学习、合作交流,培养学生探究问题和解决问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,激发学生学习数学的积极性。
四. 教学重难点1.重点:算术平方根的概念及其求法。
2.难点:算术平方根在实际问题中的应用。
五. 教学方法1.启发式教学:通过问题引导,激发学生的思考,培养学生的探究能力。
2.合作学习:学生进行小组讨论,促进学生之间的交流与合作,共同解决问题。
3.实例教学:通过具体的例子,让学生更好地理解算术平方根的概念和求法。
4.练习巩固:通过适量练习,巩固所学知识,提高学生的应用能力。
六. 教学准备1.教材:人教版七年级下册数学教材。
2.课件:制作课件,包括算术平方根的定义、性质、求法及应用等内容。
3.练习题:准备一些有关算术平方根的练习题,用于课堂练习和巩固。
4.板书:准备黑板,用于书写重要概念和步骤。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学过的平方根知识,为新课的学习做好铺垫。
例如:“请大家回忆一下,平方根的概念是什么?我们已经学习了哪些求平方根的方法?”2.呈现(10分钟)教师展示课件,介绍算术平方根的定义、性质和求法。
6.1 平方根教学目标:(一)教学知识点1.了解数的算术平方根的概念,会用根号表示一个数的算术平方根.2.了解求一个正数的算术平方根与平方是互逆的运算,会利用那个互逆运算关系求某些非负数的算术平方根.3.了解算术平方根的性质.(二)能力训练要求1.增强概念形成进程的教学,提高学生的思维水平.2.鼓舞学生进行探讨和交流,培育他们的创新意识和合作精神.(三)情感与价值观要求1.让学生踊跃参与教学活动,培育他们对数学的好奇心和求知欲.2.训练学生动脑、动口、动手能力.教学重点:了解算术平方根的概念、性质,会用根号表示一个正数的算术平方根.教学难点:了解算术平方根的概念、性质.教学进程:Ⅰ.新课导入上节课咱们学习了无理数、了解到无理数产生的实际背景和引入的必要性,把握了无理数的概念,明白有理数和无理数的区别是:有理数是有限小数或无穷循环小数,无理数是无穷不循环小数.比如在a2=2中,2是有理数,而a是无理数.在前面咱们学过假设x2=a,那么a叫x的平方,反过来x叫a的什么呢?本节课咱们就来一路研究那个问题.Ⅱ.教学新课[师]在讲新课之前,咱们先回忆一下勾股定理,请同窗们回答.[生]勾股定理确实是在直角三角形中两条直角边的平方和等于斜边的平方.[师]下面请大伙儿依照勾股定量,结合图形完成填空. 依照以下图填空x2=_________y2=_________z2=_________w2=_________[师]请大伙儿试探后回答.[生]x 2=2,y 2=3,z 2=4,w 2=5.[师]请大伙儿再分析一下,x ,y ,z ,w 中哪些是有理数?哪些是无理数?[生]x ,y ,w 是无理数,z 是有理数.[师]什么缘故呢?[生]因为没有任何整数或分数的平方等于2,3,5,因此x ,y ,z 不是有理数,而22=4,因此z =2. [师]这位同窗分析得超级正确,那么大伙儿能不能把上图中的x ,y ,z ,w 表示出来呢?请大伙儿认真看书后回答.[生]x =2,y =3,z =4,w =5.[师]假设一个正数x 的平方等于a ,即x 2=a ,那么那个正数x 就叫做a 的算术平方根.记为“a ”读作“根号a ”.这确实是算术平方根的概念.专门地规定0的算术平方根是0,即0=0. [师]下面咱们依照算术平方根的概念求一些数的算术平方根.[例1]求以下各数的算术平方根: (1)900;(2)1;(3)6449;(4)14. 解:(1)因为302=900,因此900的算术平方根是30,即900=30;(2)因为12=1,因此1的算术平方根是1,即1=1;(3)因为,6449)87(2=因此6449的算术平方根是87,即876449=; (4)14的算术平方根是14.通过上面的例题,大伙儿试探一下,咱们在求算术平方根时是借助于哪一种运算来求的?[生]是通过平方来求的.[师]对.由此咱们能够看出一个正数的平方和求算术平方根是互为逆运算.而且咱们在例题中的步骤采取语言表达和符号表示相互补充的做法,目的是让大伙儿明白算术平方根的概念,和从计算中进一步体会一个正数的平方和求算术平方根是互为逆运算.在以后的步骤中能够简化.[例2]自由下落的物体的高度h (米)与下落时刻t (秒)的关系为h =4.9t 2.有一铁球从19.6米高的建筑物上自由下落,抵达地面需要多长时刻?解:将h =19.6代入公式h =4.9t 2得t 2=4,因此t =4=2(秒)即铁球抵达地面需要2秒.[师]下面大伙儿再观看一下适才咱们求出的算术平方根有什么特点. [生甲]算术平方根是整数或分数,即为有理数. [生乙]不对,那14是不是有理数?假设是那么是,分数仍是整数? [生丙]因为没有任何一个整数或分数的平方等于14,因此14不是有理数,而是无理数.[师]大伙儿的分析都有道理,我提示一下从符号方面考虑. [生甲]噢,算术平方根是正数,如14,5,3,2,2.[生乙]不对,还有零呢.正数的算术平方根是正数,零的算术平方根为零.[师]超级正确,那负数的算术平方根是不是为负数呢?假设(-2)2=4.那么4=-2对吗?或4 =-2对吗?[生甲]不对.因为算术平方根的概念是一个正数的x 的平方等于a ,那个正数x 就叫做a 的算术平方根,因此算术平方根不可能是负数.[师]由此看来,概念中的a 和x 都为正数,即算术平方根是非负数,负数没有算术平方根.用式子表示为a (a ≥0)为非负数,这是算术平方根的性质.Ⅲ.课堂练习(一)P 32随堂练习一、2题.(二)补充练习. 一、填空题1.假设一个数的算术平方根是5,那么那个数是_________.2.94的算术平方根是_________. 3.正数_________的平方为971,25144的算术平方根为_________. 4.(-1.44)2的算术平方根为_________.5.81的算术平方根为_________,04.0=_________二、求以下各数的算术平方根,并用符号表示出来:(1)(7.4)2;(2)(-3.9)2;(3)2.25;(4)241. Ⅳ.课时小结本节课学习了算术平方根的概念,明白得了求一个正数的平方和求算术平方根是互为逆运算,求一个非零数的算术平方根,和算术平方根的性质,即算术平方根是非负数.Ⅴ.课后作业P33习题一、3.Ⅵ.活动与探讨1.一个正方形的面积变成原先的n倍时,它的边长变成原先的多少倍?2.一个正方形的面积为原先的100倍时,它的边长变成原先的多少倍?解:设原先的正方形边长为a,面积为S1,后来的正方形面积为S2.1.S1=a2,S2=na2(n a)2∴后来的边长(n a)为原先边长的n倍.2.S1=a2,S2=100a2=(10a)2∴后来的边长10a为原先边长的10倍.板书设计:一、算术平方根的定义算术平方根的性质二、举例三、练习四、作业。