定积分与反导函数
- 格式:pdf
- 大小:296.78 KB
- 文档页数:15
定积分的知识点总结一、定积分的基本概念定积分是微积分学中的重要概念,可以用来计算曲线下的面积,曲线的弧长,质心等物理量。
定积分的基本思想是将曲线下的面积划分为无穷多个微小的矩形,然后求和得到整体的面积。
定积分的符号表示为∫。
对于一个函数f(x),在区间[a, b]上的定积分表示为:∫[a, b]f(x)dx其中,a和b为区间的端点,f(x)为函数在该区间上的取值。
定积分表示在区间[a, b]上的函数f(x)所确定的曲线下的面积。
二、定积分的计算方法1. 黎曼和定积分的计算基本思想是将曲线下的面积划分为很多个小矩形,然后对这些小矩形的面积求和。
这就是定积分的计算方法。
在实际计算中,根据黎曼和的定义,我们可以将区间[a, b]等分为n个小区间,每个小区间长度为Δx=(b-a)/n,然后在每个小区间上取一个样本点xi,计算f(xi)Δx的和:∑[i=1,n]f(xi)Δx当n趋近于无穷大时,这个和就可以逼近定积分的值。
这就是黎曼和的基本思想。
2. 定积分的几何意义定积分可以用来计算曲线下的面积,也可以用来计算曲线的弧长。
对于一个函数f(x),其在区间[a, b]上的定积分表示的是曲线y=f(x)和x轴之间的面积。
这个面积就是曲线下的面积。
如果函数f(x)在区间[a, b]上非负且连续,那么函数y=f(x)、直线x=a、x=b以及x轴所围成的区域的面积就是∫[a, b]f(x)dx。
3. 定积分的物理意义定积分还可以用来计算物理量,比如质量、质心等。
在物理学中,可以用定积分来计算物体的质量、质心等物理量。
对于一个连续的物体,将其质量密度函数表示为ρ(x),则物体的质量可以表示为定积分:M=∫[a, b]ρ(x)dx三、定积分的性质1. 线性性定积分具有线性性质,即∫[a, b](c1f1(x)+c2f2(x))dx=c1∫[a, b]f1(x)dx+c2∫[a, b]f2(x)dx。
其中c1、c2为常数,f1(x)、f2(x)为函数。
大一高数定积分知识点总结在大一的高等数学课程中,定积分是一个重要的概念和工具。
掌握定积分的相关知识点对于理解和应用数学是至关重要的。
本文将对大一高数定积分的知识点进行总结,帮助读者更好地理解和掌握这一概念。
一、定积分的定义与性质定积分可以理解为曲线与坐标轴所夹的面积,也可以使用求和的方法进行计算。
其定义如下:设函数 f(x) 在区间 [a, b] 上连续,则定义函数 f(x) 在 [a, b] 上的定积分为:∫(a到b) f(x) dx = lim(n->∞) Σ[f(xi)*Δx]其中,Σ表示求和,xi 是 [a, b] 上的任意一组数,Δx = (b - a) / n 是区间的等分长度。
定积分具有以下重要性质:1. 定积分是一个实数,表示函数在区间上的累积效应。
2. 定积分与区间的选取和积分路径无关,只与函数和积分上下限有关。
3. 若 f(x) 在 [a, b] 上连续,则 f(x) 在 [a, b] 上可积。
4. 若函数 f(x) 在 [a, b] 上可积,则 f(x) 在 [a, b] 上连续。
二、定积分的计算方法定积分的计算方法有以下几种常见的情况:1. 基本积分法:对于一些基本的函数,可以直接使用积分表或者公式进行计算。
例如∫sin(x) dx = -cos(x) + C。
2. 分部积分法:适用于乘积形式的函数积分,通过反复应用分部积分公式可以求得积分结果。
3. 换元积分法:通过引入一个新的变量替代积分变量,从而将复杂的积分转换为简单的形式进行计算。
三、定积分的应用定积分在数学和科学中有广泛的应用,以下是一些常见的应用领域:1. 几何学:定积分可用于计算曲线与坐标轴所夹的面积、体积和质心等几何属性的求解。
2. 物理学:力学、电磁学等物理学问题中,定积分可用于求解质点的位移、物体的质量等相关物理量。
3. 统计学:定积分可用于求解概率密度函数和累积分布函数,进行统计数据的分析。
4. 经济学:定积分可用于计算经济学中的边际效应、消费者剩余、生产者剩余等经济指标。
.基本初等函数求导公式(1)(C) =0(2) (X ,)-七心⑶ (sin x) = cosx(4)(cosx) - -sinx (5)(tan x)二 sec x(6)(cot x)二- csc 2x⑺(secx) = secxtan x (8) (cscx) = - cscx cot x(9)(a xf-a xln a(10)(e x)—函数的和、差、积、商的求导法则= u (x ),v=v (x )都可导,则反函数求导法则若函数x= Uy )在某区间Iy 内可导、单调且(y^"0,则它的反函数y = f (x )在对应区间Ix内也可导,且(11)DU(12)(ln x)二丄x , (13) (arcsin x),=( 1-x 2(14)(arccosx)" =1 - x(15)(arctan x)1 +x(arccot x)=(16)1 1 x 2(1)(U 士 V )= u 士 V(2)(Cu )'C 「( C 是常数)(3)(uv) = u v uv(4)v 2少丄 dx 一 dxdy复合函数求导法则设y= f (u),而U v (x)且f (u)及(x)都可导,则复合函数 y = f [「(x)]的导数为、基本积分表(1)kdx=kx ・c ( k 是常数)(2)x'dx 二+ C, (u 」1)."1 1(3) dx = I n | x | C • x dx(4)= arl tan x C ‘1 +x 2(6) cosxdx =s in x C (7) sin xdx = -cosx C1(8) 厂dx = ta n x C ' cos x1(9) 厂 dx = - cot x C ' sin x(10)secxtanxdx^secx Cf (X )二 dy dy_du dx du dx 或 y\f (U)L (x)(5)(11) cscxcot xdx = - cscx C (12)e xdx =e xCx(13) a x dx— C , (a 0,且 a 厂1) In a(14) shxdx 二 chx C (15)chxdx = shx C1 x=—arc tan — C a a1 1 x —a(17)二 ------ 2 dx ln || C x -a 2a x+axdx 二 arc sin — C■ a 2-x 2a(19) J , 1 dx = ln(x + Ja 2 +x 2) + C ,Ja 2 +x 2 (20) J —dx = ln | x + J x 2 _a 2 | +C$ !2 2 1 1.x -a(21) tanxdx 二-ln |cosx | C (22) cotxdx=ln |sinx | C (23) secxdx = l n |secx tanx| C (24) cscxdx = l n|cscx-cotx| C注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证 2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。
高数定积分知识点总结一、定积分的定义定积分是微积分中的一个重要概念,它是对一个函数在一个区间上的积分结果进行计算的过程。
在数学上,定积分是用来计算曲线下面的面积或者函数在某一区间上的平均值的方法。
定积分可以写成以下形式:\[ \int_{a}^{b} f(x)dx \]其中,\( f(x) \)是被积函数,\( a \)和\( b \)是积分区间的端点。
定积分的计算过程就是求解被积函数在给定区间上的曲线下面的面积。
定积分在物理学、工程学和经济学等领域都有着广泛的应用,是微积分中不可或缺的重要工具。
二、定积分的性质1. 定积分的可加性如果函数\( f(x) \)在区间\([a, b]\)上是可积的,那么对于任意的\( c \)满足\( a \leq c \leq b \),都有:\[ \int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \]这个性质表明了定积分的可加性,即在一个区间上进行积分的结果可以根据任意划分点\( c \)进行分割。
2. 定积分的线性性对于任意的实数\( \alpha, \beta \)和函数\( f(x), g(x) \),如果\( f(x), g(x) \)在区间\([a, b]\)上是可积的,那么有:\[ \int_{a}^{b} (\alpha f(x) + \beta g(x))dx = \alpha \int_{a}^{b} f(x)dx + \beta \int_{a}^{b} g(x)dx \]这个性质表明了定积分的线性性,即在一个区间上进行线性组合的函数的积分等于线性组合的函数的积分的线性组合。
3. 定积分的保号性如果在区间\([a, b]\)上有\( f(x) \geq 0 \),那么有:\[ \int_{a}^{b} f(x)dx \geq 0 \]这个性质表明了定积分的保号性,即当被积函数在一个区间上非负时,其积分结果也是非负的。
大学高等数学教材目录第一章前言1.1 数学教材的重要性1.2 数学教材的组成要素第二章函数与极限2.1 函数的概念与性质2.1.1 函数的定义2.1.2 函数的图像与性质2.2 极限的概念与性质2.2.1 极限的定义2.2.2 无穷小量与无穷大量2.3 一元函数的极限2.3.1 极限的运算法则2.3.2 连续函数与间断点2.4 多元函数的极限2.4.1 多元函数的定义与性质2.4.2 多元函数的极限计算2.5 极限存在准则与极限运算法则 2.5.1 极限存在准则2.5.2 极限运算法则的应用第三章导数与微分3.1 导数的概念与性质3.1.1 导数的定义与解释3.1.2 导数的几何意义与物理意义 3.2 导数运算法则3.2.1 导数的四则运算3.2.2 链式法则与复合函数的导数 3.3 高阶导数与隐函数求导3.3.1 高阶导数的定义3.3.2 隐函数求导的方法3.4 微分与微分近似3.4.1 微分的定义与计算3.4.2 微分近似与局部线性化第四章积分与定积分4.1 不定积分与反导函数4.1.1 不定积分的概念与性质4.1.2 基本积分公式与换元积分法4.2 定积分的概念与性质4.2.1 定积分的定义与几何意义4.2.2 定积分的计算方法4.3 定积分的应用4.3.1 几何应用:曲线长度与曲面面积 4.3.2 物理应用:质量、质心与弧长 4.4 微积分基本定理及其应用4.4.1 第一型与第二型微积分基本定理 4.4.2 牛顿-莱布尼茨公式的推广第五章一元函数的级数5.1 数项级数5.1.1 数项级数的概念与性质5.1.2 数项级数的敛散性判定5.2 幂级数与函数展开5.2.1 幂级数的收敛半径5.2.2 幂级数的基本性质与展开5.3 函数项级数5.3.1 函数项级数的概念与性质5.3.2 函数项级数的一致收敛性5.4 泰勒级数与傅里叶级数5.4.1 泰勒级数的定义与应用5.4.2 傅里叶级数的定义与计算第六章多元函数与偏导数6.1 多元函数的概念与性质6.1.1 多元函数的定义6.1.2 多元函数的极限与连续性6.2 偏导数与全微分6.2.1 偏导数的定义与计算6.2.2 全微分与多元函数的微分近似 6.3 多元复合函数与隐函数求导6.3.1 多元复合函数的偏导数6.3.2 多元隐函数的求导方法6.4 梯度与方向导数6.4.1 多元函数的梯度6.4.2 方向导数与梯度的应用第七章多元函数的积分学7.1 二重积分的概念与性质7.1.1 二重积分的定义与几何意义 7.1.2 二重积分的计算方法7.2 二重积分的应用7.2.1 几何应用:面积与质心7.2.2 物理应用:质量与矩7.3 三重积分的概念与性质7.3.1 三重积分的定义与几何意义 7.3.2 三重积分的计算方法7.4 三重积分的应用7.4.1 几何应用:体积与质心7.4.2 物理应用:质量与转动惯量7.5 曲线与曲面积分7.5.1 第一型曲线积分7.5.2 第二型曲线积分与曲面积分第八章常微分方程8.1 微分方程的基本概念8.1.1 微分方程的定义与分类8.1.2 初值问题与解的存在唯一性 8.2 一阶常微分方程8.2.1 可分离变量方程8.2.2 一阶线性方程8.3 二阶线性常系数齐次微分方程 8.3.1 特征方程与通解形式8.3.2 边值问题与特解法8.4 高阶线性常系数齐次微分方程 8.4.1 特征方程与通解形式8.4.2 边值问题与特解法8.5 常微分方程的应用8.5.1 骨架曲线与特解的选择8.5.2 物理领域中的应用第九章向量代数与空间解析几何9.1 向量的基本概念与运算9.1.1 向量的定义与性质9.1.2 向量的线性运算与数量积9.2 空间直线与平面9.2.1 空间直线的参数方程9.2.2 空间平面的法向量与标准方程 9.3 空间曲线与曲面9.3.1 曲线的参数方程与切向量9.3.2 曲面的方程与切平面9.4 空间解析几何的应用9.4.1 空间中的曲线运动问题9.4.2 几何体的性质与计算第十章空间向量与向量函数微积分10.1 空间向量的运算10.1.1 空间向量的定义与基本性质10.1.2 空间向量的线性运算与向量积 10.2 空间向量的微积分10.2.1 向量函数的极限与连续性10.2.2 向量函数的导数与曲率10.3 曲线与曲面的向量微积分10.3.1 参数曲线的弧长与切向量10.3.2 向量场与曲面积分第十一章多元函数与多元积分11.1 多元复合函数与链式法则11.1.1 高阶导数的定义与计算11.1.2 链式法则与复合函数的高阶导数 11.2 多元函数的积分11.2.1 多元函数的定积分11.2.2 重积分的计算方法11.3 极坐标与球面坐标系下的积分11.3.1 极坐标系下的二重积分11.3.2 球面坐标系下的三重积分11.4 多元积分的应用11.4.1 几何应用:质心与转动惯量 11.4.2 物理应用:质量、通量与功率第十二章向量场与曲线积分12.1 向量场的基本概念和性质12.1.1 向量场的定义与性质12.1.2 向量场的流线与发散度12.2 曲线积分的概念与性质12.2.1 曲线积分的定义12.2.2 曲线积分的计算方法12.3 格林公式与环量12.3.1 格林公式的表述与应用12.3.2 环量与全微分12.4 曲面积分的概念与性质12.4.1 曲面积分的定义与计算12.4.2 流量与高斯公式12.5 散度与环量12.5.1 散度的定义与计算12.5.2 散度与高斯公式的应用第十三章曲线曲面积分与斯托克斯公式 13.1 曲线积分的类型与计算13.1.1 第一型与第二型曲线积分13.1.2 曲线积分计算方法13.2 曲面积分的类型与计算13.2.1 第一型与第二型曲面积分13.2.2 曲面积分计算方法13.3 散度定理与高斯公式13.3.1 散度定理的表述与应用13.3.2 高斯公式与流量计算13.4 斯托克斯定理与环量13.4.1 斯托克斯定理的表述与应用 13.4.2 环量计算与应用第十四章常微分方程数值解14.1 常微分方程初值问题的数值解法14.1.1 欧拉方法与改进的欧拉方法14.1.2 龙格-库塔方法14.2 常微分方程边值问题的数值解法14.2.1 二点边值问题与分段线性插值14.2.2 有限差分方法与微分方程的离散化14.3 常微分方程数值解的误差估计14.3.1 局部截断误差与全局截断误差14.3.2 稳定性与收敛性的分析结语15.1 数学学科的重要性与发展15.2 高等数学教材的应用与拓展15.3 数学学科对于人类社会的贡献本教材将大学高等数学知识进行系统整理和归纳,以便帮助读者更好地学习和理解数学的基本概念、原理和应用。
高考定积分知识点总结定积分是高等数学中的重要内容之一,也是高考数学考试中常见的题型。
本文将对高考中常见的定积分知识点进行总结和归纳,以帮助同学们更好地准备考试。
一、定积分的基本概念定积分是对一个区间上的函数进行求和的过程。
区间可以是有限区间,也可以是无限区间。
定积分的计算可以看作是曲线下的面积,也可以理解为函数的反导数。
二、定积分的性质定积分具有一些重要的性质,包括线性性质、区间可加性、保号性等。
这些性质在定积分的计算和性质分析中起到了重要作用。
三、定积分的计算方法在高考中,求定积分通常通过几种基本的计算方法来完成,包括换元法、分部积分法、定积分的性质等。
不同的计算方法适用于不同的函数和题目类型,需要根据具体情况选择合适的方法。
四、定积分的应用定积分在数学中有广泛的应用。
在高考中,常见的应用包括计算面积、求曲线的弧长、求平均值等。
理解和掌握这些应用可以帮助我们更好地解决与定积分相关的题目。
五、典型题目解析以下是一些高考中常见的定积分题目及其解析,供同学们参考和练习:例题一:计算定积分∫(0 to 1) x^2 dx解析:根据定积分的计算公式,我们有∫(0 to 1) x^2 dx = [x^3/3] (0 to 1) = 1/3例题二:计算不定积分∫(2 to 5) (2x+1) dx解析:根据定积分的计算公式,我们有∫(2 to 5) (2x+1) dx = [x^2+x] (2 to 5) = (5^2+5) - (2^2+2) = 24例题三:求函数f(x)=2x在区间[0,3]上的平均值。
解析:函数的平均值可以通过定积分来计算,平均值=1/(b-a) * ∫(a to b) f(x) dx = 1/(3-0) * ∫(0 to 3) 2x d x = 1/3 * [x^2] (0 to 3) = 1/3 * (3^2-0^2) = 3通过以上例题解析,我们可以看到定积分的计算方法和应用的具体过程,希望同学们通过练习更加熟练掌握这些知识点。
数学选修2-2知识点总结一、导数1.函数的平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000.3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。
4导数的背景(1)切线的斜率;(2)瞬时速度;6、常见的导数和定积分运算公式:若()g x均可导(可积),则有:f x,()用导数求函数单调区间的步骤:①求函数f(x)的导数'()f x②令'()f x>0,解不等式,得x的范围就是递增区间.③令'()f x<0,解不等式,得x的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。
7.求可导函数f(x)的极值的步骤:(1)确定函数的定义域。
(2) 求函数f(x)的导数'()f x(3)求方程'()f x=0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如检查/()果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值8.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。
不定定积分不定定积分积分是高等数学中的一个重要概念,可以用来计算曲线下的面积、求解微分方程的通解以及求解函数与函数之间的面积、体积等问题。
其中,不定定积分是积分中最常见的一种形式。
在本文中,我们将对不定定积分进行讲解。
一、定义不定积分也称原函数或反导函数,其定义如下:若F'(x)=f(x),则称函数F(x)为f(x)在区间I上的一个原函数。
在这个定义中,F(x)是f(x)的一个不定积分,记作∫f(x)dx=C,其中C是一个任意常数。
二、基本公式不定积分有许多基本公式,其中最基本的是积分的线性性质:如果f(x)和g(x)都有原函数,则有:1.∫[f(x)+g(x)]dx=∫f(x)dx+∫g(x)dx2.∫k⋅f(x)dx=k⋅∫f(x)dx,其中k为常数此外,不定积分还有其他一些常见的基本公式:1. ∫xⁿdx=1/(n+1)⋅x^(n+1)+C,其中n≠-12. ∫eˣdx=eˣ+C3. ∫aˣdx=1/(lna)⋅aˣ+C,其中a>0且a≠14. ∫sinxdx=-cosx+C,∫cosxdx=sinx+C5. ∫sec²xdx=tanx+C,∫csc²xdx=-cotx+C6. ∫1/(1+x²)dx=arctanx+C7. ∫1/(√(1-x²))dx=arcsinx+C三、积分换元法有时候,如果要求解的不定积分不是按照上面的基本公式来求解的,就需要使用积分换元法。
积分换元法的基本思想是:将积分函数中的一部分分解出来,然后做一个变量代换,最后求解出新的积分式。
例如,对于∫2x⋅(x²+1)³dx,我们可以让u=x²+1,即可将原函数变成∫(u-1)³du。
然后便可以使用基本公式进行求解。
四、分部积分法分部积分法是求解不定积分中的另一种方法。
分部积分法基本思想是:将积分函数分解成两部分,其中一部分作为被积函数,另一部分作为求微分的函数。
不定积分与定积分的比较与联系不定积分与定积分是微积分中的两个重要概念。
尽管它们具有不同的定义和用途,但它们之间存在一定的联系和相互影响。
本文将比较和探讨不定积分与定积分之间的异同点以及它们在实际问题中的应用。
不定积分,也被称为反导函数,是一个数学概念,表示函数的原函数(即该函数的导数)。
不定积分通常用符号∫f(x)dx来表示,其中f(x)是被积函数,dx表示自变量x的微小变化量。
不定积分的结果是一个函数加上一个常数(即积分常数),因为一个函数的导数有无穷多个原函数。
不定积分与定积分之间存在着重要的联系。
事实上,不定积分可以看作定积分的“逆运算”。
具体来说,如果我们已知一个函数的导数,那么通过求其不定积分,我们可以得到该函数的原函数。
类似地,如果我们已知一个函数的原函数,我们可以求它在两个不同点之间的定积分来计算该函数在这两个点之间的增量。
因此,不定积分和定积分可以相互使用,从而在解决实际问题时提供了便利。
在应用中,定积分可以用来计算曲线与坐标轴之间的面积。
通过将曲线下方的面积取负值,我们可以使用定积分来计算曲线上方的面积。
此外,定积分还可以用来计算物体的质量、重心和惯性矩等物理量,以及人口数量、总收入和总支出等经济学问题。
通过求函数的定积分,我们可以得到这些量的准确数值。
不定积分在计算微分方程和解决最优化问题时也发挥着重要作用。
微分方程是描述自然界和工程中许多现象的基本工具。
通过求微分方程的不定积分,我们可以找到函数满足给定条件的特定解。
此外,不定积分还可以帮助我们计算函数的平均值、方差和概率密度函数等统计量。
通过将不定积分应用于最优化问题,我们可以确定函数的最大和最小值,从而找到问题的最佳解。
尽管不定积分和定积分在概念上不同,但它们之间有着紧密的联系。
通过相互转换和运用,我们可以通过不定积分得到定积分的结果,或者通过定积分求解不定积分的值。
这种联系使得不定积分和定积分成为求解问题和分析函数性质的强大工具。
定积分及其应用笔记一、定积分的概念定积分是积分的一种,是函数在区间[a,b]上的积分和的极限。
即,对于函数f(x),如果存在一个常数I,对于任意给定的正数ε,都存在一个正数δ,使得当0<Δx<δ时,有Σf(ξi)Δxi - I<ε,那么常数I就叫做函数f(x)在区间[a,b]上的定积分。
二、定积分的性质1. 线性性质:∫(a+b)f(x)dx=∫af(x)dx+∫bf(x)dx2. 积分区间的可加性:∫(a→b)f(x)dx=∫(a→c)f(x)dx+∫(c→b)f(x)dx3. 积分区间的可减性:∫(a→b)f(x)dx=∫(a→d)f(x)dx-∫(d→b)f(x)dx4. 函数的线性组合的积分等于各个函数的积分之和:∫(a→b)[af(x)+bf(x)]dx=a∫(a→b)f(x)dx+b∫(a→b)f(x)dx5. 被积函数的常数倍的积分等于常数乘以被积函数的积分:∫(a→b)kf(x)dx=k∫(a→b)f(x)dx6. 被积函数的反函数的积分等于被积函数的积分:∫(a→b)f^(-1)(x)dx=∫(f(a)→f(b))f(x)dx7. 反常积分的基本性质:∫(+∞→-∞)f(x)dx=-∫(-∞→+∞)f(x)dx,∫(+∞→-∞)[af(x)+bg(x)]dx=a∫(+∞→-∞)f(x)dx+b∫(+∞→-∞)g(x)dx8. 被积函数的偶次幂的积分等于偶次幂的积分的四倍:∫(a→b)(f^2)(x)dx=4∫(a→b)[f(x)+f(-x)]/2dx9. 被积函数的奇次幂的积分等于奇次幂的积分的二倍:∫(a→b)([-1]^nf^n)(x)dx=[(-1)^nn!]/2[f^(n-1)(b)-f^(n-1)(a)]+C,其中C是常数10. 奇偶性质:如果被积函数是偶函数,那么它的积分等于在[a,b]上方的积分加上在[b,a]下方的积分;如果被积函数是奇函数,那么它的积分等于在[a,b]上方的积分减去在[b,a]下方的积分。