华东师大版九年级下册数学 27.1.3圆周角 同步练习(含解析)
- 格式:doc
- 大小:198.81 KB
- 文档页数:14
华东师大版九年级数学下册第27章 圆同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、矩形ABCD 中,AB =8,BC =4,点P 在边AB 上,且AP =3,如果⊙P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( )A .点B 、C 均在⊙P 内B .点B 在⊙P 上、点C 在⊙P 内 C .点B 、C 均在⊙P 外D .点B 在⊙P 上、点C 在⊙P 外2、如图,点A 、B 、C 在O 上,50∠=°ACB ,则OAB ∠的度数是( )A .100°B .50°C .40°D .25°3、O 的半径为5 , 若直线l 与该圆相交, 则圆心O 到直线l 的距离可能是 ( )A .3B .5C .6D .104、如图,在⊙O 中,OC ⊥AB ,若∠BOC =40°,则∠OAB 等于( )A.40°B.50°C.80°D.120°5、如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若18ADB∠=︒,则这个正多边形的边数为()A.10 B.11 C.12 D.136、如图,CD是ABC的高,按以下步骤作图:(1)分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于G、H两点.(2)作直线GH交AB于点E.(3)在直线GH上截取EF AE=.(4)以点F为圆心,AF长为半径画圆交CD于点P.则下列说法错误的是()A .AE BE =B .GH CD ∥C .AB =D .45APB ∠=︒7、如图,AB 是⊙O 的直径,点D 在⊙O 上,连接OD 、BD ,过点D 作⊙O 的切线交BA 延长线于点C ,若∠C =40°,则∠B 的度数为( )A .15°B .20°C .25°D .30° 8、如图,AB 是O 的直径,CD 是O 的弦.50CAB ∠=,则∠D =( )度A .30B .40C .50D .609、如图,点C 是以点O 为圆心,AB 为直径的半圆上的动点(点C 不与点A ,B 重合),4AB =.设弦AC 的长为x ,ABC ∆的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .10、如图,点A ,B ,C 在⊙O 上,∠ACB =35°,则∠AOB 的度数是( )A .75°B .70°C .65°D .55°第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、一个扇形的弧长是6cm π,面积是215cm π,则此扇形的半径为__________.2、如图,A 与x 轴交于()2,0B 、()4,0C 两点,3OA =,点P 是y 轴上的一个动点,PD 切O 于点D ,则△ABD 的面积的最大值是________;线段PD 的最小值是________.3、如图,已知⊙O 的半径为2,弦AB 的长度为2,点C 是⊙O 上一动点若△ABC 为等腰三角形,则BC 2为 _______.4、已知60°的圆心角所对的弧长l是3.14厘米,则它所在圆的周长是______厘米.5、如图,一次函数1=+的图象与x轴交于点A,与y轴交于点B,作ABO的外接圆C,y x则图中阴影部分的面积为______.(结果保留π)6、如图,矩形ABCD中,1AB=,AD=,以BC的中点E为圆心的弧MPN与AD相切,则图中阴影部分的面积为__________.∠的度数为______.7、如图,AB,CD是O的直径,弦CE AB,CE所对的圆心角为40°,则AOC8、已知五边形ABCDE是O的内接正五边形,则AOB∠的度数为______.9、如图,将半径为10cm的圆形纸片沿一条弦AB折叠,折叠后弧AB的中点C与圆心O重叠,则弦AB的长度为________cm.10、如图,在矩形ABCD 中4AB =,AD =AC 与BD 交于点O ,以点O 为圆心,12AD 的长为半径画弧,与两条对角线相交,则图中阴影部分的面积是________.三、解答题(5小题,每小题8分,共计40分)1、已知如图,等腰△ABC 中,AB=AC ,∠BAC=α(α>90︒),F 为BC 中点,D 为BC 延长线上一点,以点A 为中心,将线段AD 逆时针旋转α得到线段AE ,连接CE ,DE .(1)补全图形并比较∠BAD 和∠CAE 的大小;(2)用等式表示CE ,CD ,BF 之间的关系,并证明;(3)过F 作AC 的垂线,并延长交DE 于点H ,求EH 和DH 之间的数量关系,并证明.2、元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系xOy 中,OA 经过坐标原点O ,并与两坐标轴分别交于B 、C 两点,点B 的坐标为()2,0,点D 在A 上,且30ODB ∠=︒,求OA 的半径和圆心A 的坐标.元元的做法如下,请你帮忙补全解题过程:解:如图2,连接BC .作AELOB 于E 、AF ⊥OC 于F . ∴12OE OB =、12OF OC =(依据是 ① )∵30ODB ∠=︒,∴30OCB ODB ∠=∠=︒(依据是 ② ).∵90BOC ∠=°,.∴BC 是A 的直径(依据是 ③ ). ∴12OB BC = ∵2OB =,∴A 的坐标为( ④ )A 的半径为 ⑤3、如图,AB 为O 的直径,弦CD AB ⊥于点E ,连接,AC BC BD OF AC ⊥,,于点F ,且1OF =.(1)求BD 的长;(2)当30D ∠=︒时,求AC 的长和阴影部分的面积(结果保留根号和π).4、定义:若图形M 与图形N 有且只有两个公共点,则称图形M 与图形N 互为“双联图形”,即图形M 是图形N 的“双联图形”,图形N 是图形M 的“双联图形”.(1)如图1,在平面直角坐标系xOy 中,O 的半径为2,下列函数图象中与O 互为“双联图形”的是________(只需填写序号);①直线1y x =+;②双曲线1y x =;③抛物线223y x x =++.(2)若直线y x b =-+与抛物线21y x =+互为“双联图形”,且直线y x b =-+不是双曲线1y x =的“双联图形”,求实数b 的取值范围;(3)如图2,已知()2,0A -,()4,0B ,()1,3C 三点.若二次函数()213y a x =++的图象与ABC 互为“双联图形”,直接写出a 的取值范围.5、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,F 为AB 延长线上一点,连接CF ,DF .(1)若OE =3,BE =2,求CD 的长;(2)若CF 与⊙O 相切,求证DF 与⊙O 相切.-参考答案-一、单选题1、D【解析】【分析】如图所示,连接DP,CP,先求出BP的长,然后利用勾股定理求出PD的长,再比较PC与PD的大小,PB与PD的大小即可得到答案.【详解】解:如图所示,连接DP,CP,∵四边形ABCD是矩形,∴∠A=∠B=90°,∵AP=3,AB=8,∴BP=AB-AP=5,∵5PD==,∴PB=PD,>=,∴PC PB PD∴点C在圆P外,点B在圆P上,故选D.【点睛】本题主要考查了点与圆的位置关系,勾股定理,矩形的性质,熟知用点到圆心的距离与半径的关系去判断点与圆的位置关系是解题的关键.2、C【解析】【分析】先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.【详解】∵∠ACB=50°,∴∠AOB=100°,∵OA=OB,∴∠OAB=∠OBA= 40°,故选:C.【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3、A【解析】【分析】根据直线l和⊙O相交⇔d<r,即可判断.【详解】解:∵⊙O的半径为5,直线l与⊙O相交,∴圆心D到直线l的距离d的取值范围是0≤d<5,故选:A.【点睛】本题考查直线与圆的位置关系,解题的关键是记住①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.4、B【解析】【分析】根据OA,OB都为半径可知,△AOB为等腰三角形,根据等腰三角形三线合一的性质,可知∠AOC=∠BOC=40°,进而可以算出∠AOB的角度,从而可以算出∠OAB的度数.【详解】解:在⊙O中,OA=OB,∴△AOB为等腰三角形,∵OC⊥AB,∴∠AOC=∠BOC=40°,∴∠AOB=80°,∴∠OAB=(180°-∠AOB)÷2=50°.【点睛】本题考查圆的性质、等腰三角形的性质、垂径定理、利用圆的性质结合等腰三角形的性质是解决本题的关键,也可利用垂径定理解决本题.5、A【解析】【分析】作正多边形的外接圆,连接 AO,BO,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解.【详解】解:如图,作正多边形的外接圆,连接AO,BO,∴∠AOB=2∠ADB=36°,∴这个正多边形的边数为36036=10.故选:A.【点睛】此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.6、C【解析】【分析】连接AF、BF,由作法可知,FE垂直平分AB,再根据EF AE可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.【详解】解:连接AF、BF,由作法可知,FE垂直平分AB,∴AE BE =,故A 正确;∵CD 是ABC 的高,∴GH CD ∥,故B 正确;∵EF AE =,AE BE =,∴2AB EF =,故C 错误;∵EF AE =,∴∠AFE =45°,同理可得∠BFE =45°,∴∠AFB =90°,1452APB AFB ∠=∠=︒,故D 正确; 故选:C .【点睛】本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.7、C【解析】【分析】根据切线的性质得到∠CDO=90°,求得∠COD=90°-40°=50°,根据等腰三角形的性质和三角形外角的性质即可得到结论.【详解】解:∵CD是⊙O的切线,∴∠CDO=90°,∵∠C=40°,∴∠COD=90°-40°=50°,∵OD=OB,∴∠B=∠ODB,∵∠COD=∠B+∠ODB,∠COD=25°,∴∠B=12故选:C.【点睛】本题考查了切线的性质,圆周角定理,三角形外角的性质,等腰三角形的性质,熟练掌握切线的性质是解题的关键.8、B【解析】【分析】由AB是⊙O的直径,推出∠ACB=90°,再由∠CAB=50°,求出∠B=40°,根据圆周角定理推出∠D=40°.【详解】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB =50°,∴∠B =40°,∴∠D =40°.故选:B .【点睛】本题主要考查圆周角定理,余角的性质,关键在于推出∠A 的度数,正确的运用圆周角定理.9、B【解析】【分析】由AB 为圆的直径,得到∠C =90°,在Rt △ABC 中,由勾股定理得到BC =而列出△ABC 面积的表达式即可求解.【详解】解:∵AB 为圆的直径,∴∠C =90°,4AB =,AC x =,由勾股定理可知:∴BC ==∴1122∆=⋅=⋅ABC S BC AC x 此函数不是二次函数,也不是一次函数,∴排除选项A 和选项C , AB 为定值,当OC AB ⊥时,ABC ∆面积最大,此时AC =即x =y 最大,故排除D ,选B .故选:B .【点睛】本题考查了动点问题的函数图象,根据题意列出函数表达式是解决问题的关键.10、B【解析】【分析】直接根据圆周角定理求解.【详解】解:35ACB ∠=︒,270AOB ACB ∴∠=∠=︒.故选:B .【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.二、填空题1、5cm【解析】【分析】设此扇形的半径为:cm x ,扇形的圆心角为θ,根据弧长公式和扇形面积计算公式的性质,分别得6180cm x πθπ=,2215360cm x πθπ=,再通过求解一元一次方程,即可得到答案.【详解】设此扇形的半径为:cm x ,扇形的圆心角为θ根据题意,得:6180cm x πθπ=,2215360cm x πθπ= 将6180cm x πθπ=代入到2215360cm x πθπ=,得:6152x ππ⨯= ∴5x =故答案为:5cm .【点睛】本题考查了扇形面积、弧长公式、一元一次方程的知识,解题的关键是熟练掌握扇形面积、弧长的性质,从而完成求解.2、 12##0.5 【解析】【分析】根据题中点的坐标可得2BC =圆的直径,半径为1,分析ABD 以AB 定长为底,点D 在圆上,高最大为圆的半径,即可得出三角形最大的面积;连接AP ,设点()0,P y ,根据切线的性质及勾股定理可得PD【详解】解:如图所示:当点P 到如图位置时,ABD 的面积最大,∵()2,0B 、()4,0C ,∴2BC =圆的直径,半径为1,∴ABD 以AB 定长为底,点D 在圆上,高最大为圆的半径,如图所示:此时ABD 面积的最大值为:111122⨯⨯=; 如图所示:连接AP ,∵PD 切A 于点D ,∴AD PD ⊥,∴90ADP ∠=︒,设点()0,P y ,在Rt AOP 中,3OA =,OP y =,∴22229AP OA OP y =+=+,在Rt APD 中,1AD =,∴22222918PD AP AD y y =-=+-=+,则PD当0y =时,PD 取得最小值,=故答案为:①12;②【点睛】题目主要考查切线的性质及勾股定理的应用,理解题意,作出相应图形求出解析式是解题关键.3、4或12或8【解析】【分析】分三种情况讨论:当AB=BC时、当AB=AC时、当AC=BC时,根据垂径定理和勾股定理即可求解.【详解】解:如图1,当AB=BC时,BC=2,故BC2=4;如图2,当AB=AC=2时,过A作AD⊥BC于D,连接OC,∴BD=CD,设OD=x,则在Rt△ACD中,AC2=CD2+AD2,在Rt△OCD中,OC2=CD2+OD2,∴CD2= AC2-AD2= OC2- OD2即22-(2-x)2= 22-x2解得x=1∴CD∴BC∴BC2=12;如图3,当AC=BC时,则C在AB的垂直平分线上,∴CD经过圆心O,AD=BD=12AB=1,∵OA=2,∴OD=∴CD=CO+OD=C'D= C'O-OD=∴BC2=CD2+BD2=(2+12=8+BC'2=C'D2+BD2=(2+12=8-综上,BC2为4或12或8±故答案为:4或12或8±【点睛】本题考查了垂径定理,等腰三角形的性质,勾股定理的应用,熟练掌握性质定理是解题的关键.4、18.84【解析】【分析】先根据弧长公式求得πr ,然后再运用圆的周长公式解答即可.【详解】解:设圆弧所在圆的半径为r 厘米, 则60 3.14180r π⨯=, 解得9.42r π=,则它所在圆的周长为229.4218.84r π=⨯=(厘米),故答案为:18.84.【点睛】本题主要考查了弧长公式、圆的周长公式等知识点,牢记弧长公式是解答本题的关键.5、3π【解析】【分析】先求出A 、B 、C 坐标,再证明三角形BOC 是等边三角形,最后根据扇形面积公式计算即可.【详解】过C 作CD ⊥OA 于D∵一次函数1y =+的图象与x 轴交于点A ,与y 轴交于点B ,∴当0x =时,1y =,B 点坐标为(0,1)当0y =时,y =A 点坐标为∴2,1AB OB OA ===,∵作ABO 的外接圆C ,∴线段AB 中点C 的坐标为1)2,112OC BC AB OB ==== ∴三角形BOC 是等边三角形∴120ACO ∠=︒∵C 的坐标为1)2∴12CD =∴2120111360223AOC ACO S S S ππ︒=-=⨯⨯-=︒扇形故答案为:3π【点睛】 本题主要考查了一次函数的综合运用,求扇形面积.用已知点的坐标表示相应的线段是解题的关键.6、3π##13π 【解析】【分析】如图,连接,PE 证明四边形,ABEP 四边形PECD 都为矩形,可得扇形半径为1,再求解,,,MEB NEC MEN 再利用扇形的面积公式进行计算即可.【详解】解:如图,连接,PE扇形的弧MPN 与AD 相切,,PE AD矩形ABCD ,∴ 四边形,ABEP 四边形PECD 都为矩形,∴扇形半径1ME PE NE AB ====.在矩形ABCD 中,AD =E 为BC 的中点,∴在Rt BME △中,12BE AD ==.cos BE MEB ME ∠==, 30MEB ∴∠=︒,同理:30,NEC∴ 1802120MEN MEB ∠=︒-∠=︒.212013603S ππ⨯∴==阴影. 故答案为:3π 【点睛】 本题考查的是矩形的性质与判定,锐角三角函数的应用,扇形面积的计算,求解扇形的半径为1,及30MEB ∠=︒,30NEC ∠=︒是解本题的关键.7、70°【分析】连接OE,由弧CE的所对的圆心角度数为40°,得到∠COE=40°,根据等腰三角形的性质和三角形的内角和定理可求出∠OCE,根据平行线的性质即可得到∠AOC的度数.【详解】解:连接OE,如图,∵弧CE所对的圆心角度数为40°,∴∠COE=40°,∵OC=OE,∴∠OCE=∠OEC,∴∠OCE=(180°-40°)÷2=70°,∵CE//AB,∴∠AOC=∠OCE=70°,故答案为:70°.【点睛】本题主要考查了等腰三角形的性质,三角形内角和定理,弧与圆心角的关系,平行线的性质,求出∠COE=40°是解题的关键.8、72°##72度【解析】根据正多边形的中心角的计算公式:360n︒计算即可.【详解】解:∵五边形ABCDE是⊙O的内接正五边形,∴五边形ABCDE的中心角∠AOB的度数为3605︒=72°,故答案为:72°.【点睛】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:360n︒是解题的关键.9、【解析】【分析】连接OC交AB于点D,再连接OA.根据轴对称的性质确定OC AB⊥,OD=CD;再根据垂径定理确定AD=BD;再根据勾股定理求出AD的长度,进而即可求出AB的长度.【详解】解:如下图所示,连接OC交AB于点D,再连接OA.∵折叠后弧AB的中点C与圆心O重叠,∴OC AB⊥,OD=CD.∴AD=BD.∵圆形纸片的半径为10cm ,∴OA =OC =10cm .∴OD =5cm .∴AD =.∴BD =.∴AB AD BD =+=.故答案为:【点睛】本题考查轴对称的性质,垂径定理,勾股定理,综合应用这些知识点是解题关键.10、4-π##4π-+【解析】【分析】如图,利用()2AOB OEF S S S ∆=-阴影部分扇形求解即可.【详解】解:如图,在矩形ABCD 中,90BAD ∠=︒ ,4AB =,AD =tanAB ADB AD ∠===, 30ADB ∴∠=︒ ,60ABD ∴∠=︒,AO OB =,ABO ∴∆是等边三角形,60AOB ∴∠=︒,4AO AB ==,依题意得,1122OE AD ==⨯= (260?2360OEF S ππ∴==扇形,由中心对称的性质得,2OGH S π∴=扇形,又224AOB S OA ∆∴===()()2224AOB OEF S S S ππ∆∴=-==阴影部分扇形,故答案为:4π.【点睛】本题考查了矩形的性质,直角三角形的性质,正切的定义,等边三角形的判定和性质,扇形的面积等知识,利用正切定义求出30ADB ∠=︒是解本题的关键.三、解答题1、 (1)补全图形见解析,BAD CAE ∠=∠;(2)2CE CD BF -=;(3)EH DH =,理由见解析.【解析】【分析】(1)根据题意补全图形即可,再根据旋转的性质可知BAC DAE ∠=∠,即BAC CAD DAE CAD ∠+∠=∠+∠,即得出BAD CAE ∠=∠;(2)由旋转可知AD AE =,即可利用“SAS ”证明BAD CAE ≅△△,得出BD CE =.再由点F 为BC 中点,即可得出2CE CD BF -=.(3)连接AF ,作AN DE ⊥,由等腰三角形“三线合一”可知90AFD ∠=︒,12FAB FAC α∠=∠=.即得出180AFD AND ∠+∠=︒,说明A 、F 、D 、N 四点共圆.再根据圆周角定理可知AFN ADN ∠=∠.再次利用等腰三角形“三线合一”的性质可知EN DN =,1902AFN ADN α∠=∠=︒-.即得出90AFN FAC ∠+∠=︒.再由90AFH FAC ∠+∠=︒,即可说明 点H 与点N 重合,即得出结论EH DH =.(1)如图,即为补全的图形,根据题意可知BAC DAE α∠=∠=,∴BAC CAD DAE CAD ∠+∠=∠+∠,即BAD CAE ∠=∠.(2)由旋转可知AD AE =,∴在BAD 和CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴()BAD CAE SAS ≅,∴BD CE =.∵BD BC CD =+,∴CE BC CD =+.∵点F 为BC 中点,∴2BC BF =,∴2CE BF CD =+,即2CE CD BF -=.(3)如图,连接AF ,作AN DE ⊥,∵AB=AC ,F 为BC 中点,∴90AFD ∠=︒,12FAB FAC α∠=∠=. 根据作图可知90AND ∠=︒,∴180AFD AND ∠+∠=︒,∴A 、F 、D 、N 四点共圆,∴AFN ADN ∠=∠.∵AD AE =,AN DE ⊥,∴EN DN =,11(180)9022AFN ADN DAE α∠=∠=︒-∠=︒-. ∴11909022AFN FAC αα∠+∠=︒-+=︒. ∵90AFH FAC ∠+∠=︒,且点H 在线段DE 上,∴点H 与点N 重合,∴EH DH =.【点睛】本题考查旋转的性质,全等三角形的判定和性质,等腰三角形的性质,四点共圆,圆周角定理等知识,较难.利用数形结合的思想是解答本题的关键.2、垂径定理,圆周角定理,圆周角定理,(1,2【解析】【分析】根据垂径定理,圆周角定理依次分析解答.【详解】解:如图2,连接BC .作AE ⊥OB 于E 、AF ⊥OC 于F . ∴12OE OB =、12OF OC =(依据是垂径定理)∵30ODB ∠=︒,∴30OCB ODB ∠=∠=︒(依据是圆周角定理).∵90BOC ∠=°,.∴BC 是A 的直径(依据是圆周角定理). ∴12OB BC =, ∵2OB =,∴A 的坐标为(1,A 的半径为2,故答案为:垂径定理,圆周角定理,圆周角定理,(1,2.【点睛】此题考查了圆的知识,垂径定理、圆周角定理,熟记各定理知识并综合应用是解题的关键.3、(1)2;(2)AC 的长为43π,阴影部分的面积为43π【解析】【分析】(1)根据垂径定理可得AF CF =、BC BD =,从而得到OF 为ABC 的中位线,BC BD =,即可求解;(2)连接OC ,求得120AOC ∠=︒,利用含30直角三角形的性质求得半径,即可求解.【详解】解:(1)∵OF AC ⊥,∴AF FC =,∵OA OB =,∴OF 为ABC 的中位线∴22BC OF ==,∵AB CD ⊥,∴BC BD =,∴2BD BC ==;(2)连接OC ,如下图:∵30CAB D ∠=∠=︒,OA OC =,∴30OAC OCA ∠=∠=︒,∴120AOC ∠=︒,在Rt ABC 中,∵90ACB ∠=︒,2BC =,30CAB ∠=︒,∴24AB BC ==,AC ==∴AC 的长120241803ππ==,阴影部分的面积2120214136023ππ=-⨯= 【点睛】此题考查了圆的垂径定理,弦、弧、圆心角之间的关键,三角形中位线的性质,等腰三角形的性质,含30直角三角形的性质,弧长以及扇形面积的计算,解题的关键是掌握并灵活运用相关性质求解.4、 (1)①(2)b 的取值范围是324b <≤(3)138a -<<-或3025a -<< 【解析】【分析】(1)根据图形M 与图形N 是双联图形的定义可直接判断即可;(2)根据函数解析式联立方程,再根据“双联图形”的定义,由一元二次方程的判别式可得结论;(3)根据双联图形的宝座进行判断即可.(1)选项①的直线1y x =+经过第一、二、三象限,且经过点(0,1)和(-1,0)又O 的半径为2,∴这两个图形有且只有两个公共点,∴这两个图形是“双联图形”; 选项②的双曲线1y x=在第一、三象限与图1中的图象分别有两个公共点,一共有四个公共点,不符合“双联图形”的定义,故这两个图形不是“双联图形”;选项③的抛物线2223=(+1)+2y x x x =++的顶点坐标渐(-1,2),并且开口方向向上,与图1中的图象没有公共点,故这两个图形不是“双联图形”;∴选①故答案为①;(2)已知直线y x b =-+与抛物线21y x =+有且只有两个公共点, ∴将y x b =-+代入抛物线21y x =+中,得,210x x b ++-= 配方得,213()24x b +=- ∵方程有实数解,∴304b ->即34b > 又直线y x b =-+不是双曲线1y x =的“双联图形”,∴直线y x b =-+与双曲线1y x =最多有一个公共点,即当1x =时,1y x b =-+≤代入得,11b -+≤,即2b ≤,∴实数b 的取值范围是324b <≤;(3)∵()213y a x =++是二次函数,∴0a ≠∵二次函数()213y a x =++的顶点坐标为(-1,3),且对称轴为直线x =-1, ∴当0a >时,二次函数()213y a x =++的图象与ABC ∆的图象没有交点,∴0a >不成立;当0a <时,二次函数()213y a x =++的图象开口向下,为使它与ABC ∆互为双联图形,即有且只有两个公共点,∴①当抛物线与AC 和AB 相交时,设直线BC 的解析式为y =mx +n ,把C (1,4),B (4,0)代入,得43b k b =⎧⎨+=⎩, ∴41b k =⎧⎨=-⎩, ∴y =-x +4,∵抛物线与BC 不想交,∴()2134a x x ++=-+,即ax 2+(2a +1)x +a -1=0无实数根,∴(2a +1)2-4a (a -1)<0,解得a <18-, 又当2x =-时,要满足0y >,相当于30a +>,所以3a >-; ∴138a -<<-;②当抛物线与AC 和BC 相交时,当x =4时,要满足0y >,相当于2530a +>,所以,325a >-, ∴3025a -<<; 综上,a 的取值范围为:138a -<<-或3025a -<< 【点睛】本题属于圆综合题,考查了直线与圆的位置关系,解直角三角形,切线的判定和性质,图形M 与图形N 是和谐图形的定义等知识,解题的关键是理解题意,学会寻找特殊点,特殊位置解决问题.5、(1)8;(2)见解析【解析】【分析】(1)连接OC ,利用勾股定理求解CE =4,再利用垂径定理可得答案;(2)证明90,,OCF CF DF 再证明,OCF ODF ≌ 可得90,ODF 从而可得结论.【详解】(1)解:连接OC ,∵CD⊥AB,∴CE=DE,∴OC=OB=OE+BE=3+2=5,在Rt△OCE中,∠OEC=90°,由勾股定理得:CE2=OC2-OE2,∴CE2=52-32,∴CE=4,∴CD=2CE=8.(2)解:连接OD,∵CF与⊙O相切,∴∠OCF=90°,∵CE=DE,CD⊥AB,∴CF=DF,又OF=OF,OC=OD,∴△OCF≌△ODF,∴∠ODF=∠OCF=90°,即OD⊥DF.又D在⊙O上,∴DF与⊙O相切.【点睛】本题考查的是圆的基本性质,垂径定理的应用,切线的性质与判定,证明△OCF≌△ODF得到∠ODF=∠OCF=90°是解本题的关键.。
华东师大版九年级数学下册第27章 圆同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB 与O 相切于点B ,连接OA 交O 于点C ,点D 为优弧BDC 上一点,连接DB ,DC ,若30BDC ∠=︒,O 的半径2OC =,则AB 的长为( )A .4B .C .D .12、如图,在矩形ABCD 中,AB =1,AD =2,以A 为圆心,AD 为半径作弧交BC 于点D ˊ,则图中阴影部分的面积为( )A .πB .2πC .3πD .4π3、如图,AB为⊙O的直径,C、D为⊙O上两点,∠CDB=30°,BC=4.5,则AB的长度为()A.6 B.3 C.9 D.124、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G,H三点刚好在金属框上,则该金属框的半径是()A B C.D5、如图,AB是⊙O的直径,C,D是⊙O上两点,AD=CD,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠ACD等于()A.40°B.50°C.55°D.60°6、如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若18∠=︒,则这个正多边ADB形的边数为()A.10 B.11 C.12 D.137、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为()A.3 B.4 C.5 D.68、如图,在平面直角坐标系xOy中,已知点A(1,0),B(3,0),C为平面内的动点,且满足∠ACB=90°,D为直线y=x上的动点,则线段CD长的最小值为()A.1 B.2 C1D19、如图,在ABC中,以边BC的中点D为圆心,BD长为半径画弧,交AC于E点,若∠=︒=,则扇形BDE的面积为()20,4C BCA .13π B .23π C .49π D .59π 10、在同一平面内,有一半径为6的⊙O 和直线m ,直线m 上有一点P ,且OP =4;则直线m 与⊙O 的位置关系是 ( )A .相交B .相离C .相切D .不能确定第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、如图,AB 是O 的直径,过点C 的切线交AB 的延长线于点D .若AC =30OAC ∠=︒,则图中阴影部分的面积为__.(结果保留)π2、已知:矩形ABCD 的长8AB =,宽6AD =,按如图放置在直线AP 上,然后不滑动地转动,当它转动一周时(A A '→,B B '→),顶点A 所经过的路线的长等于______.3、在直径为20m 的的圆柱型油槽内注入一些油后,截面如图所示,液面宽12m AB =如果继续向油槽内注油,使液面宽为16m ,那么液面上升了______m .4、如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠D =110°,则AC 的长为__.5、如图,在四边形ABCD 中,AB =BC =BD .若∠ABC =112°,则∠ADC =_____°.6、在Rt △ABC 中,∠C =90°,∠B =30°,AC =2,点D 、E 分别在边BC 、AB 上,且DE ⊥BC ,BD =2,将△BDE 绕点B 旋转至△BD 1E 1,点D 、E 分别对应点D 1、E 1,当A 、D 1、E 1三点共线时,CD 1的长为 ___.7、两直角边分别为6、8,那么Rt ABC 的内接圆的半径为____________.8、如图,在Rt ABC 中,90ACB ∠=︒,30B ∠=︒,2AB =,以点A 为圆心,AC 的长为半径画弧,以点B 为圆心,BC 的长为半径画弧,两弧分别交AB 于点D 、F ,则图中阴影部分的面积是_________.9、如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB、OC,若弦BC的长度为∠BAC=________度.10、若O的半径为5cm,点A到圆心O的距离为4cm,那么点A与O的位置关系是__.三、解答题(5小题,每小题8分,共计40分)1、请阅读下面材料,并完成相应的任务;阿基米德折弦定理阿基米德(Arehimedes,公元前287—公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.阿拉伯Al-Biruni(973年—1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图1,AB 和BC 是O 的两条弦(即折线ABC 是圆的一条折弦),BC AB >,M 是ABC 的中点,则从点M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD AB BD =+. 这个定理有很多证明方法,下面是运用“垂线法”证明CD AB BD =+的部分证明过程.证明:如图2,过点M 作MH ⊥射线AB ,垂足为点H ,连接MA ,MB ,MC .∵M 是ABC 的中点,∴MA MC =.…任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)如图3,已知等边三角形ABC 内接于O ,D 为AC 上一点,15ABD ∠=︒,CE BD ⊥于点E ,2CE =,连接AD ,则DAB 的周长是______.2、(1)如图1,在△ABC 中,AC =6,AB =135BAC ∠=︒,求△ABC 的面积.(2)如图2,半圆O 的直径AB =10,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC +PD 的最小值.(3)如图3,扇形AOB的半径为20,∠AOB=45°,在AB选点P,在边OA上选点E,在边OB上选点F,求PE+EF+FP的长度的最小值.3、如图,在△ABC中,AC=BC,AB=12,tan∠A=13.(1)尺规作图:以AC为直径作⊙O,与AB交于点D(不写作法,保留作图痕迹);(2)求⊙O的半径长度.4、【教材呈现】下图是华师版九年级下册数学教材第43页的部分内容.圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.由圆周角定理,可以得到以下推论:推论1 90°的圆周角所对的弦是直径.(如图)【推论证明】已知:△ABC的三个顶点都在⊙O上,且∠ACB=90°.求证:线段AB是⊙O的直径.请你结合图①写出推论1的证明过程.【深入探究】如图②,点A ,B ,C ,D 均在半径为1的⊙O 上,若∠ACB =90°,∠ACD =60°.则线段AD 的长为 .【拓展应用】如图③,已知△ABC 是等边三角形,以AC 为底边在三角形ABC 外作等腰直角三角形ACD ,点E 是BC 的中点,连结DE . 若AB =DE 的长为 .5、如图,在ABC 中,90,5,4C AB AC ∠=︒==.(1)边BC 的长等于________.(2)用无刻度直尺和圆规,在如图所示的矩形方框内,作出圆心在斜边AB 上,经过点B ,且与边AC 相切的O ,并简要说明作法(保留作图痕迹,不要求证明)________.-参考答案-一、单选题1、B【解析】【分析】连接OB ,根据切线性质得∠ABO =90°,再根据圆周角定理求得∠AOB =60°,进而求得∠A =30°,然后根据含30°角的直角三角形的性质解答即可.【详解】解:连接OB,∵AB与O相切于点B,∴∠ABO=90°,∵∠BDC=30°,∴∠AOB=2∠BDC=60°,在Rt△ABO中,∠A=90°-60°=30°,OB=OC=2,∴OA=2OB=4,∴2222AB OA OB,4223故选:B.【点睛】本题考查切线的性质、圆周角定理、直角三角形的锐角互余、含30°角的直角三角形性质、勾股定理,熟练掌握相关知识的联系与运用是解答的关键.2、C【解析】【分析】证明∠DAD′=∠AD′B=30°,再利用扇形的面积公式求解即可.【详解】解:∵四边形ABCD是矩形,∴∠B =90°,AD ∥CB ,∵AB =1,AD ′=AD =2,∴AD ′=2AB ,∴∠AD ′B =30°,∴∠DAD ′=∠AD ′B =30°,∴S 阴=2302360π⨯=3π, 故选:C .【点睛】本题考查扇形的面积,矩形的性质等知识,解题的关键是证明∠AD ′B =30°.3、C【解析】【分析】连接AC ,由圆周角定理得90ACB ∠=︒,30CAB CDB ∠=∠=︒,再由含30角的直角三角形的性质求解即可.【详解】解:如图,连接AC .AB 为O 的直径,90ACB ∴∠=︒,30CAB CDB ∠=∠=︒, 4.5BC =,29AB BC ∴==,故选:C .【点睛】本题考查了圆周角定理、含30角的直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.4、A【解析】【分析】如图,记过A ,G , H 三点的圆为,Q 则Q 是HG ,AG 的垂直平分线的交点,,QH QG QA 记,PM EF 的交点为,N ,HG PM 的交点为,M 延长AB 交QM 于,P PM 为HG 的垂直平分线,结合正方形的性质可得:,AP PM 再设,PQ x 利用勾股定理建立方程,再解方程即可得到答案.【详解】 解:如图,记过A ,G , H 三点的圆为,Q 则Q 是HG ,AG 的垂直平分线的交点,,QH QG QA 记,PM EF 的交点为,N ,HG PM 的交点为,M 延长AB 交QM 于,P PM 为HG 的垂直平分线,结合正方形的性质可得:,AP PM四边形HGFE 为正方形,则,HG EF ∥,,QM HG QM EF设,PQ x 而AB =2,CD =3,EF =5,结合正方形的性质可得:5,NQ x而222,HM MQ HQ 115,5,5510,222HM HG EF MN EF MQ x x 222510,4HQ x 又222,AQ PQ AP 而51523,22AP 22215,2AQ x222522510,44x x 解得:5,2x = 25225250510.4442AQ 故选A【点睛】本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A ,G , H 三点的圆的圆心是解本题的关键.5、C【解析】【分析】连接OC ,根据切线的性质可得90OCE ∠=︒,利用三角形内角和定理可得40COE ∠=︒,根据邻补角得出140AOC ∠=︒,再由同弧所对的圆周角是圆心角的一半得出70ADC ∠=︒,利用等边对等角及三角形内角和定理即可得出结果.【详解】解:连接OC ,如图所示:∵CE 与O 相切,∴OC CE ⊥,∴90OCE ∠=︒,∵50E ∠=︒,∴180180509040COE E OCE ∠=︒-∠-∠=︒-︒-︒=︒,∴180********AOC COE ∠=︒-∠=︒-︒=︒, ∴1702ADC AOC ∠=∠=︒,∵AD CD =, ∴18070552ACD DAC ︒-︒∠=∠==︒, 故选:C .【点睛】题目主要考查直线与圆的位置关系,三角形内角和定理,圆周角定理、等边对等角求角度等,理解题意,作出辅助线,综合运用这些知识点是解题关键.6、A【解析】【分析】作正多边形的外接圆,连接 AO ,BO ,根据圆周角定理得到∠AOB =36°,根据中心角的定义即可求解.【详解】解:如图,作正多边形的外接圆,连接AO ,BO ,∴∠AOB =2∠ADB =36°, ∴这个正多边形的边数为36036=10. 故选:A .【点睛】此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.7、B【解析】【分析】由切线的性质可推出OA AP ⊥,OB BP ⊥.再根据直角三角形全等的判定条件“HL ”,即可证明OAP OBP ≅,即得出4PB PA ==.【详解】∵PA ,PB 是⊙O 的切线,A ,B 为切点,∴OA AP ⊥,OB BP ⊥,∴在Rt OAP △和Rt OBP 中,OA OB OP OP=⎧⎨=⎩, ∴()OAP OBP HL ≅,∴4PB PA ==.故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.8、C【解析】【分析】取AB 的中点E ,过点E 作直线y =x 的垂线,垂足为D ,求出DE 长即可求出答案.【详解】解:取AB 的中点E ,过点E 作直线y =x 的垂线,垂足为D ,∵点A (1,0),B (3,0),∴OA =1,OB =3,∴OE =2,∴ED ∵∠ACB =90°,∴点C在以AB为直径的圆上,∴线段CD−1.故选:C.【点睛】本题考查了垂线段最短,一次函数图象上点的坐标特征,圆周角定理等知识,确定C,D两点的位置是解题的关键.9、C【解析】【分析】求出扇形的圆心角以及半径即可解决问题.【详解】:∵BD=CD,BD=DE,BC=4,∴CD=ED,BD=2,∴∠DEC=∠C=20°,∴∠BDE=∠C+∠DEC=40°,∴240243609 DBESππ︒⨯==︒扇形故选:C.【点睛】本题考查扇形的面积公式、等腰三角形的性质,三角形外角的性质等知识,解题的关键是求出扇形的圆心角.10、A【解析】【分析】直接根据直线与圆的位置关系即可得出结论.【详解】解:∵⊙O 的半径为6,直线m 上有一动点P ,OP =4,∴直线与⊙O 相交.故选:A .【点睛】本题考查的是直线与圆的位置关系,熟知⊙O 的半径为r ,圆心O 到直线l 的距离为d ,当d =r 时,直线l 和⊙O 相切是解答此题的关键.二、填空题1、83π【解析】【分析】连接OC .根据圆周角定理即可求得260COD OAC ∠=∠=︒,根据切线的性质定理以及直角三角形的两个锐角互余,求得30D ∠=︒,即可证明AC CD =,再根据阴影部分的面积即为Rt ΔOCD 的面积减去扇形OCB 的面积,计算即可.【详解】解:连接OC .∵∠OAC =30°.260COD OAC ∴∠=∠=︒.DC 切O 于点C ,OC DC ∴⊥.90OCD ∴∠=︒,30D ∴∠=︒.OAC D ∴∠=∠.AC DC ∴==在Rt ΔOCD 中,tan OC D CD ∠=,4OC ∴=,Δ11422OCD S CD OC =⋅=⨯=260483603COB S ππ⋅⨯==扇形,Δ83OCD COB S S S π∴=-=阴影扇形,故答案为83π.【点睛】本题主要考查切线的性质及扇形面积的计算,掌握过切点的半径与切线垂直是解题的关键. 2、12π【解析】【分析】点A 走过的路线是三段弧线的和,即求出三个扇形的弧长之和.【详解】解:第一段是以AB 为半径,弧长为:9028360π⨯⨯=4π;第二段是以AC,弧长为:90210360π⨯⨯=5π;第三段是以BC为半径,弧长为:9026360π⨯⨯=3π;所以顶点A所经过的路线的长等于4π+5π+3π=12π.故答案为12π.【点睛】本题主要考查了弧长公式,根据题意确定扇形的半径是解答本题的关键.3、2或14m##14或2cm【解析】【分析】分液面在原先O下方和圆心O上方两种情况利用垂径定理和勾股定理求解即可.【详解】解:如图所示,设截面的圆心为O,作直径CD⊥AB交AB于G,连接OE,OA由垂直定理得:16m2AG BG AB===,∵直径为20m∴圆O的半径是10m,∴10mOE OD OA===,在Rt△OAG中8mOG=,当水面EF在圆心O下方时,∵EF∥AB,CD⊥AB,∴CD⊥EF,∴18m2EH FH EF===,在Rt△OEH中,6mOH=,∴862mHG OG OD=-=-=,∴此时液面上升的高度为2m如图所示,当水面EF在圆心O上方时,∵EF∥AB,CD⊥AB,∴CD⊥EF,∴18m2EH FH EF===,在Rt△OEH中,6mOH=,∴8614mHG OG OH=+=+=,∴此时液面上升的高度为14m,∴综上所述,液面上升的高度为2或14m.故答案为2或14m.本题主要考查了垂径定理和勾股定理,解题的关键在于能够熟练掌握垂径定理,以及利用分类讨论的思想求解.4、149π##149π 【解析】【分析】连接OA 、OC ,先求出∠ABC 的度数,然后得到∠AOC ,再由弧长公式即可求出答案.【详解】解:连接OA 、OC ,如图,∵四边形ABCD 是⊙O 的内接四边形,∠D =110°,∴18011070ABC ∠=︒-︒=︒,∴2270140AOC ABC ∠=∠=⨯︒=︒, ∴1402141809AC ππ︒⨯⨯==︒; 故答案为:149π. 【点睛】 本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式180n r l π=. 5、124【分析】A D C在以B为圆心半径为AB的圆上,设E是优弧AC上任意一点,则四边形ADCE是根据题意,,,∠.B的内接四边形,进而根据圆内接四边形对角互补,圆周角定理求得E∠,即可求得ADC【详解】解:如图,AB=BC=BDA D C在以B为圆心半径为AB的圆上,∴,,设E是优弧AC上任意一点,则四边形ADCE是B的内接四边形∴∠+∠=︒E ADC180又∠ABC=112°,∴∠=︒56E∴∠=︒-︒=︒ADC18056124故答案为:124本题考查了圆内接四边形对角互补,圆周角定理,转为圆内接四边形求解是解题的关键.6、2或4##4或2【解析】【分析】根据题意分两种情况讨论,由矩形的性质和全等三角形的性质进行分析即可求解.【详解】解:如图1,当点D1在线段AE1上,∵∠ACD=90°,∠ABC=30°,AC=2,∴AB=4,BC∵将△BDE绕点B旋转至△BD1E1,∴D1B=2=DB,∠BD1E1=90°,∴AD=,1∴AD1=BC,且AC=BD1,∴四边形ACBD1是平行四边形,且∠ACB=90°,∴四边形ACBD1是矩形,∴CD1=AB=4,如图2,当点D1在线段AE1的延长线上,∵∠ACB=∠AD1B=90°,∴点A,点B,点D1,点C四点共圆,∴∠AD1C=∠ABC=30°,∵AC=BD1,AB=AB,∴Rt△ABC≌Rt△BAD1(HL)∴∠D1AB=∠ABC=30°,且∠BAC=60°,∴∠CAD1=30°=∠AD1C,∴AC=CD1=2,综上所述:CD1=2或4,故答案为:2或4.【点睛】本题考查旋转的性质,矩形的判定和性质,全等三角形的判定和性质,直角三角形的性质,勾股定理等知识,利用分类讨论解决问题是解答本题的关键.7、5【解析】【分析】直角三角形外接圆的直径是斜边的长.【详解】解:由勾股定理得:AB ,∵∠ACB =90°,∴AB 是⊙O 的直径,∴这个三角形的外接圆直径是10,∴这个三角形的外接圆半径长为5,故答案为:5.【点睛】本题考查了三角形的外接圆与外心,知道直角三角形外接圆的直径是斜边的长是关键;外心是三边垂直平分线的交点,外心到三个顶点的距离相等.8、512π-【解析】【分析】根据直角三角形30度角的性质及勾股定理求出AC 、BC ,∠A =60°,利用扇形面积公式求出阴影面积.【详解】解:在Rt ABC 中,90ACB ∠=︒,30B ∠=︒,2AB =,∴AC =1,BC ==A =60°,∴图中阴影部分的面积=ABC CAD CBE S S S +-扇形扇形=2601113602π⨯⨯=512π故答案为:512π 【点睛】此题考查了直角三角形30度角的性质,勾股定理,扇形面积的计算公式,直角三角形面积公式,熟记各知识点并综合应用是解题的关键.9、60【解析】【分析】在Rt △BOE 中,利用勾股定理求得OE =1,知OB =2OE ,得到∠BOE =60°,∠BOC =120°,再利用圆周角定理即可解决问题.【详解】解:如图作OE ⊥BC 于E .∵OE ⊥BC ,∴BE =EC BOE =∠COE ,∴OE =1,∴OB =2OE ,∴∠OBE =30°,∴∠BOE =∠COE =60°,∴∠BOC =120°,∴∠BAC =60°,故答案为:60.【点睛】本题考查三角形的外心与外接圆、圆周角定理.垂径定理、勾股定理、直角三角形30度角性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.10、点A 在圆内【解析】【分析】比较点到圆心的距离d 与半径r 的大小关系;当d r 时,点在圆外;当d r =时,点在圆上;当d r <时,点在圆内;求值后进行判断即可.【详解】解:O 的半径为5cm r =,点A 到圆心O 的距离为=4cm dd r ∴<∴点A 与O 的位置关系是:点A 在圆内 故答案为:点A 在圆内.【点睛】本题考查了点与圆的位置关系.解题的关键在于比较点到圆心的距离d 与半径r 的大小关系.三、解答题1、(1)见解析;(2)4+.【分析】(1)先证明MHA ≅MDC △,进而得到,AH DC MH MD ==,再证明t R MHB ≅t R MDB ,最后由线段的和差解题;(2)连接CD ,由阿基米德折弦定理得,BE =ED +AD ,结合题意得到45CBD ∠=︒,由勾股定理解得BC =【详解】证明:(1)M 是ABC 的中点,MA MC ∴=BM BM =BAM BCM ∴∠=∠,MD BC MH AH ⊥⊥90H MDC ∴∠=∠=︒在MHA 与MDC △中,H MDC BAM BCM MA MC ∠=∠⎧⎪∠=∠⎨⎪=⎩MHA ∴≅MDC △()AAS,AH DC MH MD ∴==t R MHB 与t R MDB 中,MH MD BM BM =⎧⎨=⎩∴t R MHB ≅t R MDB ()HLDC AH HB AB BD AB∴==+=+;(2)如图3,连接CD等边三角形ABC中,AB=BCAC BC∴=⊥CE BD由阿基米德折弦定理得,BE=ED+AD∠=︒ABD15∴∠=∠-∠=︒-︒=︒CBD CBA ABD601545∠=︒CEB90∴∠=︒45ECBCE EB∴==2∴=BC∴==AB BC∴++=+=AB AD DB BE BE4故答案为:4.【点睛】本题考查圆的综合题、全等三角形的判定与性质、等腰三角形的性质、等边三角形的性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键.2、(1)12;(2)(3)【解析】【分析】(1)如图1中,过点B作BD⊥CA,交CA延长线于点D,解直角三角形求出BD,可得结论.(2)如图2中,作点D关于AB的对称点Q,交AB于点H,连接CQ,交AB于点P,连接PD、OD、OC,过点Q作QM⊥CO,交CO延长线于点M,因为PC+PD≥CQ所以当点P处于解图2中的位置,PC+PD 取最小值,且最小值为CQ的长度,求出CQ的长即可解决问题.(3)如图3中,在AB上这一点作点P关于OA的对称点S,作点P关于OB的对称点N,连接SN,交OA于点E,交OB于点F,连接OS、ON、OP、EP、FP,因为PE+EF+FP≥SN,所以当点E、F处于解图3的位置时,PE+EF+FP的长度取最小值,最小值为SN的长度,求出SN,可得结论.【详解】解:(1)如图1中,过点B作BD⊥CA,交CA延长线于点D,∵∠BAC=135°,∴∠BAD=180°﹣∠BAC=180°﹣135°=45°,∵BD⊥CA,交CA延长线于点D,∴△BAD为等腰直角三角形,且∠BDA=90°,∴BD=AD,在△BAD中,BD=AD,∠BDA=90°,∴BD2+AD2=AB2,即2BD2=AB2,∵AB=∴222232BD AB===,解得:BD=4,∵AC=6,∴11641222ABCS AC BD∆=⋅⋅=⨯⨯=.(2)如图2中,作点D关于AB的对称点Q,交AB于点H,连接CQ,交AB于点P,连接PD、OD、OC,过点Q作QM⊥CO,交CO延长线于点M,∵D关于AB的对称点Q,CQ交AB于点P,∴PD=PQ,∴PC+PD=PC+PQ=CQ,∵点P为AB上的动点,∴PC+PD≥CQ,∴当点P处于解图2中的位置,PC+PD取最小值,且最小值为CQ的长度,∵点C为半圆AB的中点,∴∠COB=90°,∵∠BOD+∠COD=∠COB=90°,∴11903033BOD COB︒︒∠=∠=⨯=,∵AB=10,∴1110522OD AB ==⨯=, 在Rt △ODH 中,由作图知,∠OHD =90°,且∠HOD =∠BOD =30°, ∴1522DH OD ==, ∴52QH DH ==,∴OH == ∵由作图知,四边形OMQH 为矩形,∴5,2OM QH MQ OH ====, ∴515522CM OM OC =+=+=,∴CQ ==∴PC +PD 的最小值为(3)如图3中,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS 、ON 、OP 、EP 、FP ,∵点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F , ∴PE =SE ,FP =FN ,∠SOA =∠POA ,∠NOB =∠POB ,OS =OP =ON ,∴PE +EF +FP =SE +EF +FN =SN ,∠SOA +∠NOB =∠POA +∠POB ,∵E为OA上的点,F为OB上的点,∴PE+EF+FP≥SN,∴当点E、F处于解图3的位置时,PE+EF+FP的长度取最小值,最小值为SN的长度,∵∠POA+∠POB=∠AOB=45°,∴∠SOA+∠NOB=45°,∴∠SON=∠SOA+∠AOB+∠NOB=45°+45°=90°,∵扇形AOB的半径为20,∴OS=ON=OP=20,在Rt△SON中,∠SON=90°,OS=ON=20,∠SON=90°,∴SN OS=∴PE+EF+FP的长度的最小值为【点睛】本题属于圆综合题,考查了轴对称最短问题,矩形的判定和性质,解直角三角形,等腰直角三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.3、 (1)见解析【解析】【分析】(1)分别以点A,C为圆心,大于12AC长为半径画弧交于两点,连接这两点交AC于点O,以O为圆心,OA为半径作圆交AB于点D;(2)连接CD,根据AC是⊙O的直径,可得∠ADC=90°,由tan∠A=13,可得CD=2,再运用勾股定理可得AC=(1)如图所示,⊙O 即为所作的圆:(2)连接CD ,如图,∵AC 是圆O 的直径∴90ADC ∠=︒,即CD AB ⊥∵BC =AC ∴1112622AD AB ==⨯= ∵tan∠A =13∴13CD AD = ∴123CD AD ==在Rt △ACD 中,222AD CD AC +=∴AC∴⊙O 的半径=12⨯【点睛】本题考查了线段中点和圆的作图,圆的性质,,等腰三角形性质,勾股定理等知识,熟练掌握圆的性质是解题关键.4、【推论证明】见解析;【拓展应用】1+【解析】【分析】推论证明:根据圆周角定理求出180AOB ∠=︒,即可证明出线段AB 是⊙O 的直径;深入探究:连接AB ,首先根据∠ACB =90°得出AB 是⊙O 的直径,然后求出30BCD ∠=︒,然后根据同弧所对的圆周角相等得到30BAD ∠=︒,然后根据30°角直角三角形的性质求出BD 的长度,最后根据勾股定理即可求出AD 的长度;拓展应用:连接AE ,作CF ⊥DE 交DE 于点F ,首先根据等边三角形三线合一的性质求出AE BC ⊥,然后证明出A ,E ,C ,D 四点共圆,然后根据同弧或等弧所对的圆周角相等求出45CED CAD ∠=∠=︒,30EDC EAC ∠=∠=︒,最后根据等腰直角三角形的性质和30°角直角三角形的性质,结合勾股定理求解即可.【详解】解:推论证明:∵90C ∠=︒∴180AOB ∠=︒,∴A ,B ,O 三点共线,又∵点O 是圆心,∴AB 是⊙O 的直径;深入探究:如图所示,连接AB ,∵∠ACB =90°∴AB 是⊙O 的直径∴90ADB ∠=︒∵∠ACD =60°∴30BCD ACB ACD ∠=∠-∠=︒∵DB DB =∴30BAD BCD ∠=∠=︒∴在Rt ABD ∆中,112BD AB ==∴AD拓展应用:如图所示,连接AE ,作CF ⊥DE 交DE 于点F ,∵△ABC 是等边三角形,点E 是BC 的中点∴AE BC ⊥,1302CAE BAC ∠=∠=︒又∵以AC 为底边在三角形ABC 外作等腰直角三角形ACD∴90ADC ∠=︒,45DAC ∠=︒∴点A ,E ,C ,D 四点都在以AC 为直径的圆上,∵DC DC =∴45CED CAD ∠=∠=︒∵CF ⊥DE∴EFC ∆是等腰直角三角形∴EF CF =,222EF CF EC +=∴222EF EC =∵1122EC BC AB ===∴222EF =,解得:1EF =∴1FC = ∵EC EC =∴30EDC EAC ∠=∠=︒∴在Rt FCD ∆中,22CD FC ==∴DF∴1DE EF DF =+=【点睛】此题考查了圆周角定理,90°的圆周角所对的弦是直径,相等的圆周角所对的弧相等,等边三角形和等腰直角三角形的性质等知识,解题的关键是熟练掌握以上知识点和性质定理.5、 3 图见解析,作B的平分线与AC交于点D;过点D作AC的垂线(或BC的平行线)与AB交于点O;以点O为圆心,OB为半径作圆,所作⊙O即为所求.【解析】【分析】(1)在Rt△ABC中,根据勾股定理3BC=即可;(2)先作△ABC中∠ABC的平分线,交AC与D,然后过点D作DO⊥AC于D,交AB于点O,得出△ODC为等腰三角形,OD=OB,以点O为圆心,OD长为半径作O,则O为所求作的圆.给出证明:根据BD平分∠CBA,得出∠DBC=∠DBA,根据OD⊥AC,∠C=90°,得出OD∥BC,利用两直线平行内错角相等得出∠ODB=∠DBC,得出∠ODB=∠DBA,根据等角对等边得出OD=OB,根据以点O为圆心,OD长为半径的O过点B,根据OD⊥AC,OD为半径,切线的判定定理得出AC为O的切线.【详解】解:(1)在Rt△ABC中,根据勾股定理3BC===,故答案为:3;(2)先作∠ABC的平分线,交AC与D,然后过点D作DO⊥AC于D,交AB于点O,得△ODC为等腰三角形,OD=OC,以点O为圆心,OD长为半径作O,则O为所求作的圆.证明:∵BD平分∠CBA,∴∠DBC=∠DBA,∵OD⊥AC,∠C=90°,∴OD∥BC,∴∠ODB=∠DBC∴∠ODB=∠DBA,∴OD=OB,∴以点O为圆心,OD长为半径的O过点B,∵OD⊥AC,OD为半径,∴AC为O的切线,∴以点O为圆心,OD长为半径作O,为所求.故答案为:作B的平分线与AC交于点D;过点D作AC的垂线(或BC的平行线)与AB交于点O;以点O为圆心,OB为半径作圆,所作⊙O即为所求.【点睛】本题考查勾股定理,尺规作圆图形,角平分线的定义,平行线的判定与性质,等腰三角形的判定与性质,切线的判定,本题难度不大,是基础题的小综合,掌握以上知识是解题关键.。
华东师大版九年级数学下册第27章 圆同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点A 、B 、C 在O 上,50∠=°ACB ,则OAB ∠的度数是( )A .100°B .50°C .40°D .25°2、在ABC 中,45B ∠=︒,6AB =,给出条件:①4AC =;②8AC =;③外接圆半径为4.请在给出的3个条件中选取一个,使得BC 的长唯一.可以选取的是( )A .①B .②C .③D .①或③3、如图,点C 是以点O 为圆心,AB 为直径的半圆上的动点(点C 不与点A ,B 重合),4AB =.设弦AC 的长为x ,ABC ∆的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A.B.C.D.4、如图,PA、PB是O的切线,A、B是切点,点C在O上,且58∠=︒,则APBACB∠等于()A.54°B.58°C.64°D.68°5、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽72cmAB=,则水的最大深度为()A.36 cm B.27 cm C.24 cm D.15 cm6、在同一平面内,有一半径为6的⊙O和直线m,直线m上有一点P,且OP=4;则直线m与⊙O的位置关系是()A.相交B.相离C.相切D.不能确定7、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为()cm.A.3πB.6πC.12πD.18π8、如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A .75°B .70°C .65°D .55° 9、扇形的半径扩大为原来的3倍,圆心角缩小为原来的19,那么扇形的面积( )A .不变B .面积扩大为原来的3倍C .面积扩大为原来的9倍D .面积缩小为原来的1310、如图,从⊙O 外一点P 引圆的两条切线PA ,PB ,切点分别是A ,B ,若∠APB =60°,PA =5,则弦AB 的长是( )A .52 B C .5 D .第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、如图,半径为2的扇形AOB 的圆心角为120°,点C 是弧AB 的中点,点D 、E 是半径OA 、OB 上的动点,且满足∠DCE =60°,则图中阴影部分面积等于___________.2、已知扇形的圆心角为30,半径为6 cm,则扇形的弧长是____________cm.3、一个直角三角形的斜边长,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________2cm.4、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分的面积为_____.5、如图,在半径为5的⊙O中,弦AB=6,OC⊥AB于点D,交⊙O于点C,则CD=_____.6、已知⊙O的直径为8cm,如果直线AB上的一点与圆心的距离为4cm,则直线AB与⊙O的位置关系是 _____.7、如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB、OC,若弦BC的长度为∠BAC=________度.8、在圆内接四边形ABCD 中,40D B ∠-∠=︒,则D ∠的度数为______.9、如图,PA ,PB 是O 的切线,切点分别为A ,B .若30OAB ∠=︒,3PA =,则AB 的长为______.10、如图,把O 分成相等的六段弧,依次连接各分点得到正六边形ABCDEF ,如果O 的周长为12π,那么该正六边形的边长是______.三、解答题(5小题,每小题8分,共计40分)1、已知∠MPN 的两边分别与圆O 相切于点A ,B ,圆O 的半径为r .(1)如图1,点C 在点A ,B 之间的优弧上,∠MPN =80°,求∠ACB 的度数;(2)如图2,点C 在圆上运动,当PC 最大时,要使四边形APBC 为菱形,∠APB 的度数应为多少?请说明理由;(3)若PC 交圆O 于点D ,求第(2)问中对应的阴影部分的周长(用含r 的式子表示).2、下面是小亮设计的“过圆上一点作已知圆的切线”的尺规作图过程.已知:点A 在O 上.求作:直线PA 和O 相切.作法:如图,①连接AO ;②以A 为圆心,AO 长为半径作弧,与O 的一个交点为B ;③连接BO ;④以B 为圆心,BO 长为半径作圆;⑤作B 的直径OP ;⑥作直线PA .所以直线PA 就是所求作的O 的切线.根据小亮设计的尺规作图过程,(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:证明:在O 中,连接BA .∵OA OB =,AO AB =,∴OB AB =.∴点A 在B 上.∵OP 是B 的直径,∴90OAP ∠=︒(______)(填推理的依据).∴OA AP ⊥.又∵点A 在O 上,∴PA 是O 的切线(______)(填推理的依据).3、在⊙O 中,AC AD =,四边形ABCD 是平行四边形.(1)求证:BA 是⊙O 的切线;(2)若AB =6,①求⊙O 的半径;②求图中阴影部分的面积.4、如图,△ABC 内接于⊙O ,弦BD ⊥AC ,垂足为E .点D ,点F 关于AC 对称,连接AF 并延长交⊙O 于点G .(1)连接OB ,求证:∠ABD =∠OBC ;(2)求证:点F ,点G 关于BC 对称;(3)若BF=OB=2,求△ABC面积的最大值.5、【教材呈现】下图是华师版九年级下册数学教材第43页的部分内容.圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.由圆周角定理,可以得到以下推论:推论1 90°的圆周角所对的弦是直径.(如图)【推论证明】已知:△ABC的三个顶点都在⊙O上,且∠ACB=90°.求证:线段AB是⊙O的直径.请你结合图①写出推论1的证明过程.【深入探究】如图②,点A,B,C,D均在半径为1的⊙O上,若∠ACB=90°,∠ACD=60°.则线段AD的长为.【拓展应用】如图③,已知△ABC是等边三角形,以AC为底边在三角形ABC外作等腰直角三角形ACD,点E是BC的中点,连结DE.若AB=DE的长为.-参考答案-一、单选题1、C【解析】【分析】先根据圆周角定理求出∠AOB 的度数,再由等腰三角形的性质即可得出结论.【详解】∵∠ACB =50°,∴∠AOB =100°,∵OA =OB ,∴∠OAB =∠OBA = 40°,故选:C .【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2、B【解析】【分析】画出图形,作AD BE ⊥,交BE 于点D .根据等腰直角三角形的性质和勾股定理可求出AD 的长,再由AD 和AC 的长作比较即可判断①②;由前面所求的AD 的长和AB 的长,结合该三角形外接圆的半径长,即可判断该外接圆的圆心可在AB 上方,也可在AB 下方,其与AE 的交点即为C 点,为两点不唯一,可判断其不符合题意.【详解】如图,45ABE ∠=︒,6AB =,点C 在射线AE 上.作AD BE ⊥,交BE 于点D .∵45ABE ∠=︒,∴ABD △为等腰直角三角形,∴4BD AD AB ===>, ∴不存在4AC =的三角形ABC ,故①不符合题意;∵6AB =,=AD AC =8,而AC >6,∴存在8AC =的唯一三角形ABC ,如图,点C 即是.∴8AC =,使得BC 的长唯一成立,故②符合题意;∵4AD =>,68AB =<,∴存在两个点C 使ABC 的外接圆的半径等于4,两个外接圆圆心分别在AB 的上、下两侧,如图,点C和C '即为使ABC 的外接圆的半径等于4的点.故③不符合题意.故选B .【点睛】本题考查等腰直角三角形的判定和性质,勾股定理,三角形外接圆的性质.利用数形结合的思想是解答本题的关键.3、B【解析】【分析】由AB 为圆的直径,得到∠C =90°,在Rt △ABC 中,由勾股定理得到BC =而列出△ABC 面积的表达式即可求解.【详解】解:∵AB 为圆的直径,∴∠C =90°,4AB =,AC x =,由勾股定理可知:∴BC ==∴1122∆=⋅=⋅ABC S BC AC x 此函数不是二次函数,也不是一次函数,∴排除选项A 和选项C , AB 为定值,当OC AB ⊥时,ABC ∆面积最大,此时AC =即x =y 最大,故排除D ,选B .故选:B .【点睛】本题考查了动点问题的函数图象,根据题意列出函数表达式是解决问题的关键.4、C【解析】【分析】连接OB ,OA ,根据圆周角定理可得2116AOB ACB ∠=∠=︒,根据切线性质以及四边形内角和性质,求解即可.【详解】解:连接OB ,OA ,如下图:∴2112AOB ACB ∠=∠=︒∵PA 、PB 是O 的切线,A 、B 是切点∴90OBP OAP ∠=∠=︒∴由四边形的内角和可得:36064APB OBP OAP AOB ∠=︒-∠-∠-∠=︒故选C .【点睛】此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质.5、C【解析】【分析】连接OB ,过点O 作OC AB ⊥于点D ,交O 于点C ,先由垂径定理求出BD 的长,再根据勾股定理求出OD 的长,进而得出CD 的长即可.【详解】解:连接OB ,过点O 作OC AB ⊥于点D ,交O 于点C ,如图所示:则136()2BD AB cm ==, O 的直径为78cm ,39()OB OC cm ∴==,在Rt OBD △中,15()OD cm ,391524()CD OC OD cm ∴=-=-=,即水的最大深度为24cm ,故选:C .【点睛】本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键.6、A【解析】【分析】直接根据直线与圆的位置关系即可得出结论.【详解】解:∵⊙O的半径为6,直线m上有一动点P,OP=4,∴直线与⊙O相交.故选:A.【点睛】本题考查的是直线与圆的位置关系,熟知⊙O的半径为r,圆心O到直线l的距离为d,当d=r时,直线l和⊙O相切是解答此题的关键.7、B【解析】【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:它的侧面展开图的面积=1×2π×2×3=6π(cm2).2故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8、B【解析】【分析】直接根据圆周角定理求解.解:35ACB∠=︒,270AOB ACB∴∠=∠=︒.故选:B.【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9、A【解析】【分析】设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为19n,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案.【详解】设原来扇形的半径为r,圆心角为n,∴原来扇形的面积为2 360n rπ,∵扇形的半径扩大为原来的3倍,圆心角缩小为原来的19,∴变化后的扇形的半径为3r,圆心角为19 n,∴变化后的扇形的面积为221(3)9360360n r n rππ=,∴扇形的面积不变.故选:A.本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键.10、C【解析】【分析】先利用切线长定理得到PA =PB ,再利用∠APB =60°可判断△APB 为等边三角形,然后根据等边三角形的性质求解.【详解】解:∵PA ,PB 为⊙O 的切线,∴PA =PB ,∵∠APB =60°,∴△APB 为等边三角形,∴AB =PA =5.故选:C .【点睛】本题考查了切线长定理以及等边三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.二、填空题1、43π【解析】【分析】如图,连接,,OC AC 过C 作CF OA ⊥于,F AOC △是等边三角形,求解3,CF 证明,60,AC OC DAC ACO 再证明,ACD OCE ASA ≌ 可得AOC AOB S S S 阴影扇形,再计算即可得到答案.【详解】解:如图,连接,,OC AC 过C 作CF OA ⊥于,FC 是AB 的中点,120,AOB ∠=︒ 160,2AOC BOC AOB ,AO COAOC ∴是等边三角形, ,60,AC OC OAC ACO 60,DACEOC ,2,CFAO AO CO 11,2AF OF AO 2222213,CF OC OF60,DCE,DCE OCD ACO OCD,ACD OCE ∴∠=∠ 而60,,DACEOC AC OC,ACD OCE ASA ≌,DOC OEC AOC DCEO S S S S 四边形AOC AOB S S S 阴影扇形212021423336023故答案为:43π【点睛】 本题考查的是全等三角形的判定与性质,等边三角形的判定与性质,扇形面积的计算,掌握“利用转化的思想求解阴影部分的面积”是解本题的关键.2、π 【解析】【分析】知道半径,圆心角,直接代入弧长公式180n r L π=即可求得扇形的弧长. 【详解】解:180n r L π=, ∴扇形的弧长306180L cm ππ==, 故答案为:π.【点睛】 本题考查了弧长公式,解题的关键是要掌握弧长公式:180n r L π=才能准确的解题.3、【分析】设一直角边长为x ,另一直角边长为(6-x )根据勾股定理()(222+6x x -=,解一元二次方程求出1224x x ==,,利用三角形面积公式求124=42⨯⨯2cm 即可.【详解】解:设一直角边长为x ,另一直角边长为(6-x ),∵三角形是直角三角形,∴根据勾股定理()(222+6x x -=,整理得:2680x x -+=,解得1224x x ==,,这个直角三角形的斜边长为外接圆的直径,, 三角形面积为124=42⨯⨯2cm .4.【点睛】本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键.4、2π【解析】利用勾股定理求出AC 及AB 的长,根据阴影面积等于AB C CAC DAB S S S''''--扇形扇形求出答案. 【详解】解:由旋转得,AB AB AC AC ''==,90CAC '∠=︒,B AC ''∠=∠BAC =30°,∵∠ABC =90°,∠BAC =30°,BC =1,∴AC =2BC =2,AB60CAB '∠=︒, ∴阴影部分的面积=AB C CAC DAB S S S ''''--扇形扇形2260902113603602ππ⨯⨯=--⨯=2π故答案为:2π.【点睛】此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键.5、1【解析】【分析】连接OA,先利用垂径定理得出AD的长,再由勾股定理得出OD的长即可解答.【详解】解:连接OA,∵AB=6,OC⊥AB于点D,∴AD=12AB=12×6=3,∵⊙O的半径为5,∴2222534OD OA AD,∴CD=OC-OD=5-4=1.故答案为:1.【点睛】本题考查的是垂径定理及勾股定理,解答此题的关键是作出辅助线构造出直角三角形,再利用勾股定理求解.6、相切或相交【解析】【分析】本题需分类讨论,当直线上的点到圆心的连线垂直于直线AB时,直线于圆的位置关系为相切,当直线上的点到圆心的连线与直线AB不垂直时,直线到圆心的距离小于圆的半径,直线与圆相交.【详解】设直线AB上与圆心距离为4cm的点为C,当OC⊥AB时,OC=⊙O的半径,所以直线AB与⊙O相切,当OC与AB不垂直时,圆心O到直线AB的距离小于OC,所以圆心O到直线AB的距离小于⊙O的半径,所以直线AB与⊙O相交,综上所述直线AB与⊙O的位置关系为相切或相交,故答案为:相切或相交.【点睛】本题考查直线与圆的位置关系,本题需根据圆心与直线上一点的距离,分类讨论圆与直线的位置关系,利用分类讨论思想是解决本题的关键.7、60【解析】【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圆周角定理即可解决问题.【详解】解:如图作OE⊥BC于E.∵OE ⊥BC ,∴BE =EC BOE =∠COE ,∴OE =1,∴OB =2OE ,∴∠OBE =30°,∴∠BOE =∠COE =60°,∴∠BOC =120°,∴∠BAC =60°,故答案为:60.【点睛】 本题考查三角形的外心与外接圆、圆周角定理.垂径定理、勾股定理、直角三角形30度角性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题. 8、110°##110度【解析】【分析】根据圆内接四边形对角互补,得∠D +∠B =180°,结合已知求解即可.【详解】∵圆内接四边形对角互补,∴∠D +∠B =180°,∵40D B ∠-∠=︒∴∠D =110°,故答案为:110°.本题考查了圆内接四边形互补的性质,熟练掌握并运用性质是解题的关键.9、3【解析】【分析】由切线长定理和30OAB ∠=︒,可得PAB ∆为等边三角形,则AB PA =.【详解】解:连接,OA OP ,如下图:PA ,PB 分别为O 的切线,PA PB ∴=,PAB ∴为等腰三角形,30OAB ∠=︒,60PAB ∴∠=︒,PAB ∴∆为等边三角形,AB PA ∴=,3PA =,3AB ∴=.故答案为:3.本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.10、6【解析】【分析】如图,连接OA、OB、OC、OD、OE、OF,证明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,再求出圆的半径即可.【详解】解:如图,连接OA、OB、OC、OD、OE、OF.∵正六边形ABCDEF,∴AB=BC=CD=DE=EF=FA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,∵O的周长为12π,∴O的半径为1262ππ=,正六边形的边长是6;【点睛】本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键.三、解答题1、(1)50°(2)∠APB=60°(3)13rπ⎫+⎪⎭【解析】【分析】(1)连接OA,OB,由切线的性质可求∠PAO=∠PBO=90°,由四边形内角和可求解;(2)当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由切线长定理可得PA=PB,∠APC=∠BPC=30°,由“SAS”可证△APC≌△BPC,可得∠ACP=∠BCP=30°,AC=BC,可证AP=AC=PB =BC,可得四边形APBC是菱形;(3)分别求出AP,PD的长,由弧长公式可求AD,即可求解.【详解】解:(1)如图1,连接OA,OB,∵PA,PB为⊙O的切线,∴∠PAO=∠PBO=90°,∵∠APB+∠PAO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,∴∠AOB=100°,∴∠ACB=50°;(2)如图2,当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由(1)可知,∠AOB+∠APB=180°,∵∠APB=60°,∴∠AOB=120°,∴∠ACB=60°=∠APB,∵点C运动到PC距离最大,∴PC经过圆心,∵PA,PB为⊙O的切线,∴PA=PB,∠APC=∠BPC=30°,又∵PC=PC,∴△APC≌△BPC(SAS),∴∠ACP=∠BCP=30°,AC=BC,∴∠APC=∠ACP=30°,∴AP=AC,∴AP=AC=PB=BC,∴四边形APBC是菱形;(3)∵⊙O的半径为r,∴OA=r,OP=2r,∴AP=,PD=r,∵∠AOP=90°−∠APO=60°,∴AD的长度=601803rrππ⨯⨯=,133r r rππ⎫++=+⎪⎭.【点睛】本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,弧长公式,菱形的判定等知识,灵活运用这些性质解决问题是本题的关键.2、 (1)见解析(2)直径所对的圆周角是直角;经过半径的外端,并且垂直于这条半径的直线是圆的切线【解析】【分析】(1)根据题意作出图形即可;(2)根据圆周角定理得到∠OAP=90°,根据切线的判定定理即可得到结论.(1)解:补全的图形如图所示;(2)证明:在O 中,连接BA .∵OA OB =,AO AB =,∴OB AB =.∴点A 在B 上.∵OP 是B 的直径,∴90OAP ∠=︒(直径所对的圆周角是直角)(填推理的依据).∴OA AP ⊥.又∵点A 在O 上,∴PA 是O 的切线(经过半径的外端,并且垂直于这条半径的直线是圆的切线)(填推理的依据). 故答案为:直径所对的圆周角是直角;经过半径的外端,并且垂直于这条半径的直线是圆的切线【点睛】本题考查了作图,切线的判定,圆周角定理,正确的作出图形是解题的关键.3、(1)证明见解析;(2)①4π-【解析】【分析】(1)连接AO ,由AC AD =,四边形ABCD 是平行四边形,即得推得ACO △为等边三角形,即可得∠BAO =∠BAC +∠CAO =90°,即BA 是⊙O 的切线.(2)①由(1)有A 0=tan 60AB =︒②将阴影面积拆为相等的两部分,其中左侧部分为扇形ACO 面积减去三角形ACO 面积,由扇形面积公式,等边三角形面积公式计算后乘2即可.【详解】(1)证明:连接OA∵四边形ABCD是平行四边形∴AD//BE∴∠ADC=∠DCO又∵AC AD=∴∠ACD=∠ADC∴∠ACO=∠ACD+∠DCO=2∠ADC又∵2∠ADC=AOC∠∴AOC ACO∠=∠∴AO=AC又∵OC=AO∴ACO△为等边三角形∴∠ACO=∠CAO=60°,∠ACD=∠DCO=30°又∵AB//CD∴∠BAC=∠ACD=30°∴∠BAO=∠BAC+∠CAO=30°+60°=90°∴BA是⊙O的切线.(2)①由(1)可知∠BAO=90°,∠BOA=60°∴tanBA BOAAO ∠=∴AO =6tan tan BA BOA BOA ===∠∠②连接AO ,与CD 交于点M∵AC =OAC =60°∴CM =sin 603AC ⋅︒==∴11322AOC S AO CM =⋅⋅=⨯=△∵AO =AOC =60°∴22360AOCn r S ===︒扇形ππ ∴2AOC AOC S S S =-△阴影扇形()∴224S =-=-阴影(ππ【点睛】本题是一道圆内的综合问题,考察了证明某线是切线、平行四边形性质、等弧的性质、解直角三角形、等边三角形性质、勾股定理、扇形面积公式等,需熟练掌握这些性质及定理,而作出正确的辅助线是解题的关键.4、 (1)见解析(2)见解析(3)△ABC 的面积最大值为【解析】【分析】(1)连接OC ,根据BD AC ⊥,得出90BAC ABD ︒∠+∠=,根据,OB OC =得出,OBC OCB ∠=∠可得1902OBC BOC ︒∠+∠=,可得∠BAC =12BOC ∠,得出90BAC OBC ︒∠+∠=即可; (2)连接AD ,BG .根据点D ,点F 关于AC 对称,得出AC 垂直平分DF ,可得AD AF =,根据同弧所对圆周角性质D AFD ∠=∠,∠FAC =∠DAC ,得出DC GC =,∠DBC =∠GBC ,根据∠ADB =∠AGB ,∠AFD =∠BFG ,得出BF =BG ,根据∠CAG =∠CBG ,得出BC ⊥FG 即可;(3)连结OG ,CG 延长BO ,交⊙O 于H ,连结GH ,设AG 与BC 交于M ,由(2)得BF =BG =2,可证△OBG 为等边三角形,得出∠BOG =60°,根据OH =OG ,得出∠OHG =∠OGH =1302BOG ∠=︒,可得∠BAG =∠BCG =∠H =30°,利用30°直角三角形性质可得BA =2BM ,根据勾股定理在Rt △ABG 中,AG ⊥BC 于M ,AM=,设BM =x ,AM ,GM函数CM =MG x ABC 的面积最大,求出x(1)证明:如图①,连接OC ,BD AC ⊥,90AEB ︒∴∠=,90BAC ABD ︒∴∠+∠=,OB OC =,OBC OCB ∴∠=∠,2180OBC BOC︒∴∠+∠=,∴1902OBC BOC︒∠+∠=,∵∠BAC=12BOC ∠,90BAC OBC︒∴∠+∠=,ABD OBC∴∠=∠;(2)证明:如图②,连接AD,BG.∵点D,点F关于AC对称,∴AC垂直平分DF,AD AF=,D AFD∴∠=∠,∠FAC=∠DAC,∴DC GC=,∴∠DBC=∠GBC,∵∠ADB=∠AGB,∠AFD=∠BFG,∴BF=BG,∵∠CAG=∠CBG,∵BC⊥FG,∴点F ,点G 关于BC 对称;(3)(3)连结OG ,CG 延长BO ,交⊙O 于H ,连结GH ,设AG 与BC 交于M ,由(2)得BF =BG =2,∵BO =GO =2=BG ,∴△OBG 为等边三角形,∴∠BOG =60°,∵OH =OG ,∴∠OHG =∠OGH =1302BOG ∠=︒, ∴∠BAG =∠BCG =∠H =30°,∴BA =2BM ,在Rt △ABG 中,AG ⊥BC 于M ,AM,设BM =x ,∴AM ,GM ,∴CM =MG∴S △ABC =S △ABM +S △ACM =111222BM AM CM AM x ⨯+⨯=,∴当xABC 的面积最大,∴解得xS △ABC 最大=2S △ABM =2212x ⨯⨯==【点睛】本题考查直线垂直性质,互余性质,等腰三角形内角和性质,轴对称性质,线段垂直平分线性质,等腰三角形性质,同和所对圆周角性质,等边三角形判定与性质,30°直角三角形性质,勾股定理,三角形面积公式,锐角三角函数,函数最值等知识,通过辅助线画出准确图形是解题关键.5、【推论证明】见解析;【拓展应用】1+【解析】【分析】推论证明:根据圆周角定理求出180AOB ∠=︒,即可证明出线段AB 是⊙O 的直径;深入探究:连接AB ,首先根据∠ACB =90°得出AB 是⊙O 的直径,然后求出30BCD ∠=︒,然后根据同弧所对的圆周角相等得到30BAD ∠=︒,然后根据30°角直角三角形的性质求出BD 的长度,最后根据勾股定理即可求出AD 的长度;拓展应用:连接AE ,作CF ⊥DE 交DE 于点F ,首先根据等边三角形三线合一的性质求出AE BC ⊥,然后证明出A ,E ,C ,D 四点共圆,然后根据同弧或等弧所对的圆周角相等求出45CED CAD ∠=∠=︒,30EDC EAC ∠=∠=︒,最后根据等腰直角三角形的性质和30°角直角三角形的性质,结合勾股定理求解即可.【详解】解:推论证明:∵90C ∠=︒∴180AOB ∠=︒,∴A ,B ,O 三点共线,又∵点O 是圆心,∴AB 是⊙O 的直径;深入探究:如图所示,连接AB ,∵∠ACB =90°∴AB 是⊙O 的直径∴90ADB ∠=︒∵∠ACD =60°∴30BCD ACB ACD ∠=∠-∠=︒∵DB DB =∴30BAD BCD ∠=∠=︒∴在Rt ABD ∆中,112BD AB ==∴AD拓展应用:如图所示,连接AE ,作CF ⊥DE 交DE 于点F ,∵△ABC 是等边三角形,点E 是BC 的中点∴AE BC ⊥,1302CAE BAC ∠=∠=︒又∵以AC 为底边在三角形ABC 外作等腰直角三角形ACD∴90ADC ∠=︒,45DAC ∠=︒∴点A ,E ,C ,D 四点都在以AC 为直径的圆上,∵DC DC =∴45CED CAD ∠=∠=︒∵CF ⊥DE∴EFC ∆是等腰直角三角形∴EF CF =,222EF CF EC +=∴222EF EC =∵1122EC BC AB ===∴222EF =,解得:1EF =∴1FC = ∵EC EC =∴30EDC EAC ∠=∠=︒∴在Rt FCD ∆中,22CD FC ==∴DF∴1=+=DE EF DF【点睛】此题考查了圆周角定理,90°的圆周角所对的弦是直径,相等的圆周角所对的弧相等,等边三角形和等腰直角三角形的性质等知识,解题的关键是熟练掌握以上知识点和性质定理.。
华东师大版九年级数学下册第27章 圆同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,△ABC 周长为20cm ,BC =6cm ,圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M 、N ,则△AMN 的周长为( )A .14cmB .8cmC .7cmD .9cm2、已知⊙O 的直径为10cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系是( )A .相离B .相切C .相交D .相交或相切3、数学活动课上,同学们想测出一个残损轮子的半径,小宇的解决方案如下:如图,在轮子圆弧上任取两点A ,B ,连接AB ,再作出AB 的垂直平分线,交AB 于点C ,交AB 于点D ,测出,AB CD 的长度,即可计算得出轮子的半径.现测出40cm,10cm AB CD ==,则轮子的半径为( )A.50cm B.35cm C.25cm D.20cm4、如图,点A、B、C都在O上,40∠等于()ACB∠=︒,则AOBA.40°B.50°C.80°D.100°5、如图,BE是O的直径,点A和点D是O上的两点,过点A作O的切线交BE延长线于点C,若36∠=︒,则CADE∠的度数是()A.18°B.28°C.36°D.45°6、如图,在△ABC中,∠A=30°,∠C=45°,BC=2,则AB的长度为()A .4πB .2πC .πD .2π7、如图,AB 是O 的直径,CD 是O 的弦,且CD AB ∥,12AB =,6CD =,则图中阴影部分的面积为( )A .18πB .12πC .6πD .3π8、如图,C ,D 是O 上直径AB 两侧的两点,设35ABC ∠=︒,则BDC ∠=( )A .85︒B .75︒C .65︒D .55︒9、如图,AB 为⊙O 的切线,切点为A ,连接AO 、BO ,BO 与⊙O 交于点C ,延长BO 与⊙O 交于点D ,连接AD .若∠ABO =36°,则∠ADC 的度数为( )A .54°B .36°C .32°D .27°10、O 的半径为5 , 若直线l 与该圆相交, 则圆心O 到直线l 的距离可能是 ( )A .3B .5C .6D .10第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、如图,在⊙O 中,A ,B ,C 是⊙O 上三点,如果∠AOB =70º,那么∠C 的度数为_______.2、如图,PA 是⊙O 的切线,A 是切点.若∠APO =25°,则∠AOP =___________°.3、如图,已知ABC ,外心为O ,18BC =,60BAC ∠=︒,分别以AB ,AC 为腰向形外作等腰直角三角形ABD △与ACE ,连接BE ,CD 交于点P ,则OP 的最小值是______.4、如图,一次函数1y x =+的图象与x 轴交于点A ,与y 轴交于点B ,作ABO 的外接圆C ,则图中阴影部分的面积为______.(结果保留π)5、在Rt ABC ∆中,90C ∠=︒,2AC =,4AB =,如果以点A 为圆心,AC 为半径作A ,那么斜边AB 的中点D 在A ______.(填“内”、“上”或者“外”)6、已知五边形ABCDE 是O 的内接正五边形,则AOB ∠的度数为______.7、如图,PA ,PB 分别与⊙O 相切于A ,B 两点,C 是优弧AB 上的一个动点,若∠P = 50°,则∠ACB =_____________°8、如图,在矩形ABCD 中4AB =,AD =AC 与BD 交于点O ,以点O 为圆心,12AD 的长为半径画弧,与两条对角线相交,则图中阴影部分的面积是________.9、如图,AB 为O 的直径,点C ,D ,E 在O 上,且AD CD =,若64E ∠=︒,则ABC ∠的度数为__________︒.10、如图,将半径为10cm 的圆形纸片沿一条弦AB 折叠,折叠后弧AB 的中点C 与圆心O 重叠,则弦AB 的长度为________cm .三、解答题(5小题,每小题8分,共计40分)1、下图中有一个等腰直角三角形ABC ,45C ∠=︒,一个以AB 为直径的半圆,和一个以BC 为半径的扇形.已知8AB BC ==厘米,求图中阴影部分的面积.2、(1)如图1,在△ABC 中,AC =6,AB =135BAC ∠=︒,求△ABC 的面积.(2)如图2,半圆O 的直径AB =10,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC +PD 的最小值.(3)如图3,扇形AOB 的半径为20,∠AOB =45°,在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE +EF +FP 的长度的最小值.3、如图,ABC与O交于D,F两点,AB是直径,∥OD BC.(1)证明:CD DE=;(2)若13,52AD CE==,求OA的长度.4、请阅读下面材料,并完成相应的任务;阿基米德折弦定理阿基米德(Arehimedes,公元前287—公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.阿拉伯Al-Biruni(973年—1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图1,AB和BC是O的两条弦(即折线ABC是圆的一条折弦),BC AB>,M是ABC 的中点,则从点M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD AB BD =+. 这个定理有很多证明方法,下面是运用“垂线法”证明CD AB BD =+的部分证明过程.证明:如图2,过点M 作MH ⊥射线AB ,垂足为点H ,连接MA ,MB ,MC .∵M 是ABC 的中点,∴MA MC =.…任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)如图3,已知等边三角形ABC 内接于O ,D 为AC 上一点,15ABD ∠=︒,CE BD ⊥于点E ,2CE =,连接AD ,则DAB 的周长是______.5、已知∠MPN 的两边分别与圆O 相切于点A ,B ,圆O 的半径为r .(1)如图1,点C 在点A ,B 之间的优弧上,∠MPN =80°,求∠ACB 的度数;(2)如图2,点C 在圆上运动,当PC 最大时,要使四边形APBC 为菱形,∠APB 的度数应为多少?请说明理由;(3)若PC 交圆O 于点D ,求第(2)问中对应的阴影部分的周长(用含r 的式子表示).-参考答案-一、单选题1、B【解析】【分析】根据切线长定理得到BF =BE ,CF =CD ,DN =NG ,EM =GM ,AD =AE ,然后利用三角形的周长和BC 的长求得AE 和AD 的长,从而求得△AMN 的周长.【详解】解:∵圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M 、N ,∴BF =BE ,CF =CD ,DN =NG ,EM =GM ,AD =AE ,∵△ABC 周长为20cm ,BC =6cm ,∴AE =AD =2AB AC BC +-=202BC BC --=20122-=4(cm ), ∴△AMN 的周长为AM +MG +NG +AN =AM +ME +AN +ND =AE +AD =4+4=8(cm ),故选:B .【点睛】本题考查三角形的内切圆与内心及切线的性质的知识,解题的关键是利用切线长定理求得AE和AD的长,难度不大.2、B【解析】【分析】圆的半径为,r圆心O到直线l的距离为,d当d r=时,直线与圆相切,当d r时,直线与圆相离,<时,直线与圆相交,根据原理直接作答即可.当d r【详解】解:⊙O的直径为10cm,圆心O到直线l的距离为5cm,∴⊙O的半径等于圆心O到直线l的距离,∴直线l与⊙O的位置关系为相切,故选B【点睛】本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.3、C【解析】【分析】由垂径定理,可得出BC的长;连接OB,在Rt△OBC中,可用半径OB表示出OC的长,进而可根据勾股定理求出得出轮子的半径即可.【详解】解:设圆心为O,连接OB.AB=20cm,Rt△OBC中,BC=12根据勾股定理得:OC2+BC2=OB2,即:(OB-10)2+202=OB2,解得:OB=25;故轮子的半径为25cm.故选:C.【点睛】本题考查垂径定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.4、C【解析】【分析】根据圆周角定理直接得出答案.【详解】解:AB AB =,40ACB ∠=︒∴280AOB ACB ∠=∠=︒,故选C【点睛】本题考查了圆周角定理,掌握圆周角定理是解题的关键.5、A【解析】【分析】连接OA ,根据同弧所对的圆周角相等可得ABE ADE ∠=∠,根据圆周角定理可得272AOE ADE ∠=∠=︒,根据切线的性质以及直角三角形的两锐角互余即可求得C ∠的度数.【详解】解:如图,连接OAAE AE =,36ADE ∠=︒∴ABE ADE ∠=∠∴272AOE ADE ∠=∠=︒ AC 是O 的切线90CAO ∴∠=︒90907218C AOE ∴∠=︒-∠=︒-︒=︒故选A【点睛】本题考查了切线的性质,圆周角定理,求得AOE ∠的度数是解题的关键.6、C【解析】【分析】由题意知260BOC A ∠=∠=︒,290AOB C ∠=∠=︒,BOC 为等边三角形,2OB BC ==,180n r AB π=可得弧长的值.【详解】解:如图连接OA 、OB 、OC∵30A ∠=︒,45C ∠=︒∴260BOC A ∠=∠=︒,290AOB C ∠=∠=︒∴BOC 为等边三角形∴2OB BC ==90π2π180180n r AB π⨯⨯=== 故选C .本题考查了圆周角,弧长等知识.解题的关键在于找出弧长所对的圆心角以及半径.7、C【解析】【分析】如图,连接OC ,OD ,可知COD △是等边三角形,60n COD =∠=︒,6r =,2==360COD n r S S π阴影扇形,计算求解即可.【详解】解:如图连接OC ,OD∵12OC OD AB CD === ∴COD △是等边三角形∴60COD ∠=︒由题意知=ACD COD S S △△,22606==6360360COD n r S S πππ⨯⨯==阴影扇形 故选C .【点睛】本题考查了扇形的面积,等边三角形等知识.解题的关键在于用扇形表示阴影面积.8、D【分析】先利用直径所对的圆周角是直角得到∠ACB =90°,从而求出∠CAB ,再利用同弧所对的圆周角相等即可求出∠BDC .【详解】解:∵AB 是O 的直径∴90ADB ∠=︒∠ABC =35°∴∠CAB =55°∴∠BDC =∠CAB =55°.故选D【点睛】本题考查了圆周角定理的推论,即直径所对的圆周角是90°和同弧或等弧所对的圆周角相等,解决本题的关键是牢记相关概念与推论.9、D【解析】【分析】由切线的性质得出∠OAB =90°,由直角三角形的性质得出∠AOB =90°-∠ABO =54°,由等腰三角形的性质得出∠ADC =∠OAD ,再由三角形的外角性质即可得出答案.【详解】解:∵AB 为⊙O 的切线,∴∠OAB =90°,∵∠ABO =36°,∴∠AOB=90°﹣∠ABO=54°,∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∠AOB=27°;∴∠ADC=12故选:D.【点睛】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.10、A【解析】【分析】根据直线l和⊙O相交⇔d<r,即可判断.【详解】解:∵⊙O的半径为5,直线l与⊙O相交,∴圆心D到直线l的距离d的取值范围是0≤d<5,故选:A.【点睛】本题考查直线与圆的位置关系,解题的关键是记住①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.二、填空题1、35°##35度【解析】利用圆周角定理求出所求角度数即可.【详解】解:AOB ∠与ACB ∠都对AB ,且70AOB ∠=︒,1352C AOB ∴∠=∠=︒, 故答案为:35︒.【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理.2、65【解析】【分析】根据切线的性质得到OA ⊥AP ,根据直角三角形的两锐角互余计算,得到答案.【详解】解:∵PA 是⊙O 的切线,∴OA ⊥AP ,∴90APO AOP ∠+∠=︒,∵∠APO =25°,∴90902565AOP APO ∠=︒-∠=︒-︒=︒,故答案为:65.【点睛】本题考查的是切线的性质、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.3、9-【分析】由ABD △与ACE 是等腰直角三角形,得到90BAD CAE ∠=∠=︒,DAC BAE ∠=∠,根据全等三角形的性质得到ADC ABE ∠=∠,求得在以BC 为直径的圆上,由ABC 的外心为O ,60BAC ∠=︒,得到120BOC ∠=︒,如图,当PO BC ⊥时,OP 的值最小,解直角三角形即可得到结论.【详解】 解:ABD 与ACE 是等腰直角三角形,90BAD CAE ∴∠=∠=︒,DAC BAE ∴∠=∠,在DAC △与BAE 中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩, DAC ∴≌()BAE SAS ,ADC ABE ∴∠=∠,90PDB PBD ∴∠+∠=︒,90DPB ∴∠=︒,P ∴在以BC 为直径的圆上, ABC 的外心为O ,60BAC ∠=︒,120BOC ∴∠=︒,如图,当PO BC ⊥时,OP 的值最小,18BC =,9BH CH ∴==,12OH OB =BH ∴==OH ∴=9PH =,9OP ∴=-则OP 的最小值是9-故答案为:9-【点睛】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.4、3π【解析】【分析】先求出A 、B 、C 坐标,再证明三角形BOC 是等边三角形,最后根据扇形面积公式计算即可.【详解】过C 作CD ⊥OA 于D∵一次函数1y =+的图象与x 轴交于点A ,与y 轴交于点B , ∴当0x =时,1y =,B 点坐标为(0,1)当0y =时,y =A 点坐标为∴2,1AB OB OA ===,∵作ABO 的外接圆C ,∴线段AB 中点C 的坐标为1)2,112OC BC AB OB ==== ∴三角形BOC 是等边三角形∴120ACO ∠=︒∵C 的坐标为1)2∴12CD =∴2120111360223AOC ACO S S S ππ︒=-=⨯⨯-=︒扇形故答案为:3π【点睛】 本题主要考查了一次函数的综合运用,求扇形面积.用已知点的坐标表示相应的线段是解题的关键.5、上【解析】【分析】先利用中点的含义求解2,AD AC 结合点与圆心的距离等于圆的半径,则点在圆上,从而可得答案.【详解】解:如图,90C ∠=︒,2AC =,4AB =,D 为AB 的中点,12,2ADAB ACD ∴在A 上, 故答案为:上【点睛】本题考查的是点与圆的位置关系的判断,掌握“点与圆的位置关系的判断方法”是解本题的关键. 6、72°##72度【解析】【分析】根据正多边形的中心角的计算公式:360n︒计算即可. 【详解】解:∵五边形ABCDE 是⊙O 的内接正五边形,∴五边形ABCDE 的中心角∠AOB 的度数为3605︒=72°, 故答案为:72°.【点睛】 本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:360n︒是解题的关键. 7、65【解析】【分析】连接,OA OB ,根据切线的性质以及四边形内角和定理求得130AOB ∠=︒,进而根据圆周角定理即可求得∠ACB【详解】解:连接,OA OB ,如图,PA ,PB 分别与⊙O 相切90OAP OBP ∴∠=∠=︒360130AOB OAP OBP P ∴∠=︒-∠-∠-∠=︒AB AB =1652ACB AOB ∴∠=∠=︒ 故答案为:65【点睛】本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键.8、4-π##4π-+【解析】【分析】如图,利用()2AOB OEF S S S ∆=-阴影部分扇形求解即可.【详解】解:如图,在矩形ABCD 中,90BAD ∠=︒ ,4AB =,AD =tanAB ADB AD ∠===, 30ADB ∴∠=︒ ,60ABD ∴∠=︒,AO OB =,ABO ∴∆是等边三角形,60AOB ∴∠=︒,4AO AB ==,依题意得,1122OE AD ==⨯= (260?2360OEF S ππ∴==扇形,由中心对称的性质得,2OGH S π∴=扇形,又224AOB S OA ∆∴===()()2224AOB OEF S S S ππ∆∴=-==阴影部分扇形,故答案为:4π.【点睛】本题考查了矩形的性质,直角三角形的性质,正切的定义,等边三角形的判定和性质,扇形的面积等知识,利用正切定义求出30ADB ∠=︒是解本题的关键.9、52【解析】【分析】如图,连接OD ,BD .利用圆周角定理求出∠DOB ,再求出∠OBD =26°,可得结论.【详解】解:如图,连接OD ,BD .∵AD CD =,∴∠ABD =∠CBD ,∵∠DOB =2∠DEB =128°,∴∠OBD=∠ODB=26°,∴∠ABC=2∠OBD=52°,故答案为:52.【点睛】本题考查圆周角定理,等腰三角形的性质,三角形内角和定理等知识,解题的关键是掌握圆周角定理.10、【解析】【分析】⊥,OD=CD;再根据垂径定理确定连接OC交AB于点D,再连接OA.根据轴对称的性质确定OC ABAD=BD;再根据勾股定理求出AD的长度,进而即可求出AB的长度.【详解】解:如下图所示,连接OC交AB于点D,再连接OA.∵折叠后弧AB的中点C与圆心O重叠,⊥,OD=CD.∴OC AB∴AD=BD.∵圆形纸片的半径为10cm,∴OA=OC=10cm.∴OD=5cm.∴AD =.∴BD =.∴AB AD BD =+=.故答案为:【点睛】本题考查轴对称的性质,垂径定理,勾股定理,综合应用这些知识点是解题关键.三、解答题1、1632π-【解析】【分析】阴影部分的面积等于半圆的面积+扇形的面积-直角三角形的面积.【详解】解:∵BC=8,∠C=45°, ∴224588360360ECB n r S πππ⨯⨯===扇形(平方厘米), 2 1482S ππ=⨯=半圆(平方厘米), 188322ABCS =⨯⨯=(平方厘米), ∴阴影部分的面积8832(1632)πππ=+-=-(平方厘米).【点睛】本题考查了扇形的面积公式,圆的面积公式,直角三角形的面积公式,把阴影面积分割成规则图形的面积和,差是解题的关键.2、(1)12;(2)(3)【解析】【分析】(1)如图1中,过点B作BD⊥CA,交CA延长线于点D,解直角三角形求出BD,可得结论.(2)如图2中,作点D关于AB的对称点Q,交AB于点H,连接CQ,交AB于点P,连接PD、OD、OC,过点Q作QM⊥CO,交CO延长线于点M,因为PC+PD≥CQ所以当点P处于解图2中的位置,PC+PD 取最小值,且最小值为CQ的长度,求出CQ的长即可解决问题.(3)如图3中,在AB上这一点作点P关于OA的对称点S,作点P关于OB的对称点N,连接SN,交OA于点E,交OB于点F,连接OS、ON、OP、EP、FP,因为PE+EF+FP≥SN,所以当点E、F处于解图3的位置时,PE+EF+FP的长度取最小值,最小值为SN的长度,求出SN,可得结论.【详解】解:(1)如图1中,过点B作BD⊥CA,交CA延长线于点D,∵∠BAC=135°,∴∠BAD=180°﹣∠BAC=180°﹣135°=45°,∵BD⊥CA,交CA延长线于点D,∴△BAD为等腰直角三角形,且∠BDA=90°,∴BD=AD,在△BAD中,BD=AD,∠BDA=90°,∴BD2+AD2=AB2,即2BD2=AB2,∵AB∴222232BD AB ===,解得:BD =4,∵AC =6, ∴11641222ABC S AC BD ∆=⋅⋅=⨯⨯=.(2)如图2中,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM ⊥CO ,交CO 延长线于点M ,∵D 关于AB 的对称点Q ,CQ 交AB 于点P ,∴PD =PQ ,∴PC +PD =PC +PQ =CQ ,∵点P 为AB 上的动点,∴PC +PD ≥CQ ,∴当点P 处于解图2中的位置,PC +PD 取最小值,且最小值为CQ 的长度,∵点C 为半圆AB 的中点,∴∠COB =90°,∵∠BOD +∠COD =∠COB =90°, ∴11903033BOD COB ︒︒∠=∠=⨯=, ∵AB =10, ∴1110522OD AB ==⨯=,在Rt △ODH 中,由作图知,∠OHD =90°,且∠HOD =∠BOD =30°, ∴1522DH OD ==, ∴52QH DH ==,∴OH == ∵由作图知,四边形OMQH 为矩形,∴5,2OM QH MQ OH ====, ∴515522CM OM OC =+=+=,∴CQ ==∴PC +PD 的最小值为(3)如图3中,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS 、ON 、OP 、EP 、FP ,∵点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F , ∴PE =SE ,FP =FN ,∠SOA =∠POA ,∠NOB =∠POB ,OS =OP =ON ,∴PE +EF +FP =SE +EF +FN =SN ,∠SOA +∠NOB =∠POA +∠POB ,∵E 为OA 上的点,F 为OB 上的点,∴PE +EF +FP ≥SN ,∴当点E、F处于解图3的位置时,PE+EF+FP的长度取最小值,最小值为SN的长度,∵∠POA+∠POB=∠AOB=45°,∴∠SOA+∠NOB=45°,∴∠SON=∠SOA+∠AOB+∠NOB=45°+45°=90°,∵扇形AOB的半径为20,∴OS=ON=OP=20,在Rt△SON中,∠SON=90°,OS=ON=20,∠SON=90°,∴SN OS=∴PE+EF+FP的长度的最小值为【点睛】本题属于圆综合题,考查了轴对称最短问题,矩形的判定和性质,解直角三角形,等腰直角三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.3、 (1)见解析(2)169 20【解析】【分析】(1)根据平行线的性质可得C ADO∠=∠,根据圆内接四边形的一个外角等于其内对角可得CED DAO∠=∠,又半径相等可得DAO ADO∠=∠,等量代换可得C CED∠=∠,根据等角对等边即可求证;(2)根据平行线分线段成比例可得132AD DC==,根据根据(1)的结论可得CAB CED△∽△,列出比例式,代入数值即可求得AB的长,进而求得OA的长.(1)证明:∥OD BCC ADO∴∠=∠四边形ADEB是O的内接四边形∴CED DAO∠=∠OD OA=DAO ADO∴∠=∠C CED∴∠=∠∴CD DE=(2)OD BC∥AD AODC OB∴=OA OB=,13,52AD CE==132AD DC∴==,C C CED CAB ∠=∠∠=∠CAB CED∴∽CE CACD AB∴=即513 132AB=解得16910AB=1169 220OA AB ∴==【点睛】本题考查了等边对等角证明边相等,圆内接四边形,平行线分线段成比例,相似三角形的性质与判定,掌握以上知识是解题的关键.4、(1)见解析;(2)4+.【解析】【分析】(1)先证明MHA ≅MDC △,进而得到,AH DC MH MD ==,再证明t R MHB ≅t R MDB ,最后由线段的和差解题;(2)连接CD ,由阿基米德折弦定理得,BE =ED +AD ,结合题意得到45CBD ∠=︒,由勾股定理解得BC =【详解】证明:(1)M 是ABC 的中点,MA MC ∴=BM BM =BAM BCM ∴∠=∠,MD BC MH AH ⊥⊥90H MDC ∴∠=∠=︒在MHA 与MDC △中,H MDC BAM BCM MA MC ∠=∠⎧⎪∠=∠⎨⎪=⎩MHA ∴≅MDC △()AAS,AH DC MH MD ∴==t R MHB 与t R MDB 中,MH MD BM BM =⎧⎨=⎩∴t R MHB ≅t R MDB ()HLHB DB ∴=DC AH HB AB BD AB ∴==+=+;(2)如图3,连接CD等边三角形ABC 中,AB =BCAC BC ∴=CE BD ⊥由阿基米德折弦定理得,BE =ED +AD15ABD ∠=︒601545CBD CBA ABD ∴∠=∠-∠=︒-︒=︒90CEB ∠=︒45ECB∴∠=︒2CE EB∴==BC∴=AB BC∴==4AB AD DB BE BE∴++=+=故答案为:4.【点睛】本题考查圆的综合题、全等三角形的判定与性质、等腰三角形的性质、等边三角形的性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键.5、(1)50°(2)∠APB=60°(3)13rπ⎫+⎪⎭【解析】【分析】(1)连接OA,OB,由切线的性质可求∠PAO=∠PBO=90°,由四边形内角和可求解;(2)当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由切线长定理可得PA=PB,∠APC=∠BPC=30°,由“SAS”可证△APC≌△BPC,可得∠ACP=∠BCP=30°,AC=BC,可证AP=AC=PB =BC,可得四边形APBC是菱形;(3)分别求出AP,PD的长,由弧长公式可求AD,即可求解.【详解】解:(1)如图1,连接OA,OB,∵PA,PB为⊙O的切线,∴∠PAO=∠PBO=90°,∵∠APB+∠PAO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,∴∠AOB=100°,∴∠ACB=50°;(2)如图2,当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由(1)可知,∠AOB+∠APB=180°,∵∠APB=60°,∴∠AOB=120°,∴∠ACB=60°=∠APB,∵点C运动到PC距离最大,∴PC经过圆心,∵PA,PB为⊙O的切线,∴PA=PB,∠APC=∠BPC=30°,又∵PC=PC,∴△APC≌△BPC(SAS),∴∠ACP=∠BCP=30°,AC=BC,∴∠APC=∠ACP=30°,∴AP=AC,∴AP=AC=PB=BC,∴四边形APBC是菱形;(3)∵⊙O的半径为r,∴OA=r,OP=2r,∴AP=,PD=r,∵∠AOP=90°−∠APO=60°,∴AD的长度=601803rrππ⨯⨯=,133r r rππ⎫++=+⎪⎭.【点睛】本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,弧长公式,菱形的判定等知识,灵活运用这些性质解决问题是本题的关键.。
华师大新版九年级下学期《27.1.3 圆周角》同步练习卷一.选择题(共9小题)1.如图,A,B,C是⊙O上的三点,∠ABO=25°,∠ACO=30°,则∠BOC的度数为()A.100°B.110°C.125°D.130°2.如图,在平面直角坐标系中,已知⊙A经过点E、B、O.C且点O为坐标原点,点C在y轴上,点E在x轴上,A(﹣3,2),则cos∠OBC的值为()A.B.C.D.3.如图,C、D是以线段AB为直径的⊙O上两点,若∠ADC=70°,则∠CAB=()A.10°B.20°C.30°D.40°4.如图,AB经过圆心O,四边形ABCD内接于⊙O,∠B=3∠BAC,则∠ADC的度数为()A.100°B.112.5°C.120°D.135°5.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.6.如图,AB是半圆的直径,点C是弧AB的中点,点E是弧AC的中点,连接EB,CA交于点F,则=()A.B.C.1﹣D.7.如图,已知AB是⊙O的直径,C是⊙O上的一点,连接AC,过点C作直线CD⊥AB交AB于点D.E是OB上的一点,直线CE与⊙O交于点F,连接AF 交直线CD于点G,AC=2,则AG•AF是()A.10B.12C.8D.168.如图,在△ABC中,AD是高,△ABC的外接圆直径AE交BC边于点G,有下列四个结论:①AD2=BD•CD;②BE2=EG•AE;③AE•AD=AB•AC;④AG•EG=BG•CG.其中正确结论的个数是()A.1个B.2个C.3个D.4个9.如图,点A在⊙O上,BC为⊙O的直径,AB=4,AC=3,D是的中点,CD 与AB相交于点P,则CP的长为()A.B.C.D.二.解答题(共41小题)10.如图,在⊙O中,AB是⊙O的弦,CD是⊙O的直径,且AB⊥CD,垂足为G,点E在劣弧上,连接CE.(1)求证:CE平分∠AEB;(2)连接BC,若BC∥AE,且CG=4,AB=6,求BE的长.11.如图,AB为⊙O的直径,C,F为⊙O上两点,过C作CE⊥AB于点D,交⊙O于点E,延长EC交BF的延长线于点G,连接CF,EF.(1)求证:∠BFE=∠CFG;(2)若FG=4,BF=6,CF=3.①求EF的长;②若tan∠GFC=2,求⊙O的半径.12.如图,在圆内接四边形ABCD中,O为圆心,∠BOD=160°,求∠BCD的度数.13.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°(1)判断△ABC的形状,并证明你的结论;(2)若BC的长为6,求⊙O的半径.14.如图,四边形ABCD内接于⊙O,点E在对角线AC上,∠1=∠2,EC=BC.(1)若∠CBD=39°,求∠CAD的度数;(2)求证:BC=CD.15.如图,已知⊙O中,AB为直径,AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于D,求线段BC,AD,BD的长.16.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.17.已知:如图,△ABC内接于⊙O,AF是⊙O的弦,AF⊥BC,垂足为D,点E 为弧BF上一点,且BE=CF,(1)求证:AE是⊙O的直径;(2)若∠ABC=∠EAC,AE=8,求AC的长.18.如图,在平面直角坐标系中,以点M(0,)为圆心,以长为半径作⊙M交x轴于A、B两点,交y轴于C、D两点,连接AM并延长交⊙M于P 点,连接PC交x轴于E.(1)求点C、P的坐标;(2)求证:BE=2OE.19.如图,AB是⊙O的直径,AC是⊙O的弦,∠ACB的平分线交⊙O于点D.若AB=10,AC=6,求BC,BD的值.20.如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠OCD=40°,求∠AOC的度数.21.如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)求证:∠CAB=∠BCD;(2)若EB=2cm,CD=8cm,求半径OB的长.22.已知如图:⊙O中,BC是直径,点A在⊙O上,AB=6,AC=8,AD平分∠BAC,求BD的长.23.如图,C、D两点在以AB为直径的半圆O上,AD平分∠BAC,AB=20,AD=4,DE⊥AB于E.(1)求DE的长.(2)求证:AC=2OE.24.如图,在△ABC中,以AB为直径的⊙O分别交AC,BC于点D,E.连接ED,若ED=EC.(1)求证:AB=AC;(2)填空:①若AB=6,CD=4,则BC=;②连接OD,当∠A的度数为时,四边形ODEB是菱形.25.如图,AB是⊙O的直径,=,且AB=5,BD=4,求弦DE的长.26.如图,已知圆O,弦AB、CD相交于点M.(1)求证:AM•MB=CM•MD;(2)若M为CD中点,且圆O的半径为3,OM=2,求AM•MB的值.27.如图,OA、OB、OC都是⊙O的半径,∠AOB=2∠BOC(1)求证:∠ACB=2∠BAC(2)若AC平分∠OAB,求∠AOC的度数.28.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠PBC=∠C (1)判断直线BC和PD的位置关系,并证明你的结论;(2)若BC=2,cos∠BPD=,求⊙O的半径.29.如图,AB,CD是⊙O的两条弦,AD,CB的延长线相交于点E,DC=DE.AB 和BE相等吗?为什么?30.如图,AB是⊙O的直径,CD是⊙O的弦,∠DCB=30°,求∠ABD的度数.31.如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧上一点,∠BMO=120°,求⊙C的半径长.32.如图,AB为⊙O的直径,点C在⊙O上,且∠CAB=30°,点D为弧的中点,AC=4.求AD的长.33.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=1,BE=2,求AC的长.34.已知,如图,AB是⊙O的直径,∠BCD=45°.求证:AD=BD.35.如图1,已知⊙O的内接四边形ABCD的边AB是直径,BD平分∠ABC,AD=,sin∠ABC=(1)求⊙O的半径;(2)如图2,点E是⊙O一点,连接EC交BD于点F.当CD=DF时,求CE的长.36.如图,AD为△ABC的外接圆O的直径,AE⊥BC于E.求证:∠BAD=∠EAC.37.如图,在平面直角坐标系中,△ABC是⊙O的内接三角形,AB=AC,点P是的中点,连接PA,PB,PC.(1)如图①,若∠BPC=60°,求证:AC=AP;(2)如图②,若sin∠BPC=,求tan∠PAB的值.38.如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=BC.延长DA与⊙O的另一个交点为E,连接AC、CE.(1)求证:∠B=∠D;(2)若AB=13,BC﹣AC=7,求CE的长.39.如图,在锐角△ABC中,AC是最短边,以AC中点O为圆心,AC为直径作⊙O,交BC于点E,过O作OD∥BC交⊙O于点D,连结AE,AD,DC.求证:(1)D是的中点;(2)∠DAO=∠B+∠BAD.40.如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连结ED、BE.(1)求证:BE⊥AC;(2)求证:BD=DE;(3)如果BC=6,AB=5,求BE的长.41.如图,P是等边△ABC外接圆上任意一点,求证:PA=PB+PC.42.如图,在锐角△ABC中,AC是最短边;以AC中点O为圆心,AC长为半径作⊙O,交BC于E,过O作OD∥BC交⊙O于D,连结AE、AD、DC.(1)求证:D是的中点;(2)求证:∠DAO=∠B+∠BAD.43.如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=BC,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=5,AC=3,求CE的长.44.如图,AB为⊙O的直径,CD⊥AB于E,CO⊥AB于F,求证:AD=CD.45.如图,四边形ABCD内接于圆,AD、BC的延长线交于点E,F是BD延长线上一点,DE平分∠CDF.求证:AB=AC.46.如图,在△ABC中,AB=AC=13,BC=10,以AC为直径画⊙O交BC于点D,交AB于点E,连接CE.(1)求证:BD=CD;(2)求CE的长.47.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.48.如图,AB是⊙O的直径,点C、E在上,DE⊥AB于D,AC与DE交于点M,连接AE,AM=EM,(1)求证:点E是的中点;(2)判断OD和BC之间的数量关系,并说明理由.49.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠C.(1)求证:CB∥PD.(2)若BC=5,sinP=,求⊙O的半径.50.如图,⊙O是△ABC外接圆,AB为直径,弧AC=弧CF,CD⊥AB于D,且交⊙O于G,AF交CD于E.(1)直接写出∠ACB的度数;(2)求证:AE=CE.华师大新版九年级下学期《27.1.3 圆周角》同步练习卷参考答案与试题解析一.选择题(共9小题)1.如图,A,B,C是⊙O上的三点,∠ABO=25°,∠ACO=30°,则∠BOC的度数为()A.100°B.110°C.125°D.130°【分析】过A、O作⊙O的直径AD,分别在等腰△OAB、等腰△OAC中,根据三角形外角的性质求出∠BOC=2∠ABO+2∠ACO.【解答】解:过A作⊙O的直径,交⊙O于D.在△OAB中,OA=OB,则∠BOD=∠ABO+∠OAB=2×25°=50°,同理可得:∠COD=∠ACO+∠OAC=2×30°=60°,故∠BOC=∠BOD+∠COD=110°.故选:B.【点评】本题考查了圆周角定理,涉及了等腰三角形的性质及三角形的外角性质,解答本题的关键是求出∠COD及∠BOD的度数.2.如图,在平面直角坐标系中,已知⊙A经过点E、B、O.C且点O为坐标原点,点C在y轴上,点E在x轴上,A(﹣3,2),则cos∠OBC的值为()A.B.C.D.【分析】连接EC,由∠COE=90°,根据圆周角定理可得:EC是⊙A的直径,求出OE和OC,根据勾股定理求出EC,解直角三角形求出即可.【解答】解:过A作AM⊥x轴于M,AN⊥y轴于N,连接EC,∵∠COE=90°,∴EC是⊙A的直径,即EC过O,∵A(﹣3,2),∴OM=3,ON=2,∵AM⊥x轴,x轴⊥y轴,∴AM∥OC,同理AN∥OE,∴N为OC中点,M为OE中点,∴OE=2AN=6,OC=2AM=4,由勾股定理得:EC==2,∵∠OBC=∠OEC,∴cos∠OBC=cos∠OEC===,故选:B.【点评】此题考查了圆周角定理,勾股定理,坐标与图形性质,以及锐角三角函数定义,熟练掌握定理是解本题的关键.3.如图,C、D是以线段AB为直径的⊙O上两点,若∠ADC=70°,则∠CAB=()A.10°B.20°C.30°D.40°【分析】首先求出∠ABC的度数,再根据圆周角定理求出∠CAB的度数.【解答】解:∵AB是直径,∴∠ACB=90°,∵∠ADC=70°,∴∠ABC=70°,∴∠CAB=20°,故选:B.【点评】本题考查圆周角定理、解题的关键是掌握同弧所对的圆周角相等,属于中考常考题型.4.如图,AB经过圆心O,四边形ABCD内接于⊙O,∠B=3∠BAC,则∠ADC的度数为()A.100°B.112.5°C.120°D.135°【分析】根据圆周角定理得到∠ACB=90°,根据题意求出∠B,根据圆内接四边形的性质计算即可.【解答】解:∵AB经过圆心O,∴∠ACB=90°,∵∠B=3∠BAC,∴∠B=67.5°,∵四边形ABCD内接于⊙O,∴∠ADC=180°﹣∠B=112.5°,故选:B.【点评】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.5.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.【分析】设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.利用相交弦定理,求出m与r的关系,即用r表示出m,即可表示出所求比值.【解答】解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r﹣m.在⊙O中,根据相交弦定理,得QA•QC=QP•QD.即(r﹣m)(r+m)=m•QD,所以QD=.连接DO,由勾股定理,得QD2=DO2+QO2,即,解得所以,故选:D.【点评】本题考查了相交弦定理,即“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”.熟记并灵活应用定理是解题的关键.6.如图,AB是半圆的直径,点C是弧AB的中点,点E是弧AC的中点,连接EB,CA交于点F,则=()A.B.C.1﹣D.【分析】根据平行线的性质证得,△ADE是等腰直角三角形,求得BE=+1,再证△AEF∽△BEA,得EF==﹣1,BF=2.所以=.【解答】解:方法1:连接AE、CE.作AD∥CE,交BE于D.∵点E是弧AC的中点,∴可设AE=CE=1,根据平行线的性质得∠ADE=∠CED=45°.∴△ADE是等腰直角三角形,则AD=,BD=AD=.所以BE=+1.再根据两角对应相等得△AEF∽△BEA,则EF==﹣1,BF=2.所以=.方法2:过点C作CO⊥AB于点O,∵AB是半圆的直径,点C是弧AB的中点,∴点O是圆心.连接OE,BC,OE与AC交于点M,∵E为弧AC的中点,易证OE⊥AC,∵∠ACB=90°,∠AOE=45°,∴OE∥BC,设OM=1,则AM=1,∴AC=BC=2,OA=,∴OE=,∴EM=﹣1,∵OE∥BC,∴==.故选:D.【点评】此题要能够根据弧之间的关系找到角之间的关系,熟练运用圆周角定理的推论,能够根据相似三角形的性质建立对应边之间的关系.7.如图,已知AB是⊙O的直径,C是⊙O上的一点,连接AC,过点C作直线CD⊥AB交AB于点D.E是OB上的一点,直线CE与⊙O交于点F,连接AF 交直线CD于点G,AC=2,则AG•AF是()A.10B.12C.8D.16【分析】建立AC与AG、AF之间的关系是关键,连接BC,则∠B=∠F,∠ACB=90°,通过证明∠ACD=∠B得∠F=∠ACG,从而得△ACG∽△AFC,根据对应边成比例得关系式求解.【解答】解:连接BC,则∠B=∠F,∵CD⊥AB,∴∠ACD+∠CAD=90°,∵AB是直径,∴∠ACB=90°,∠CAB+∠B=90°,∴∠ACG=∠F.又∵∠CAF=∠FAC,∴△ACG∽△AFC,∴AC:AF=AG:AC,即AG•AF=AC2=(2)2=8.故选:C.【点评】此题考查了相似三角形的判定和性质,如何建立已知和未知之间的关系是解题关键,难度偏上.8.如图,在△ABC中,AD是高,△ABC的外接圆直径AE交BC边于点G,有下列四个结论:①AD2=BD•CD;②BE2=EG•AE;③AE•AD=AB•AC;④AG•EG=BG•CG.其中正确结论的个数是()A.1个B.2个C.3个D.4个【分析】对四个结论逐一进行论述,说明其对错即可.另外此题中没有给出比例线段,故只能通过两角对应相等,两三角形相似进行证明.【解答】解:①若△ABD∽△CAD,则一定有AD:BD=CD:AD,即AD2=BD•CD,而两三角形只有一对角对应相等,不会得到另外的对应角相等,故①不正确;②若△BEG∽△AEB,则一定有BE:EG=AE:BE,即BE2=EG•AE,而两三角形只有一对公共角相等,不会得到另外的对应角相等,故②不正确;③∵∠ABD=∠AEC,∠ADB=∠ACE=90°,∴△ABD∽△AEC,∴AE:AC=AB:AD,即AE•AD=AC•AB,故③正确;∵根据相交弦定理,可直接得出AG•EG=BG•CG,故④正确.故选:B.【点评】本题利用了相似三角形的判定、直径所对的圆周角等于90°、同弧所对的圆周角相等等知识.9.如图,点A在⊙O上,BC为⊙O的直径,AB=4,AC=3,D是的中点,CD 与AB相交于点P,则CP的长为()A.B.C.D.【分析】如图作PH⊥BC于H.首先证明AP=PH,设PA=PH=x,根据勾股定理构建方程即可解决问题;【解答】解:如图作PH⊥BC于H.∵=,∴∠ACD=∠BCD,∵BC是直径,∴∠BAC=90°,∴PA⊥AC,∵PH⊥BC,∴PA=PH,设PA=PH=x,∵PC=PC,∴Rt△PCA≌Rt△PCH,∴AC=CH=3,∵BC==5,∴BH=2,在Rt△PBH中,∵PB2=PH2+BH2,∴(4﹣x)2=x2+22,解得x=,∴PC==,故选:D.【点评】本题考查圆周角定理、勾股定理、圆心角、弧、弦的关系、角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.二.解答题(共41小题)10.如图,在⊙O中,AB是⊙O的弦,CD是⊙O的直径,且AB⊥CD,垂足为G,点E在劣弧上,连接CE.(1)求证:CE平分∠AEB;(2)连接BC,若BC∥AE,且CG=4,AB=6,求BE的长.【分析】(1)根据垂径定理得到=.,然后根据圆周角定理得到∠AEC=∠BEC;(2)利用垂径得到BG=AG=3.∠BGC=90°,则利用勾股定理可计算出BC=5,然后证明∠BCE=∠BEC,从而得到BE的长.【解答】(1)证明:∵CD⊥AB,CD是直径,∴=.∴∠AEC=∠BEC;∴CE平分∠AEB;(2)解:∵CD⊥AB,∴BG=AG=3.∠BGC=90°,在Rt△BGC中,∵CG=4,BG=3,∴BC=5,∵BC∥AE,∴∠AEC=∠BCE.又∠AEC=∠BEC,∴∠BCE=∠BEC∴BE=BC=5.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.11.如图,AB为⊙O的直径,C,F为⊙O上两点,过C作CE⊥AB于点D,交⊙O于点E,延长EC交BF的延长线于点G,连接CF,EF.(1)求证:∠BFE=∠CFG;(2)若FG=4,BF=6,CF=3.①求EF的长;②若tan∠GFC=2,求⊙O的半径.【分析】(1)利用垂径定理以及等角的补角相等即可解决问题;(2)①△GFC∽△EFB,可得=,即可解决问题;②作BM⊥EF于M,作ON⊥BE于N.解直角三角形求出BM,FM,EM,BE,再利用相似三角形的性质即可解决问题;【解答】解:(1)连接EB.∵AB是直径,AB⊥EC,∴=,∴∠BFE=∠BEC,∵∠GFC+∠BFC=180°,∠BEC+∠BFC=180°,∴∠CFG=∠BEC,∴∠BFE=∠CFG.(2)①∵∠FCG+∠ECF=180°,∠EBF+∠ECF=180°,∴∠FCG=∠EBF,∵∠GFC=∠BFE,∴△GFC∽△EFB,∴=,∴=,∴EF=8.②作BM⊥EF于M,作ON⊥BE于N.∵tan∠EFB=tan∠GFC=2=,设FM=m,则BM=2m,根据勾股定理可得m=2,BM=4,FM=2,EM=6,BE==2,∵ON⊥BE,∴BN=,由△BMF∽△BNO,得到=,∴=,∴OB=.∴⊙O的半径为.【点评】本题考查圆周角定理、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.12.如图,在圆内接四边形ABCD中,O为圆心,∠BOD=160°,求∠BCD的度数.【分析】根据圆周角定理求出∠A,根据圆内接四边形性质得出∠BCD+∠BAD=180°,代入求出即可.【解答】解:∵∠BOD=160°,∴∠BAD=∠BOD=80°,∵A、B、C、D四点共圆,∴∠BCD+∠BAD=180°,∴∠BCD=100°.【点评】本题考查了圆周角定理和圆内接四边形的性质,能根据圆内接四边形的性质得出∠BCD+∠BAD=180°是解此题的关键.13.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°(1)判断△ABC的形状,并证明你的结论;(2)若BC的长为6,求⊙O的半径.【分析】(1)根据圆周角定理得到∠ABC=∠APC=60°,∠CAB=∠CPB=60°,根据等边三角形的判定定理证明;(2)延长BO交⊙O于E,连接CE,根据圆周角定理得到∠E=∠BAC=60°,根据正弦的概念计算即可.【解答】解:(1)△ABC是等边三角形,理由如下:由圆周角定理得,∠ABC=∠APC=60°,∠CAB=∠CPB=60°,∴△ABC是等边三角形;(2)延长BO交⊙O于E,连接CE,由圆周角定理得,∠E=∠BAC=60°,∴BE==4,∴⊙O的半径为2.【点评】本题考查的是圆周角定理、等边三角形的判定,掌握同弧所对的圆周角相等是解题的关键.14.如图,四边形ABCD内接于⊙O,点E在对角线AC上,∠1=∠2,EC=BC.(1)若∠CBD=39°,求∠CAD的度数;(2)求证:BC=CD.【分析】(1)直接利用圆周角定理得出答案;(2)直接利用圆周角定理以及三角形外角的性质分析得出答案.【解答】(1)解:∵∠CBD=39°,∴∠CAD的度数为:39°(同圆中,同弧所对圆周角相等);(2)证明:∵EC=BC,∴∠CBE=∠CEB,∴∠1+∠CBD=∠2+∠BAC,∵∠1=∠2,∴∠CBD=∠BAC,∵∠BAC=∠BDC,∴∠CBD=∠BDC,∴BC=CD.【点评】此题主要考查了圆周角定理以及三角形外角的性质,正确应用圆周角定理是解题关键.15.如图,已知⊙O中,AB为直径,AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于D,求线段BC,AD,BD的长.【分析】由在⊙O中,直径AB的长为10cm,弦AC=6cm,利用勾股定理,即可求得BC的长,又由∠ACB的平分线CD交⊙O于点D,可得△ABD是等腰直角三角形,继而求得AD、BD的长;【解答】解:∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵AB=10cm,AC=6cm,∴BC==8(cm),∵∠ACB的平分线CD交⊙O于点D,∴=,∴AD=BD,∴∠BAD=∠ABD=45°,∴AD=BD=AB•cos45°=10×=5(cm).【点评】此题考查了圆周角定理以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.16.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.【分析】(1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得;(2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得.【解答】解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO=(180°﹣∠AOD)=(180°﹣70°)=55°,∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===.∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=2,∴DE=OD﹣OE=2﹣.【点评】本题考查了圆周角定理以及三角形的中位线定理,正确证明OE是△ABC 的中位线是关键.17.已知:如图,△ABC内接于⊙O,AF是⊙O的弦,AF⊥BC,垂足为D,点E 为弧BF上一点,且BE=CF,(1)求证:AE是⊙O的直径;(2)若∠ABC=∠EAC,AE=8,求AC的长.【分析】(1)由BE=CF,则可证得∠BAE=∠FAC,根据圆周角定理和等角的余角相等证明即可;(2)连接OC,根据圆周角定理证明△AOC是等腰直角三角形,由勾股定理即可求得.【解答】(1)证明:∵BE=CF,∴=,∴∠BAE=∠CAF,∵AF⊥BC,∴ADC=90°,∴∠FAC+∠ACD=90°,∵∠E=∠ACB,∴∠E+∠BAE=90°,∴∠ABE=90°,∴AE是⊙O的直径;(2)如图,连接OC,∴∠AOC=2∠ABC,∵∠ABC=∠CAE,∴∠AOC=2∠CAE,∵OA=OC,∴∠CAO=∠ACO=∠AOC,∴△AOC是等腰直角三角形,∵AE=8,∴AO=CO=4,∴AC=4.【点评】本题考查了圆周角定理和其推论:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.18.如图,在平面直角坐标系中,以点M(0,)为圆心,以长为半径作⊙M交x轴于A、B两点,交y轴于C、D两点,连接AM并延长交⊙M于P 点,连接PC交x轴于E.(1)求点C、P的坐标;(2)求证:BE=2OE.【分析】(1)连接PB.根据直径所对的圆周角是直角判定PB⊥OM;由已知条件OA=OB推知OM是三角形APB的中位线;最后根据三角形的中位线定理求得点P的坐标、由⊙M的半径长求得点C的坐标;(2)连接AC,证△AMC为等边三角形,根据等边三角形的三个内角都是60°、直径所对的圆周角∠ACP=90°求得∠OCE=30°,然后在直角三角形OCE中利用30°角所对的直角边是斜边的一半来证明BE=2OE.【解答】(1)解:连接PB,∵PA是圆M的直径,∴∠PBA=90°∴AO=OB=3又∵MO⊥AB,∴PB∥MO.∴PB=2OM=∴P点坐标为(3,)(2分)在直角三角形ABP中,AB=6,PB=2,根据勾股定理得:AP=4,所以圆的半径MC=2,又OM=,所以OC=MC﹣OM=,则C(0,)(1分)(2)证明:连接AC.∵AM=MC=2,AO=3,OC=,∴AM=MC=AC=2,∴△AMC为等边三角形(2分)又∵AP为圆M的直径得∠ACP=90°得∠OCE=30°(1分)∴OE=1,BE=2∴BE=2OE.(2分)【点评】本题综合考查了圆周角定理、等边三角形的判定与性质以及坐标与图形性质.解答该题时通过作辅助线AC、BP构建直径所对的圆周角∠ACP、∠ABP,然后利用圆周角定理来解决问题.19.如图,AB是⊙O的直径,AC是⊙O的弦,∠ACB的平分线交⊙O于点D.若AB=10,AC=6,求BC,BD的值.【分析】根据直径得出∠ACB=∠ADB=90°,根据勾股定理求出BC的长度.根据直径所对的圆周角是直角可得∠ACB=∠ADB=90°,再根据角平分线的定义可得∠DAC=∠BCD,然后求出AD=BD,再根据等腰直角三角形的性质其解即可.【解答】解:连接AD,∵AB是直径,∴∠ACB=∠ADB=90°(直径所对的圆周角是直角),在Rt△ABC中,AB=10,AC=6,∴BC===8,∵AB是直径,∴∠ACB=∠ADB=90°,∵∠ACB的平分线交⊙O于点D,∴∠DCA=∠BCD,∴=,∴AD=BD,∴在Rt△ABD中,AD=BD=AB=×10=5,即BD=5.【点评】本题考查了勾股定理,圆周角定理,解题的关键是求出∠ACB=∠ADB=90°.20.如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠OCD=40°,求∠AOC的度数.【分析】连接OD,如图,由AB=2DE,AB=2OD得到OD=DE,根据等腰三角形的性质得∠DOE=∠E,再利用三角形外角性质得到∠CDO=2∠DOE,由∠C=∠ODC=40°,然后再利用三角形外角性质即可计算出∠AOC.【解答】解:连接OD,如图,∵AB=2DE,而AB=2OD,∴OD=DE,∴∠DOE=∠E,∴∠CDO=∠DOE+∠E,而OC=OD,∴∠C=∠ODC=∠DOE+∠E=40°,∴∠E=20°,∴∠AOC=∠C+∠E=60°.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.21.如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)求证:∠CAB=∠BCD;(2)若EB=2cm,CD=8cm,求半径OB的长.【分析】(1)根据垂径定理和圆的性质,等弧的圆周角相等,即可求证.(2)根据勾股定理,求出各边之间的关系,即可确定半径.【解答】(1)证明:∵AB为⊙O的直径,CD是弦,且AB⊥CD于点E,∴=,∴∠CAB=∠BCD;(2)解:设⊙O的半径为Rcm,则OE=OB﹣EB=(R﹣2)cm,CE=CD=×8=4(cm).在Rt△CEO中,由勾股定理可得OC2=OE2+CE2,即R2=(R﹣2)2+42,解得R=5,∴OB=5cm.【点评】本题考查圆周角定理、垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.22.已知如图:⊙O中,BC是直径,点A在⊙O上,AB=6,AC=8,AD平分∠BAC,求BD的长.【分析】连接OD,由圆周角定理得出∠BOD的度数,再根据勾股定理即可求出BD的长.【解答】解:连接OD,∵AD平分∠BAC,∠BAC=90°,∴∠BAD=45°,∴∠BOD=2∠BAD=90°,∵OB=OD=BC=×10=5,∴BD=.【点评】本题考查的是圆周角定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.如图,C、D两点在以AB为直径的半圆O上,AD平分∠BAC,AB=20,AD=4,DE⊥AB于E.(1)求DE的长.(2)求证:AC=2OE.【分析】(1)连接BD,利用勾股定理求出BD的长,再利用三角形的面积公式求出DE的长;(2)连接OD,作OF⊥AC于点F,首先根据垂径定理得到AC=2AF,进而证明AF=OE,于是得到结论.【解答】解:(1)连接BD.∵AB为直径,∴∠ADB=90°,在Rt△ADB中,BD===4,=AD•BD=AB•DE∵S△ADB∴AD•BD=AB•DE,∴DE===4,即DE=4;(2)证明:连接OD,作OF⊥AC于点F.∵OF⊥AC,∴AC=2AF,∵AD平分∠BAC,∴∠BAC=2∠BAD.又∵∠BOD=2∠BAD,∴∠BAC=∠BOD,Rt△OED和Rt△AFO中,∵∴△AFO≌△OED(AAS),∴AF=OE,∵AC=2AF,∴AC=2OE.【点评】本题主要考查了圆周角定理、角平分线的性质、勾股定理以及垂径定理的知识,解题的关键是正确作出辅助线,此题难度不大.24.如图,在△ABC中,以AB为直径的⊙O分别交AC,BC于点D,E.连接ED,若ED=EC.(1)求证:AB=AC;(2)填空:①若AB=6,CD=4,则BC=4;②连接OD,当∠A的度数为60°时,四边形ODEB是菱形.【分析】(1)由等腰三角形的性质得到∠EDC=∠C,由圆内接四边形的性质得到∠EDC=∠B,由此推得∠B=∠C,由等腰三角形的判定即可证得结论;(2)连接AE,由AB为直径,可证得AE⊥BC,由(1)知AB=AC,证明△CDE ∽△CBA后即可求得BC的长;(3)根据等边三角形的性质得到∠BAE=30°,根据直角三角形的性质得到BE= AB=BO,由菱形的判定定理即可得到结论.【解答】(1)证明:∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,∴∠B=∠C,∴AB=AC;(2)解:①连接AE,∵AB为直径,∴AE⊥BC,由(1)知AB=AC=6,∵∠C=∠C,∠CDE=∠B,∴△CDE∽△CBA,∴=,∴=,∴BC=4,故答案为:4;(3)当∠A=60°时,四边形ODEB是菱形,∵∠A=60°,∴∠BAE=30°,∵∠AEB=90°,∴BE=AB=BO,∴BE=DE=OB=OD,∴四边形ODEB是菱形,故答案为:60°.【点评】本题考查了圆周角定理,等腰三角形的判定和性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.25.如图,AB是⊙O的直径,=,且AB=5,BD=4,求弦DE的长.【分析】连接AD,在Rt△ABD中利用勾股定理求出AD,根据等弧对等弦得出AD=DE.【解答】解:连接AD,∵=,∴AD=DE,又∵AB为直径,∴∠ADB=90°,∵AB=5,BD=4,∴DE=AD==3,∴DE的长为3.【点评】本题考查了圆周角定理,解答本题的关键是作出辅助线,求出AD的长度,难度一般.26.如图,已知圆O,弦AB、CD相交于点M.(1)求证:AM•MB=CM•MD;(2)若M为CD中点,且圆O的半径为3,OM=2,求AM•MB的值.【分析】(1)连接AD、BC,利用同弧所对的圆周角相等,证明△ADM∽△CBM;(2)连接OM、OC,由于M是CD的中点,由垂径定理得OM⊥CD,利用勾股定理可求出CM的值,根据(1)的结论,求出AM•BM.【解答】解:(1)连接AD、BC.∵∠A=∠C,∠D=∠B,∴△ADM∽△CBM∴即AM•MB=CM•MD.(2)连接OM、OC.∵M为CD中点,∴OM⊥CD在Rt△OMC中,∵OC=3,OM=2∴CD=CM===由(1)知AM•MB=CM•MD.∴AM•MB=•=5.【点评】本题考查了相似三角形的判定和性质、勾股定理、圆周角定理及垂径定理,是综合性较强的题目.(1)利用相似、圆周角定理得到相交弦定理;(2)中利用垂径定理、勾股定理和相交弦定理得到了AM与BM的积.相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等27.如图,OA、OB、OC都是⊙O的半径,∠AOB=2∠BOC(1)求证:∠ACB=2∠BAC(2)若AC平分∠OAB,求∠AOC的度数.【分析】(1)根据圆周角定理可得∠BOC=2∠BAC,∠AOB=2∠ACB,再根据条件∠AOB=2∠BOC可得∠ACB=2∠BAC;(2)设∠BAC=x°,则∠OAB=2∠BAC=2x°,再表示出∠AOB=2∠ACB=4∠BAC=4x°,再根据三角形内角和为180°可得方程4x+2x+2x=180,再解即可得x的值,进而可得答案.【解答】(1)证明:在⊙O中,∵∠AOB=2∠ACB,∠BOC=2∠BAC,∵∠AOB=2∠BOC.∴∠ACB=2∠BAC.(2)解:设∠BAC=x°.∵AC平分∠OAB,∴∠OAB=2∠BAC=2x°,∵∠AOB=2∠ACB,∠ACB=2∠BAC,∴∠AOB=2∠ACB=4∠BAC=4x°,在△OAB中,∠AOB+∠OAB+∠OBA=180°,∴4x+2x+2x=180,解得:x=22.5,∴∠AOC=6x°=135°.【点评】此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.28.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠PBC=∠C (1)判断直线BC和PD的位置关系,并证明你的结论;(2)若BC=2,cos∠BPD=,求⊙O的半径.【分析】(1)根据同弧所对的圆周角相等,判断出∠1=∠P,从而求出CB∥PD;(2)根据AB为⊙O直径,判断出∠ACB=90°,再根据,判断出∠A=∠P,利用三角函数求出⊙O的直径.【解答】解:(1)CB∥PD.∵,∴∠C=∠P.又∵∠1=∠DCB,∴∠1=∠P.∴CB∥PD.(2)连接AC.∵AB为⊙O的直径,∴∠ACB=90°.又∵CD⊥AB,∴.∴∠A=∠P.∴sinA=sinP.在Rt△ABC中,,∵cos∠BPD=,∴.∵BC=2,∴AB=2.5.即⊙O的半径为1.25.【点评】本题考查了圆周角定理,利用同弧所对的圆周角相等是解题的关键.29.如图,AB,CD是⊙O的两条弦,AD,CB的延长线相交于点E,DC=DE.AB 和BE相等吗?为什么?【分析】直接利用等腰三角形的性质进而结合圆周角定理得出∠DAB=∠DEC,进而得出答案.【解答】解:AB和BE相等,理由:∵DC=DE,∴∠DCE=∠DEC,又∵∠DCE=∠DAB,∴∠DAB=∠DEC,∴AB=BE.【点评】此题主要考查了圆周角定理以及等腰三角形的性质,正确得出∠DAB=∠DEC是解题关键.30.如图,AB是⊙O的直径,CD是⊙O的弦,∠DCB=30°,求∠ABD的度数.【分析】根据同弧所对的圆周角相等,求出∠DCB=3∠A=30°,再根据直径所对的圆周角为90°,求出∠ABD的度数.【解答】解:∵∠DCB=30°,∴∠A=30°,∵AB为⊙O直径,∴∠ADB=90°,在Rt△ABD中,∠ABD=90°﹣30°=60°.【点评】本题考查了圆周角定理,知道同弧所对的圆周角相等和直径所对的圆周角是90°是解题的关键.31.如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧上一点,∠BMO=120°,求⊙C的半径长.【分析】根据圆内接四边形的性质得到∠BAO=60°,根据直角三角形的性质求出AB,计算即可.【解答】解:∵四边形ABMO是圆内接四边形,∴∠BAO=180°﹣120°=60°,∵∠AOB=90°,∴∠ABO=30°,∵点A的坐标为(0,3),∴OA=3,∴AB=2OA=6,∴⊙C的半径为3.【点评】本题考查的是圆内接四边形的性质、坐标与图形性质,掌握圆内接四边形的对角互补是解题的关键.32.如图,AB为⊙O的直径,点C在⊙O上,且∠CAB=30°,点D为弧的中点,AC=4.求AD的长.【分析】连接BC、BD,根据余弦的定义求出AB,根据等腰直角三角形的性质求出AD即可.【解答】解:连接BC、BD,∵AB为⊙O的直径,∴∠ACB=90°,又∠CAB=30°,∴AB==8,∵点D为弧的中点,∴AD=BD=4.【点评】本题考查的是圆周角定理、锐角三角函数的定义,掌握直径所对的圆周角是直角是解题的关键.33.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=1,BE=2,求AC的长.【分析】(1)根据等腰三角形的三线合一即可证明.(2)由△BED∽△BAC,得,列出方程即可解决问题.【解答】(1)证明:连结AE,如图,∵AC为⊙O的直径,∴∠AEC=90°,∴AE⊥BC,而AB=AC,∴BE=CE.(2)连结DE,如图,∵BE=CE=2,∴BC=4,∵∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC,∴,即,∴BA=8,∴AC=BA=8.【点评】本题考查圆周角定理、等腰三角形的性质.相似三角形的判定和性质等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.34.已知,如图,AB是⊙O的直径,∠BCD=45°.求证:AD=BD.【分析】根据圆周角定理得到∠ACB=90°,得到∠ACD=∠BCD,证明结论.【解答】证明:∵AB是⊙O的直径,∴∠ACB=90°,又∠BCD=45°,∴∠ACD=∠BCD=45°,。
华东师大版九年级数学下册第27 圆 27.1.3 圆周角 同步测试题一、选择题(每小题3分,共24分)1.如图,BC 是⊙O 的直径,点A 是⊙O 上异于B ,C 的一点,则∠A 的度数为(D)A.60°B.70°C.80°D.90°2.如图,四边形ABCD 内接于⊙O.若∠A =40°,则∠C =(D)A.110°B.120°C.135°D.140°3.如图,⊙O 是△ABC 的外接圆,∠BOC =120°,则∠BAC 的度数是(C)A.120°B.80°C.60°D.30°4.如图,在⊙O 中,AB ︵=BC ︵,点D 在⊙O 上,∠CDB =25°,则∠AOB =(B)A.45°B.50°C.55°D.60°5.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于点D ,连结BE.若AB =27,CD =1,则BE 的长是(B)A.5B.6C.7D.86.如图,⊙O 是△ABC 的外接圆,∠B =60°,OP ⊥AC 于点P ,OP =43,则⊙O 的半径为(C)A.8B.12 3C.8 3D.127.如图,在平面直角坐标系中,⊙P 过O(0,0),A(3,0),B(0,-4)三点,点C 是OA ︵上的点(点O 除外),连结OC ,BC ,则sin ∠OCB 等于(A)A.45B.43C.34D.358.如图,⊙P 与x 轴交于点A(-5,0),B(1,0),与y 轴的正半轴交于点C.若∠ACB =60°,则点C 的纵坐标为(B)A.13+ 3B.22+ 3C.4 2D.22+2二、填空题(每小题3分,共24分)9.同圆中,已知AB ︵所对的圆心角是100°,则AB ︵所对的圆周角是50°.10.如图,AB 为⊙O 的直径,C ,D 为⊙O 上的点,AD ︵=CD ︵.若∠CAB =40°,则∠CAD =25°.11.已知BC 是半径为2 cm 的圆内的一条弦,点A 为圆上除点B ,C 外任意一点.若BC =2 3 cm ,则∠BAC 的度数为60°或120°.12.如图,边长为1的小正方形网格中,⊙O 的圆心在格点上,则∠AED 的正弦值513.如图,四边形ABCD 内接于⊙O ,E 为BC 延长线上一点.若∠A =n °,则∠DCE =n °.14.如图,AB 为⊙O 的直径,BC 为⊙O 的弦,点D 是劣弧AC ︵上一点.若点E 在直径AB 另一侧的半圆上,且∠AED =27°,则∠BCD 的度数为117°.15.如图,AB是⊙O的弦,C是AB上一点,∠AOC=90°,OA=4,OC=3,则弦AB的长为32 5.16.如图,已知四边形ABCD内接于半径为4的⊙O,且∠C=2∠A,则BD三、解答题(共52分)17.如图,AB为⊙O的直径,点C,D在⊙O上,且BC=6 cm,AC=8 cm,∠ABD =45°.求BD的长.解:连结OD.∵AB为⊙O的直径,∴∠ACB=90°.∵BC=6 cm,AC=8 cm,∴AB=10 cm.∴OB=5 cm.∵OD=OB,∴∠ODB=∠ABD=45°.∴∠BOD=90°.∴BD=OB2+OD2=5 2 cm.18.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=8,AE=3,求⊙O的半径.解:(1)证明:∵OB=OC,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D.(2)∵AB是⊙O的直径,CD⊥AB,∴CE=DE=12CD=12×8=4.∵∠B=∠D,∠BEC=∠DEA,∴△BCE∽△DAE.∴AE∶CE=DE∶BE,即3∶4=4∶BE.解得BE =163. ∴AB =AE +BE =253.∴⊙O 的半径为256. 19.如图,在⊙O 的内接四边形ABCD 中,AB =AD ,∠C =110°.若点E 在AD ︵上,求∠E 的度数.解:∵四边形ABCD 是⊙O 的内接四边形,∴∠C +∠BAD =180°.∴∠BAD =180°-110°=70°.∵AB =AD ,∴∠ABD =∠ADB.∴∠ABD =12×(180°-70°)=55°. ∵四边形ABDE 为⊙O 的内接四边形,∴∠E +∠ABD =180°.∴∠E =180°-55°=125°.20.如图,四边形ABCD 是⊙O 的内接四边形,DP ∥AC ,交BA 的延长线于点P ,求证:AD ·DC =PA ·BC.证明:连结BD.∵DP∥AC,∴∠PDA=∠DAC.∵∠DAC=∠DBC,∴∠PDA=∠DBC.∵四边形ABCD是⊙O的内接四边形,∴∠DAP=∠DCB.∴△PAD∽△DCB.∴PA∶DC=AD∶BC.∴AD·DC=PA·BC.21.如图,四边形ABCD为正方形,⊙O过正方形的顶点A和对角线的交点P,分别交AB,AD于点F,E.(1)求证:DE=AF;(2)若⊙O的半径为32,AB=2+1,求AEED的值.解:(1)证明:连结EP,FP.∵四边形ABCD为正方形,∴AP=BP,∠BAD=90°,∠BPA=90°.∴∠BPF+∠FPA=90°.∵四边形AFPE为⊙O的内接四边形,∴∠FPE+∠BAD=180°.∴∠FPE=90°.∴∠FPA+∠APE=90°.∴∠BPF=∠APE.又∵∠FBP=∠EAP=45°,∴△BPF≌△APE(ASA).∴BF=AE.又∵AB=AD,∴DE=AF.(2)设AE=x,则BF=AE=x,DE=AF=AB-BF=1+2-x. 连结EF.∵∠BAD=90°,∴EF为⊙O的直径.∵⊙O的半径为3 2,∴EF= 3.在Rt△AEF中,根据勾股定理,得AF2+AE2=EF2.∴(1+2-x)2+x2=(3)2.解得x1=1,x2= 2.当AE=1时,DE=1+2-1=2,AEED=22;当AE =2时,DE =1+2-2=1,AE ED = 2. 综上所述,AE ED 的值为22或 2.。
华东师大版九年级数学下册第27 圆(27.1.3 圆周角)同步测试题一、选择题(每小题3分,共24分)1.如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是(A)A.58°B.60°C.64°D.68°2.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是(B)A B. C. D.3.如图,在⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是(B)A.43°B.35°C.34°D.44°4.如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是(B)A.80°B.120°C.100°D.90°5.如图,点A,B,C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为(B)A.25°B.50°C.60°D.80°6.如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知sin ∠CDB =35,BD =5,则AH 的长度为(B)A.253B.163C.256D.1667.如图,AD 是⊙O 的直径,AB ︵=CD ︵.若∠AOB =40°,则圆周角∠BPC 的度数是(B)A.40°B.50°C.60°D.70°8.如图,已知⊙O 为四边形ABCD 的外接圆,O 为圆心.若∠BCD =120°,AB =AD =2,则⊙O 的半径长为(D)A.322B.62C.32D.233二、填空题(每小题3分,共24分)9.如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E,则∠DOE的度数为90°.10.如图,在圆内接四边形ABCD中,若∠A,∠B,∠C的度数之比为4∶3∶5,则∠D的度数是120°.、11.如图,AB是半圆O的直径,点C在半圆周上,连结AC,∠BAC=30°,点P 在线段OB上运动.设∠ACP的度数是α,则α的取值范围为30°≤α≤90°.12.如图,在⊙O中,点A,B,C在⊙O上,且∠ACB=110°,则∠α=140°.13.如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是AB∥CD14.如图,在平面直角坐标系中,⊙A 经过原点O ,并且分别与x 轴、y 轴交于B ,C 两点,已知B(8,0),C(0,6),则⊙A 的半径为5.15.如图,正方形ABCD 是⊙O 的内接正方形,点P 是劣弧CD ︵上不同于点C 的任意一点,则∠BPC 的度数是45度.16.如图,在⊙O 的内接五边形ABCDE 中,∠CAD =35°,则∠B +∠E =215°.三、解答题(共52分)17.如图,已知CD 是⊙O 的直径,弦AB ⊥CD ,垂足为M ,点P 是AB ︵上一点,且∠BPC =60°.试判断△ABC 的形状,并说明理由.解:△ABC 为等边三角形.理由:∵AB ⊥CD ,CD 为⊙O 的直径,∴AC ︵=BC ︵.∴AC =BC.又∵∠BPC=∠A=60°,∴△ABC为等边三角形.18.如图,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点E.若DA=DE,求证:△BCE是等腰三角形.证明:∵A,B,C,D是⊙O上的四点,∴∠A+∠DCB=180°.又∵∠DCB+∠BCE=180°,∴∠BCE=∠A.∵DA=DE,∴∠A=∠E.∴∠BCE=∠E.∴△BCE是等腰三角形.19.如图,四边形ABCD内接于⊙O,AC平分∠BAD,延长DC交AB的延长线于点E.(1)若∠ADC=86°,求∠CBE的度数;(2)若AC=EC,求证:AD=BE.解:(1)∵四边形ABCD内接于⊙O,∴∠ADC +∠ABC =180°.又∵∠ABC +∠CBE =180°,∠ADC =86°,∴∠CBE =∠ADC =86°.(2)证明:∵AC =EC ,∴∠E =∠CAE.∵AC 平分∠BAD ,∴∠DAC =∠CAE.∴∠E =∠DAC.又∵∠ADC =∠CBE ,∴△ADC ≌△EBC(AAS).∴AD =BE.20.如图,在△ACE 中,AC =CE ,⊙O 经过点A ,C ,且与边AE ,CE 分别交于点D ,F ,点B 是劣弧AC ︵上的一点,且BC ︵=DF ︵,连结AB ,BC ,CD.求证:△CDE ≌△ABC.证明:∵BC ︵=DF ︵,∴∠BAC =∠DCE.∵四边形ABCD 内接于⊙O ,∴∠B =∠CDE.在△CDE 和△ABC 中,⎩⎨⎧∠DCE =∠BAC ,∠CDE =∠ABC ,CE =AC ,∴△CDE ≌△ABC(AAS).21.如图,已知圆内接四边形ABCD 的两边AB ,DC 的延长线相交于点E ,DF 过圆心O 交AB 于点F ,AF =FB ,连结AC.(1)求证:△ACD ∽△EAD ;(2)若⊙O 的半径为5,AF =2BE =4,求证:AC =AD.证明:(1)∵DF 过圆心O 交AB 于点F ,AF =FB ,∴DF 垂直平分AB.∴AD ︵=BD ︵.∴∠DCA =∠DAB.又∵∠ADC =∠EDA ,∴△ACD ∽△EAD.(2)连结OA ,在Rt △AFO 中,OA =5,AF =4,由勾股定理,得OF =OA 2-AF 2=3.∴DF =8.∵AF =BF =2BE =4,∴BE =2.∴EF =BF +BE =6.在Rt △DFE 中,由勾股定理,得DE =DF 2+EF 2=10.∵AE =2AF +BE =10,∴DE =AE.∴∠ADE =∠DAE.∴AC ︵=BD ︵.又∵AD ︵=BD ︵,∴AC ︵=AD ︵.∴AC =AD.如图,∠ACB =∠CDB =60°,AC =2 cm.(1)求△ABC 的周长.解:∵∠A =∠CDB ,∠ACB =∠CDB =60°.∴∠A =∠ACB =60°.∴△ACB 为等边三角形.∵AC =2 cm ,∴△ABC 的周长为6 cm.(2)连结AD ,求证:AD +DC =BD.证明:在BD 上截取DE =AD ,连结AE.∵∠ADB =∠ACB =60°,∴△ADE 是等边三角形.∴AE =AD ,∠EAD =60°.∵△ABC 是等边三角形,∴AB =AC ,∠BAC =60°.∴∠EAD =∠BAC.∴∠EAD -∠EAC =∠BAC -∠EAC ,即∠CAD =∠BAE.∴△ABE ≌△ACD(SAS).∴BE =CD.∴BD =BE +ED =CD +AD.(3)若BC =23,点D 是劣弧AC ︵上一动点(异于点A ,C),求AD +DC 的最大值.解:由上题知,AD +DC =BD ,要使AD +DC 最大,则当BD 为直径时,可以使得AD +DC 最大.连结CO 并延长交⊙O 于点G ,连结BG.∴∠CBG =90°,∠G =∠BAC =60°.在Rt △BGC 中,sinG =BC CG . ∴sin60°=23CG.∴CG=4,即圆的直径为4. ∴AD+DC的最大值为4.。
华师大新版九年级下学期《27.1.3 圆周角》2019年同步练习卷一.填空题(共50小题)1.如图,正方形ABCD内接于⊙O,E是劣弧CD上一动点,则∠AEB=°.2.如图,AB是⊙O的直径,点C、D在圆上,∠D=65°,则∠BAC等于度.3.⊙O是正方形ABCD的外接圆,若点P在⊙O上且与A,B不重合,则∠APB的大小为度度.4.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F,设∠A=α,则∠E+∠F=(用含α的式子表示).5.如图,四边形ABCD内接于⊙O,若∠ABD=62°,∠C=122°,则∠ADB的度数为°.6.如图,AB是半圆O的直径,E是半圆上一点,且OE⊥AB,点C为的中点,则∠A =°.7.如图,AB是⊙O的直径,弦BC=4cm,点F是弦BC的中点,∠ABC=60°,若动点E 以2cm/s的速度在线段AB上由A向B运动,连接EF,设运动时间为t(s),当△BEF 是直角三角形时,t的值等于.8.如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO、BD,则∠OBD的度数是.9.如图,半圆O是一个量角器,△AOB为一纸片,AB交半圆于点D,OB交半圆于点C,若点C、D、A在量角器上对应读数分别为45°,70°,150°,则∠AOB的度数为;∠B的度数为.10.如图,四边形ABCD内接于⊙O,AB是直径,OD∥BC,∠ABC=40°,则∠BCD的度数为11.如图,AB是⊙O的直径,点C和点D在⊙O上,若∠BDC=20°,则∠AOC等于度.12.如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠OBC=50°,则∠ACB =°.13.如图,AB、AC是⊙O的弦,OE⊥AB、OF⊥AC,垂足分别为E、F.如果∠EOF=100°,∠C=60°,那么∠FEA=.14.如图,AB是⊙O的直径,C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为.15.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的正弦值是.16.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O 于点F,则∠BAF=.17.如图,平面直角坐标系中,O为坐标原点,以O为圆心作⊙O,点A、C分别是⊙O与x轴负半轴、y轴正半轴的交点,点B、D在⊙O上,那么∠ADC的度数是.18.如图,BD为⊙O的直径,点A为的中点,∠ABD=35°,则∠DBC=°.19.如图,△ABC内接于⊙O,半径为5,BC=6,CD⊥AB于D点,则tan∠ACD的值为.20.如图,半圆O的直径AB=7,两弦AC、BD相交于点E,弦CD=,且BD=5,则DE=.21.如图,点D(0,3),O(0,0),C(4,0),B在⊙A上,BD是⊙A的一条弦.则sin ∠OBD=.22.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,若∠D=130°,则∠CAB=度.23.如图,已知AB,CD为⊙O的直径,且CH垂直平分OB于点H,则tan∠HDC=.24.如图,⊙O是四边形ABCD的外接圆,CE∥AD交AB于点E,BE=BC,∠BCD=122°,则∠ADC=°.25.如图,在⊙O的内接五边形ABCDE中,∠CAD=40°,则∠B+∠E=.26.如图,点A、D在⊙O上,BC是直径,∠D=35°,则∠OAC=.27.如图,⊙O的弦AB、CD相交于点P,已知CP=3,PD=4,AP=2,那么AB=.28.如图,A、B、C、D是半径为10的⊙O上的四点,其中∠CAD=∠ABD°=60°.则圆心O到CD的距离OE是.29.如图,AB为⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠E=15°,则∠AOC的度数为.30.如图,已知点A,B,C,D都在⊙O上,CD=6cm,∠ABC=120°,则⊙O的面积为.31.如图所示,以锐角△ABC的边AB为直径作⊙O,交AC,BC于E、D两点.若AC=14,7sin C=3tan B,则BD=.32.如图,在直角三角形△ABC中,∠BAC=90°,点E是斜边BC的中点,圆O经过A、C、E三点,F是弧EC上的一个点,且∠AFC=36°,则∠B=.33.如图,正方形ABCD的四个顶点分别在⊙O上,点P在上不同于点C的任意一点,则∠DPC的度数是度.34.如图,⊙O为△ABC的外接圆,其中D点在上,且OD⊥AC,已知∠A=36°,∠C =60°,则∠BOD=.35.如图,已知AM为⊙O的直径,直线BC经过点M,且AB=AC,∠BAM=∠CAM,线段AB和AC分别交⊙O于点D、E,∠BMD=40°,则∠EOM=.36.如图,已知AB是⊙O的弦,半径OC垂直AB,点D是⊙O上一点,且点D与点C位于弦AB两侧,连接AD、CD、OB,若∠BOC=70°,则∠ADC=度.37.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=°.38.如图,已知⊙O的直径为8cm,A、B、C三点在⊙O上,且∠ACB=30°,则AB长.39.如图所示,四边形ABCD内接于⊙O,∠ABC=115°,则∠AOC的度数为度.40.如图,在⊙O中,直径为AB,∠ACB的平分线交⊙O于D,则∠ABD=.41.如图,AB是⊙O的直径,点C在⊙O上,且点D在上.若∠AOC=134°,则∠BDC 的大小为度.42.如图,AB为⊙O直径,点C,D在⊙O上,tan∠CAB=,则∠ADC=.43.如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则⊙C的半径为.44.如图,点D为∠BAC边AC上一点,点O为边AB上一点,AD=DO.以O为圆心,OD长为半径作半圆,交AC于另一点E,交AB于点F、G,连接EF.若∠BAC=22°,则∠EFG=°.45.如图,AD为⊙O的直径,∠ABC=75°,且AC=BC,则∠BED=.46.如图,直径为10的⊙A经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为.47.如图,已知AB是⊙O的直径,BC为弦,过圆心O作OD⊥BC交弧BC于点D,连接DC,若∠DCB=32°,则∠BAC=.48.如图,⊙O的弦AB=8cm,点C为优弧上的动点,且∠ACB=30°.若弦DE经过弦AC、BC的中点M、N,则DM+EN的最大值是cm.49.如图,AB是⊙O的直径,且弦AC=3,圆周角∠D=30°,则弦BC的长为.50.四边形ABCD内接于⊙O,AB是直径,∠ABD=30°,则∠BCD的度数为.华师大新版九年级下学期《27.1.3 圆周角》2019年同步练习卷参考答案与试题解析一.填空题(共50小题)1.如图,正方形ABCD内接于⊙O,E是劣弧CD上一动点,则∠AEB=45°.【分析】连接OA、OB,如图,利用正方形的性质得∠AOB=90°,然后根据圆周角定理得到∠AEB的度数.【解答】解:连接OA、OB,如图,∵四边形ABCD为正方形,∴∠AOB=90°,∴∠AEB=∠AOB=45°.故答案为45.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了正方形的性质.2.如图,AB是⊙O的直径,点C、D在圆上,∠D=65°,则∠BAC等于25度.【分析】由AB是⊙O的直径,根据半圆(或直径)所对的圆周角是直角,即可求得∠ACB 的度数,又由∠D=65°,即可求得∠B的度数,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠BAC的度数.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠D=65°,∠B与∠D是对的圆周角,∴∠D=∠B=65°,∴∠BAC=90°﹣∠B=25°.故答案为:25.【点评】此题考查了圆周角定理.此题比较简单,解题的关键是掌握半圆(或直径)所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.3.⊙O是正方形ABCD的外接圆,若点P在⊙O上且与A,B不重合,则∠APB的大小为度45度.【分析】连接OA,OB,根据正方形的性质得到∠AOB=90°,根据圆周角定理解答即可.【解答】解:连接OA,OB,∵四边形ABCD是⊙O的内接正方形,∴∠AOB==90°,由圆周角定理得,∠APB=∠AOB=45°,故答案为:45.【点评】本题考查的是正方形的性质,圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F,设∠A=α,则∠E+∠F=180°﹣2α(用含α的式子表示).【分析】根据圆内接四边形的性质得到∠ADC+∠ABC=180°,∠ECD=∠A=α,∠BCF =∠A=α,根据三角形内角和定理计算即可.【解答】解:∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,∠ECD=∠A=α,∠BCF=∠A=α,∴∠EDC+∠FBC=180°,∴∠E+∠F=360°﹣180°﹣2α=180°﹣2α,故答案为:180°﹣2α.【点评】本题考查的是圆内接四边形的性质、三角形内角和定理,掌握圆内接四边形的对角互、圆内接四边形的任意一个外角等于它的内对角是解题的关键.5.如图,四边形ABCD内接于⊙O,若∠ABD=62°,∠C=122°,则∠ADB的度数为60°.【分析】首先根据圆内接四边形的性质根据∠C求得∠A的度数,然后利用三角形内角和定理求得∠ADB的度数.【解答】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∵∠C=122°,∴∠A=58°,∵∠ABD=62°,∴∠ADB=180°﹣∠ABD﹣∠A=180°﹣62°﹣58°=60°,故答案为:60.【点评】本题考查了圆内接四边形的性质,解题的关键是根据圆内接四边形对角互补确定∠A的度数,难度不大.6.如图,AB是半圆O的直径,E是半圆上一点,且OE⊥AB,点C为的中点,则∠A =22.5°.【分析】连接半径OC,先根据点C为的中点,得∠BOC=45°,再由同圆的半径相等和等腰三角形的性质得:∠A=∠ACO=×45°,可得结论.【解答】解:连接OC,∵OE⊥AB,∴∠EOB=90°,∵点C为的中点,∴∠BOC=45°,∵OA=OC,∴∠A=∠ACO=×45°=22.5°,故答案为:22.5°.【点评】此题考查了圆周角定理与等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.7.如图,AB是⊙O的直径,弦BC=4cm,点F是弦BC的中点,∠ABC=60°,若动点E 以2cm/s的速度在线段AB上由A向B运动,连接EF,设运动时间为t(s),当△BEF 是直角三角形时,t的值等于2s或s.【分析】求出∠C=90°,求出AB,分为两种情况:画出图形,根据图形求出移动的距离即可.【解答】解:∵动点E以2cm/s的速度从A点出发沿着A→B的方向运动,∵AB是⊙O直径,∴∠C=90°,∵F为BC中点,BC=4cm,∴BF=CF=2cm,∵∠C=90°,∠B=60°,∴∠A=30°,∴AB=2BC=8cm,分为两种情况:①当∠EFB=90°时,∵∠C=90°,∴∠EFB=∠C,∴AC∥EF,∵FC=BF,∴AE=BE,即E和O重合,AE=4,t=4÷2=2(s);②当∠FEB=90°时,∵∠ABC=60°,∴∠BFE=30°,∴BE=BF=1,AE=8﹣1=7,t=7÷2=(s);故答案为:2s或s.【点评】本题考查了圆周角定理,含30度角的直角三角形性质,平行线分线段成比例定理等知识点的综合运用,注意要进行分类讨论啊.8.如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO、BD,则∠OBD的度数是30°.【分析】连接DC,根据正切的定义求出∠OCD,根据圆周角定理解答.【解答】解:连接DC,在Rt△DOC中,tan∠OCD==,则∠OCD=30°,由圆周角定理得,∠OBD=∠OCD=30°,故答案为:30°.【点评】本题考查的是圆周角定理,坐标与图形性质,正切的定义,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等是解题的关键.9.如图,半圆O是一个量角器,△AOB为一纸片,AB交半圆于点D,OB交半圆于点C,若点C、D、A在量角器上对应读数分别为45°,70°,150°,则∠AOB的度数为105°;∠B的度数为25°.【分析】根据量角器的知识,可直接求出∠AOB,连结OD,如图,根据题意得∠DOC=25°,∠AOD=90°,由于OD=OA,则∠ADO=45°,然后利用三角形外角性质得∠ADO=∠B+∠DOB,所以∠B=45°﹣25°=20°【解答】解:∵点C、D、A在量角器上对应读数分别为45°,70°,150°,∴∠AOB=∠MOA﹣∠MOC=150°﹣45°=105°,连结OD,如图,则∠DOC=70°﹣45°=25°,∠AOD=150°﹣70°=80°,∵OD=OA,∴∠ADO=50°,∵∠ADO=∠B+∠DOB,∴∠B=50°﹣25°=25°.故答案为:105°,25°.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).10.如图,四边形ABCD内接于⊙O,AB是直径,OD∥BC,∠ABC=40°,则∠BCD的度数为110°【分析】根据平行线的性质求出∠AOD,根据等腰三角形的性质求出∠OAD,根据圆内接四边形的性质计算即可.【解答】解:∵OD∥BC,∴∠AOD=∠ABC=40°,∵OA=OD,∴∠OAD=∠ODA=70°,∵四边形ABCD内接于⊙O,∴∠BCD=180°﹣∠OAD=110°,故答案为:110°.【点评】本题考查的是圆内接四边形的性质、平行线的性质,掌握圆内接四边形的对角互补是解题的关键.11.如图,AB是⊙O的直径,点C和点D在⊙O上,若∠BDC=20°,则∠AOC等于140度.【分析】可先利用圆周角定理求得∠BOC,再利用邻补角可求得∠AOC.【解答】解:∵∠BDC=20°,∴∠BOC=40°,∴∠AOC=180°﹣40°=140°.故答案为:140【点评】本题主要考查圆周角定理,掌握同弧所对的圆周角等于圆心角的一半是解题的关键.12.如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠OBC=50°,则∠ACB=20°.【分析】根据圆周角定理即可得到结论.【解答】解:∵OB=OC,∠OBC=50°,∴∠BOC=180°﹣2∠OBC=80°,∵∠BOC=2∠AOB,∴∠AOB=∠BOC=40°,∴∠ACB=AOB=20°.故答案为:20.【点评】此题主要考查了圆周角定理的应用,熟记圆周角定理是解题关键.13.如图,AB、AC是⊙O的弦,OE⊥AB、OF⊥AC,垂足分别为E、F.如果∠EOF=100°,∠C=60°,那么∠FEA=40°.【分析】先求出∠A,进而得出∠B=40°,再由OE垂直于AB,利用垂径定理得到E为AB 的中点,同理得到F为AC的中点,可得出EF为三角形ABC的中位线,即可得出结论.【解答】解:∵OE⊥AB,OF⊥AC,∴∠OF A=∠OEA=90°,∴∠A=180﹣∠EOF=80°,∵∠C=60°,∴∠B=180°﹣80°﹣60°=40°,∵OE⊥AB,OF⊥AC,∴E为AB的中点,F为AC的中点,即EF为△ABC的中位线,∴EF∥BC,∴∠FEA=∠B=40°,故答案为:40°【点评】此题考查了四边形内角和,垂径定理,以及三角形中位线定理,平行线的性质,熟练掌握垂径定理是解本题的关键.14.如图,AB是⊙O的直径,C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为110°.【分析】连接AC,根据圆周角定理,可分别求出∠ACB=90°,∠ACD=20°,即可求∠BCD的度数.【解答】解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AED=20°,∴∠ACD=20°,∴∠BCD=∠ACB+∠ACD=110°,故答案为:110°.【点评】此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.15.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的正弦值是.【分析】直接利用圆周角定理结合勾股定理以及锐角三角函数关系得出答案.【解答】解:由题意可得:∠AED=∠ABC,故∠AED的正弦值为:sin∠ABC===.故答案为:.【点评】此题主要考查了圆周角定理以及解直角三角形,正确得出:∠AED=∠ABC是解题关键.16.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O 于点F,则∠BAF=15°.【分析】根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.【解答】解:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF=∠BOF=15°,故答案为:15°.【点评】本题考查的是圆周角定理、平行四边形的性质定理、等边三角形的性质的综合运用,掌握同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半、等腰三角形的三线合一是解题的关键.17.如图,平面直角坐标系中,O为坐标原点,以O为圆心作⊙O,点A、C分别是⊙O与x轴负半轴、y轴正半轴的交点,点B、D在⊙O上,那么∠ADC的度数是135°.【分析】利用“在同圆中,同弧所对的圆周角是所对的圆心角的一半”求得∠ABC=∠AOC =45°;然后由圆内接四边形的对角互补来求∠ADC的度数.【解答】解:如图,∵∠AOC=90°,∴∠ABC=∠AOC=45°,又∵点A、B、C、D共圆,∴∠ADC+∠ABC=180°,∴∠ADC=135°.故答案是:135°.【点评】本题考查了圆周角定理、坐标与图形性质以及圆内接四边形的性质.此题利用圆周角定理求得∠ABC的度数是解题的关键.18.如图,BD为⊙O的直径,点A为的中点,∠ABD=35°,则∠DBC=20°.【分析】求出∠BAD=90°,求出∠ADB=55°,推出∠ACB=∠ADB=55°,求出AB=AC,推出∠ABC=∠ACB=55°,即可得出答案.【解答】解:连接AD,∵BD是直径,∴∠BAD=90°,∵∠ABD=35°,∴∠ADB=55°,∴∠ACB=∠ADB=55°,∵A为弧BDC的中点,∴AB=AC,∴∠ABC=∠ACB=55°,∵∠ABD=35°,∴∠DBC=55°﹣35°=20°,故答案为:20.【点评】本题考查了等腰三角形性质,圆周角定理,三角形内角和定理的应用,主要考查学生的推理能力.19.如图,△ABC内接于⊙O,半径为5,BC=6,CD⊥AB于D点,则tan∠ACD的值为.【分析】作直径BE,连接CE,作CF⊥BE于点F,则在直角△BCE中可以利用勾股定理求得EC的长,然后证明∠EBC=∠ECF=∠ACD,求得tan∠EBC即可.【解答】解:作直径BE,连接CE,作CF⊥BE于点F.∵CF⊥BE,CD⊥AB又∵∠A=∠E,∴∠ECF=∠ACD.∵BE是直径,CF⊥BE,∴∠BCE=90°,∠EBC=∠ECF=∠ACD,∴EC==8,∴tan∠EBC===.∴tan∠ACD=tan∠EBC=.故答案是:.【点评】本题考查了圆周角定理,以及三角函数的定义,勾股定理,正确作出辅助线是关键.20.如图,半圆O的直径AB=7,两弦AC、BD相交于点E,弦CD=,且BD=5,则DE=2.【分析】连接OD,OC,AD,由⊙O的直径AB=7可得出OD=OC,故可得出OD=CD=OC,所以∠DOC=60°,∠DAC=30°,根据勾股定理可求出AD的长,在Rt△ADE 中,利用∠DAC的正切值求解即可.【解答】解:连接OD,OC,AD,∵半圆O的直径AB=7,∴OD=OC=,∵CD=,∴OD=CD=OC∴∠DOC=60°,∠DAC=30°又∵AB=7,BD=5,∴AD===2,在Rt△ADE中,∵∠DAC=30°,∴DE=AD•tan30°=2×=2.故答案为:2.【点评】本题考查了圆周角定理、相似三角形的判定和性质、勾股定理的应用等知识;本题要特别注意的是BE、DE不是相似三角形的对应边,它们的比不等于相似比,以免造成错解.21.如图,点D(0,3),O(0,0),C(4,0),B在⊙A上,BD是⊙A的一条弦.则sin∠OBD=.【分析】连接CD,可得出∠OBD=∠OCD,根据点D(0,3),C(4,0),得OD=3,OC =4,由勾股定理得出CD=5,再在直角三角形中得出利用三角函数求出sin∠OBD.【解答】解:∵D(0,3),C(4,0),∴OD=3,OC=4,∴CD=5,连接CD,∵∠OBD=∠OCD,∴sin∠OBD=sin∠OCD==.故答案为:.【点评】本题考查了圆周角定理,勾股定理、以及锐角三角函数的定义,是基础知识要熟练掌握.22.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,若∠D=130°,则∠CAB=40度.【分析】根据圆内接四边形的性质求出∠B,根据圆周角定理得到∠ACB=90°,根据三角形内角和定理计算即可.【解答】解:∵四边形ABCD内接于⊙O,∴∠B+∠D=180°,∴∠B=180°﹣130°=50°,∵AB为⊙O的直径,∴∠ACB=90°∴∠CAB=90°﹣50°=40°,故答案为:40.【点评】本题考查的是圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.23.如图,已知AB,CD为⊙O的直径,且CH垂直平分OB于点H,则tan∠HDC=.【分析】利用锐角三角三角函数关系得出∠COH=60°,进而表示出EH,DE的长,即可得出答案.【解答】解:如图所示:过点H作EH⊥DC于点E,∵CH垂直平分OB于点H,∴OH=CO,∴sin∠OCH==,∴∠OCH=30°,∴∠COH=60°,∴设EO=x,则HO=2x,EH=x,DO=4x,则tan∠HDC===.故答案为:.【点评】此题主要考查了圆周角定理以及锐角三角三角函数关系,正确得出∠COH的度数是解题关键.24.如图,⊙O是四边形ABCD的外接圆,CE∥AD交AB于点E,BE=BC,∠BCD=122°,则∠ADC=116°.【分析】根据内接四边形的对角互补和平行线的性质解答即可.【解答】解:∵CE∥AD,∴∠A=∠BEC,∵BE=BC,∴∠BEC=∠ECB,∵∠BCD=122°,∴∠A=180°﹣122°=58°,∴∠BEC=∠ECB=∠A=58°,∴∠B=180°﹣58°﹣58°=64°,∴∠ADC=180°﹣64°=116°,故答案为:116【点评】此题考查圆内接四边形的性质,关键是根据内接四边形的对角互补解答.25.如图,在⊙O的内接五边形ABCDE中,∠CAD=40°,则∠B+∠E=220°.【分析】连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.【解答】解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=40°,∴∠B+∠E=180°+40°=220°.故答案为:220.【点评】本题考查了圆周角定理及圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题的关键.26.如图,点A、D在⊙O上,BC是直径,∠D=35°,则∠OAC=55°.【分析】由圆周角定理推论可求得∠AOC,在△AOC中由三角形内角和定理可求得答案.【解答】解:∵点A、D在⊙O上,BC是直径,∠D=35°,∴∠AOC=2∠D=70°,∵OA=OC,∴∠OAC==55°,故答案为:55°.【点评】本题主要考查圆周角定理,掌握同弧所对的圆周角等于圆心角的一半是解题的关键.27.如图,⊙O的弦AB、CD相交于点P,已知CP=3,PD=4,AP=2,那么AB=8.【分析】根据相交弦定理“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”进行计算.【解答】解:由相交弦定理得:P A•PB=PC•PD,∴BP===6,∴AB=8,故答案为8.【点评】本题主要考查相交弦定理:圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等..28.如图,A、B、C、D是半径为10的⊙O上的四点,其中∠CAD=∠ABD°=60°.则圆心O到CD的距离OE是5.【分析】连接OC,由等边三角形的性质可知,∠OCE=30°,根据OC=10利用直角三角形的性质即可得出结论.【解答】证明:连接OC.在△ACD中,∵∠CAD=∠ABD=60°,∠ACD=∠ABD,∴∠ACD=60°,∴∠ADC=180°﹣∠CAD﹣∠ACD=180°﹣60°﹣60°=60°,∴△ACD是等边三角形;∵⊙O为△ACD外接圆,∴O也为△ACD的内心,∴CO平分∠ACD,∴∠OCE=30°,∴OE=OC=5.故答案为5.【点评】本题考查了圆周角定理、等边三角形的判定,直角三角形的性质等知识,将各知识点有机结合,旨在考查同学们的综合应用能力.29.如图,AB为⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠E=15°,则∠AOC的度数为45°.【分析】求∠AOC的度数,可以转化为求∠C与∠E的问题.【解答】解:连接OD,∵AB=2DE=2OD,∴OD=DE,又∠E=15°,∴∠DOE=∠E=15°,∴∠ODC=30°,同理∠C=∠ODC=30°∴∠AOC=∠E+∠OCE=45°.故答案为:45°.【点评】本题主要考查了三角形的外角和定理,外角等于不相邻的两个内角的和.30.如图,已知点A,B,C,D都在⊙O上,CD=6cm,∠ABC=120°,则⊙O的面积为36π.【分析】先利用圆内接四边形的性质得到∠D=60°,再根据圆周角定理得∠ACD=90°,接着根据含30度的直角三角形的三边的关系得到AD=12,然后利用圆的面积公式计算.【解答】解:∵∠ABC+∠D=180°,∴∠D=180°﹣120°=60°,∵AD为直径,∴∠ACD=90°,在Rt△ACD中,AD=2CD=12,∴⊙O的半径为6,⊙O的面积为36π.故答案为36π.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.31.如图所示,以锐角△ABC的边AB为直径作⊙O,交AC,BC于E、D两点.若AC=14,7sin C=3tan B,则BD=6.【分析】连接AD,分别在Rt△ACD和Rt△ABD中,表示出sin C和tan B的值,根据它们的比例关系,即可求得BD、AC的关系式,进而代值计算即可.【解答】解:连接AD,∵AB为直径,∴∠ADB=90°,∴在Rt△ACD和Rt△ABD中,sin C=,tan B=,由7sin C=3tan B,可得:7×=3×,即3AC=7BD,∵AC=14,∴BD=6.故答案为:6.【点评】此题主要考查的是圆周角定理和锐角三角函数的定义,以AD为介质来得到AC、BD的比例关系是解决问题的关键.32.如图,在直角三角形△ABC中,∠BAC=90°,点E是斜边BC的中点,圆O经过A、C、E三点,F是弧EC上的一个点,且∠AFC=36°,则∠B=18°.【分析】连接AE,根据圆周角定理可得出∠AEC的度数,再由直角三角形的性质得出AE =BE,根据三角形外角的性质即可得出结论.【解答】解:连接AE,∵∠AFC=36°,∴∠AEC=36°.∵点E是斜边BC的中点,∴AE=BE,∴∠B=∠BAE.∵∠AEC是△ABE的外角,∴∠AEC=∠B+∠BAE=2∠B=36°,∴∠B=18°.故答案为:18°.【点评】本题考查的是圆周角定理,根据题意作出辅助线,构造出圆周角是解答此题的关键.33.如图,正方形ABCD的四个顶点分别在⊙O上,点P在上不同于点C的任意一点,则∠DPC的度数是135度.【分析】直接利用正方形的性质得出∠DBC的度数,再利用圆内接四边形的性质得出答案.【解答】解:连接BD,∵四边形ABCD是正方形,∴∠DBC=45°,∴∠DPC=180°﹣45°=135°.故答案为:135.【点评】此题主要考查了正方形的性质以及圆内接四边形的性质,正确掌握正方形性质是解题关键.34.如图,⊙O为△ABC的外接圆,其中D点在上,且OD⊥AC,已知∠A=36°,∠C =60°,则∠BOD=156°.【分析】连接CO,由圆周角定理可求∠BOC,由等腰三角形的性质求∠BCO,可得∠OCA,利用互余关系求∠COD,则∠BOD=∠BOC+∠COD.【解答】解:连接CO,∠BOC=2∠A=2×36°=72°,在△BOC中,∵BO=CO,∴∠BCO=(180°﹣72°)÷2=54°,∴∠OCA=∠BCA﹣54°=60°﹣54°=6°,又∵OD⊥AC,∴∠COD=90°﹣∠OCA=90°﹣6°=84°,∴∠BOD=∠BOC+∠COD=72°+84°=156°.故答案为:156°.【点评】本题考查了圆周角定理.关键是将圆周角的度数转化为圆心角的度数,利用互余关系,角的和差关系求解.35.如图,已知AM为⊙O的直径,直线BC经过点M,且AB=AC,∠BAM=∠CAM,线段AB和AC分别交⊙O于点D、E,∠BMD=40°,则∠EOM=80°.【分析】连接EM,根据等腰三角形的性质得到AM⊥BC,进而求出∠AMD=70°,于是得到结论.【解答】解:连接EM,∵AB=AC,∠BAM=∠CAM,∴AM⊥BC,∵AM为⊙O的直径,∴∠ADM=∠AEM=90°,∴∠AME=∠AMD=90°﹣∠BMD=50°∴∠EAM=40°,∴∠EOM=2∠EAM=80°,故答案为:80°.【点评】本题考查了等腰三角形的性质,圆周角定理,熟练掌握圆周角定理是解题的关键.36.如图,已知AB是⊙O的弦,半径OC垂直AB,点D是⊙O上一点,且点D与点C位于弦AB两侧,连接AD、CD、OB,若∠BOC=70°,则∠ADC=35度.【分析】首先利用垂径定理证明,=,推出∠AOC=∠COB=70°,可得∠ADC=AOC =35°.【解答】解:如图,连接OA.∵OC⊥AB,∴=,∴∠AOC=∠COB=70°,∴∠ADC=AOC=35°,故答案为35.【点评】本题考查圆周角定理、垂径定理等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题.37.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=27°.【分析】根据菱形的性质得到∠ACB=∠DCB=(180°﹣∠D)=51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论.【解答】解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=∠DCB=(180°﹣∠D)=51°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB﹣∠ACE=27°,故答案为:27.【点评】本题考查了菱形的性质,三角形的外角的性质,圆内接四边形的性质,熟练掌握菱形的性质是解题的关键.38.如图,已知⊙O的直径为8cm,A、B、C三点在⊙O上,且∠ACB=30°,则AB长4cm.【分析】作直径AD,连接BD,根据圆周角定理得到∠ABD=90°,∠D=∠ACB=30°,根据直角三角形的性质解答.【解答】解:作直径AD,连接BD,∴∠ABD=90°,由圆周角定理得,∠D=∠ACB=30°,∴AB=AD=4cm,故答案为:4cm.【点评】本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半、直径所对的圆周角是直角是解题的关键.39.如图所示,四边形ABCD内接于⊙O,∠ABC=115°,则∠AOC的度数为130度.【分析】先根据圆内接四边形的性质求出∠D,再利用圆周角定理解答.【解答】解:∵∠ABC=115°∴∠D=180°﹣∠B=65°∴∠AOC=2∠D=130°.故答案为:130.【点评】本题利用了圆周角定理,圆内接四边形的性质求解.40.如图,在⊙O中,直径为AB,∠ACB的平分线交⊙O于D,则∠ABD=45°.【分析】由AB为直径,得到∠ACB=90°,由因为CD平分∠ACB,所以∠ACD=45°,这样就可求出∠ABD.【解答】解:∵AB为直径,∴∠ACB=90°,又∵CD平分∠ACB,∴∠ACD=45°,∴∠ABD=∠ACD=45°.故答案为45°.【点评】本题考查了圆周角定理:在同圆和等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.同时考查了直径所对的圆周角为90度.41.如图,AB是⊙O的直径,点C在⊙O上,且点D在上.若∠AOC=134°,则∠BDC 的大小为23度.【分析】可先求得∠BOC,再利用圆周角定理可求得∠BDC.【解答】解:∵AB是⊙O的直径,且∠AOC=134°,∴∠BOC=180°﹣134°=46°,∴∠BDC=∠BOC=23°,故答案为:23.【点评】本题主要考查圆周角定理,掌握同弧所对的圆周角等于圆心角的一半是解题的关键.42.如图,AB为⊙O直径,点C,D在⊙O上,tan∠CAB=,则∠ADC=30°.【分析】连接BC,如图,先利用特殊角的三角函数值得到∠CAB=60°,然后根据圆周角定理得到∠ACB=90°,利用互余得到∠B=30°,然后根据圆周角定理得到∠ADC=∠B=30°.【解答】解:连接BC,如图,∵tan∠CAB=,∴∠CAB=60°,∵AB为直径,∴∠ACB=90°,∴∠B=90°﹣∠CAB=30°,∴∠ADC=∠B=30°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.43.如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则⊙C的半径为3.【分析】根据圆内接四边形的对角互补求出∠A的度数,得到∠ABO的度数,根据直角三角形的性质求出AB的长,得到答案.【解答】解:∵点A的坐标为(0,3),∴OA=3,∵四边形ABMO是圆内接四边形,∴∠BMO+∠A=180°,又∠BMO=120°,∴∠A=60°,则∠ABO=30°,∴AB=2OA=6,则则⊙C的半径为3,故答案为:3.【点评】本题考查的是圆内接四边形的性质和直角三角形的性质,掌握圆内接四边形的对角互补是解题的关键.44.如图,点D为∠BAC边AC上一点,点O为边AB上一点,AD=DO.以O为圆心,OD长为半径作半圆,交AC于另一点E,交AB于点F、G,连接EF.若∠BAC=22°,则∠EFG=33°.【分析】先根据等边对等角可求∠DOA=∠BAC=22°,然后根据圆周角定理可求:∠AEF =∠DOA=11°,然后根据三角形外角的性质即可求∠EFG的度数.【解答】解:∵AD=DO,∴∠DOA=∠BAC=22°,∴∠AEF=∠DOA=11°,∵∠EFG=∠BAC+∠AEF,∴∠EFG=33°.故答案为:33.【点评】此题考查了圆周角定理,等腰三角形的性质和三角形外角的性质,熟记定理与性质是解题的关键.45.如图,AD为⊙O的直径,∠ABC=75°,且AC=BC,则∠BED=135°.【分析】由AD为⊙O的直径,∠ABC=75°,且AC=BC,可求得∠ABD=90°,∠D=∠C=30°,继而可得∠CBD=15°,由三角形内角和定理,即可求得答案.【解答】解:∵AD为⊙O的直径,∴∠ABD=90°,∵AC=BC,∠ABC=75°,∴∠BAC=∠ABC=75°,∴∠C=180°﹣∠ABC﹣∠BAC=30°,∠CBD=∠ABD﹣∠ABC=15°,∴∠D=∠C=30°,∴∠BED=180°﹣∠CBD﹣∠D=135°.故答案为:135°.【点评】此题考查了圆周角定理、等腰三角形的性质以及三角形内角和定理.此题难度不大,注意掌握数形结合思想的应用.46.如图,直径为10的⊙A经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为.【分析】首先设⊙A与x轴的另一个交点为D,连接CD,根据直角对的圆周角是直径,即可得CD是直径,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,可得∠OBC=∠ODC,继而可求得答案.【解答】解:设⊙A与x轴的另一个交点为D,连接CD,∵∠COD=90°,∴CD是直径,即CD=10,∵C(0,5),∴OC=5,∴OD==5,∵∠OBC=∠ODC,∴cos∠OBC=cos∠ODC===.故答案为:.【点评】此题考查了圆周角定理、勾股定理以及三角函数的定义.注意掌握辅助线的作法,注意掌握数形结合思想与转化思想的应用.。
华师大版九下 27.1 圆的认识一、选择题(共13小题)1. 如图所示的四个图形的阴影部分面积之间的关系是( )A. S甲>S乙>S丙>S丁B. S甲>S乙(=S丙)>S丁C. S甲(=S丁)>S乙(=S丙)D. 无法判断2. 在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为( )A. 6B. 9C. 12D. 153. 如图,AB是⊙O的直径,C,D是圆上两点,连接AC,BC,AD,CD.若∠CAB=55∘,则∠ADC的度数为( )A. 55∘B. 45∘C. 35∘D. 25∘4. 如图所示,半径为1的小圆在半径为9的大圆内滚动,且始终与大圆相切,则小圆扫过的阴影部分的面积为( )A. 17πB. 32πC. 49πD. 80π5. 图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看做正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近于( )A. 45B. 34C. 23D. 126. 一个圆的半径增加2 cm,则这个圆( )A. 周长增加4 cmB. 周长增加4π cmC. 面积增加4 cm2D. 面积增加4π cm27. 下列图形中的角,是圆心角的是( )A. B.C. D.8. 同圆中扇形甲的弧长是扇形乙的弧长的16,那么扇形乙的面积是扇形甲面积的( )A. 36倍B. 12倍C. 6倍D. 3倍9. 下列说法正确的是( )A. 弦是直径B. 弧是半圆C. 一条弦把圆分成两条弧,这两条弧可能是等弧D. 半圆是圆中最长的弧10. 圆的面积扩大到原来的16倍,半径扩大到原来的( )A. 4倍B. 8倍C. 16倍D. 32倍11. 如图,AB,AC,CD,BD分别为四个圆的直径,甲、乙两人分别沿图示方向从A到B,结果是( )A. 甲、乙走的路程一样多B. 甲走的路程多C. 乙走的路程多D. 无法比较12. 在⊙O中,弦AB,CD的弦心距分别是3,4,如果AB∥CD,则AB,CD之间的距离为( )A. 7B. 1C. 7或1D. 不能确定13. 下列选项中,∠ACB是圆心角的是( )A. B.C. D.二、填空题(共8小题)14. 圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆.其中,定点称为,定长称为.15. 下列图形中的角,是圆心角的是,不是圆心角的是.(写图形编号)⊙O于点D,则CD的最大值为.17. 如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E,F分别是AD,BA的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)18. 如图,ABCD是围墙,AB∥CD,∠ABC=120∘,一根6 m长的绳子,一端拴在围墙一角的柱子B处,另一端E处拴着一只羊,这只羊活动区域的最大面积为.19. 某海关大钟钟面的直径是5.8米,该大钟钟面的面积是平方米.(结果保留一位小数)20. 已知:如图,在⊙O中,AB=BC=CD,OB,OC分别交AC,BD于E,F,则下列结论:①OE=BE;②OC⊥BD;③AE=DF;④OE=OF中正确的有.(填序号)21. 如图,在锐角△ABC中,∠A=45∘,BC=2 cm,能够将△ABC完全覆盖的最小圆形纸片的直径是cm.三、解答题(共5小题)22. 如图,已知CD,BE是⊙A的弦,CD=EB.请在图中的圆心角及其所对的弧、所对的弦之间,至少找出5对相等关系.23. 如图,已知⊙O的半径OA,OB,C在AB上,CD⊥OA于点D,CE⊥OB于点E,且CD=CE,求证:AC=BC.24. 某开发区的大标记牌上,要用油漆漆出如图所示(图中阴影部分)的三种标点符号:句号、逗号、问号.已知大圆半径为R,小圆半径为r,且R=2r.如果均匀用料.那么哪一个标点符号的油漆用得多?25. 如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=6,⊙O的半径为5,求BC的长.26. 有一个周长为62.8米的圆形草坪,准备为它安装自动旋转喷灌装置进行喷灌.现有射程为20米,15米,10米的三种装置,你认为选哪种比较合适?安装在什么地方?答案一选择题1. C2. C【解析】如图所示,∵直径AB=15,∴BO=7.5,∵OC:OB=3:5,∴CO=4.5,∴DC=DO2―CO2=6,∴DE=2DC=12.3. C【解析】∵AB是⊙O的直径,∴∠ACB=90∘,又∵∠CAB=55∘,∴∠B=35∘,∴∠ADC=∠B=35∘.4. B5. C【解析】如图,连接AC,设正方形的边长为a,∵四边形ABCD是正方形,∴∠B=90∘,∴AC为圆的直径,∴AC =2AB =2a ,则正方形桌面与翻折成的圆形桌面的面积之比为2=2π≈23,故选C .6. B7. C8. C9. C 10. A【解析】圆的面积与半径的平方成正比,面积扩大 16 倍,则半径扩大 4 倍.11. A【解析】甲走的路程:12πAB ,乙走的路程:12πAC +12πCD +12πBD =12π(AC +CD +BD )=12πAB , ∴ 甲、乙走的路程一样多.12. C 13. B 二 填空题14. 圆心,半径15. (1),(2),(3),(4),(5),(6)【解析】根据圆心角的定义可得(1),(2)是圆心角;(3),(4),(5),(6)不是圆心角.16. 12【解析】连接 OD ,如图,∵CD ⊥OC , ∴∠DCO =90∘,∴CD =OD 2―OC 2,当 OC 的值最小时,CD 的值最大,当 OC ⊥AB 时,OC 最小,此时 D ,B 两点重合,∴CD =CB =12AB =12×1=12,即 CD 的最大值为 12.17. π―1【解析】延长 DC ,CB 交 ⊙O 于 M ,N ,则 图中阴影部分的面积=14×(S 圆O ―S 正方形ABCD )=14×(4π―4)=π―1.18.38π3【解析】(1)如图,扇形 BFG 和扇形 CGH 为羊活动的区域;(2)S 扇形GBF =120π×62360=12π m 2,S 扇形HCG =60π×22360=23π m 2,∴ 羊活动区域的面积为:12π+23π=38π3 m 2.19. 26.420. ②③④21. 22【解析】由题意可知,锐角 △ABC 的最小覆盖圆为 △ABC 的外接圆,则作 △ABC 的外接圆,如图,作圆的直径 CH ,连接 BH ,由圆周角定理的推论得∠H =∠A =45∘,∠HBC =90∘,∵BC=2 cm,∴CH=2BC=22 cm.三解答题22. CD=EB,∠DAC=∠EAB,DE=CB,∠DAE=∠CAB,S△ADC=S△ABE.23. ∵CD=CE,CD⊥OA,CE⊥OB,∴∠AOC=∠BOC,∴AC=BC.24. 问号的面积最大,油漆用得最多(提示:S句号=π(R2―r2)=3πr2,S逗号=12πR2=2πr2,S问号=πR2―2―12πr2=134πr2).25. (1)连接AC,如图(1)所示,∵C是弧BD的中点,∴∠DBC=∠BAC.在△ABC中,∠ACB=90∘,CE⊥AB,∴∠BCE+∠ECA=∠BAC+∠ECA=90∘,∴∠BCE=∠BAC,又C是弧BD的中点,∴∠DBC=∠CDB.∴∠BCE=∠DBC.∴CF=BF.(2)连接OC交BD于G,如图(2)所示.∵AB是⊙O的直径,AB=2OC=10,∴∠ADB=90∘.∴BD=AB2―AD2=102―62=8.∵C是弧BD的中点,∴OC⊥BD,DG=BG=1BD=4,2∵OA=OB,∴OG是△ABD的中位线.∴OG=1AD=3,2∴CG=OC―OG=5―3=2,在Rt△BCG中,由勾股定理得BC=CG2+BG2=22+42=25.26. 选10米的装置合适,安装在圆形草坪中心位置.。
精品基础教育教学资料,仅供参考,需要可下载使用!华师大版九年级数学下册同步练习试卷带答案27.1.3圆周角一.选择题(共8小题)1.如图,已知⊙O的直径CD垂直于弦AB,垂足为点E,∠ACD=22.5°,若CD=6cm,则AB的长为()A.4cm B.3cm C.2cm D.2cm2.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°3.如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为()A.B. C.D.4.如图,在⊙O中,AB是直径,BC是弦,点P是上任意一点.若AB=5,BC=3,则AP的长不可能为()A.3 B.4 C.D.55.如图,已知A,B,C在⊙O上,为优弧,下列选项中与∠AOB相等的是()A.2∠C B.4∠B C.4∠A D.∠B+∠C6.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°7.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°8.如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°二.填空题(共6小题)9.如图,点A,B,C在⊙O上,若∠ABC=40°,则∠AOC的度数为_________.10.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=度.11.如图,A、B、C是⊙O上的三点,∠AOB=100°,则∠ACB=_________度.12.如图,OB是⊙O的半径,弦AB=OB,直径CD⊥AB.若点P是线段OD上的动点,连接PA,则∠PAB的度数可以是_________(写出一个即可)13.如图,已知A、B、C三点在⊙O上,AC⊥BO于D,∠B=55°,则∠BOC的度数是_________.14.如图,点A、B、C都在圆O上,如果∠AOB+∠ACB=84°,那么∠ACB的大小是_________.三.解答题(共6小题)15.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.16.已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.17.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠BCD.(1)求证:CB∥PD;(2)若BC=3,sin∠BPD=,求⊙O的直径.18.如图,△ABC内接于半圆,AB是直径,过A作直线MN,∠MAC=∠ABC,D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F.(1)求证:MN是半圆的切线;(2)求证:FD=FG.(3)若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积.19.如图,已知△ABC中,以AB为直径的半⊙O交AC于D,交BC于E,BE=CE,∠C=70°,求∠DOE的度数.20.如图,在半径为5cm的⊙O中,直径AB与弦CD相交于点P,∠CAB=50°,∠APD=80°.(1)求∠ABD的大小;(2)求弦BD的长.27.1.3圆周角福冈黄蜂回复参考答案与试题解析一.选择题(共8小题)1.如图,已知⊙O的直径CD垂直于弦AB,垂足为点E,∠ACD=22.5°,若CD=6cm,则AB的长为()A.4cm B.3cm C 2cm D.2cm考点:圆周角定理;等腰直角三角形;垂径定理.专题:计算题.分析:连结OA,根据圆周角定理得∠AOD=2∠ACD=45°,由于3⊙O的直径CD垂直于弦AB,根据垂径定理得AE=BE,且可判断△OAE为等腰直角三角形,所以AE=OA=,然后利用AB=2AE进行计算.解答:解:连结OA,如图,∵∠ACD=22.5°,∴∠AOD=2∠ACD=45°,∵⊙O的直径CD垂直于弦AB,∴AE=BE,△OAE为等腰直角三角形,∴AE=OA,∵CD=6,∴OA=3,∴AE=,∴AB=2AE=3(cm).故选:B.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.2.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°考点:圆周角定理.专题:计算题.分析:先根据圆周角定理得到∠ABC=∠AOC,由于∠ABC+∠AOC=90°,所以∠AOC+∠AOC=90°,然后解方程即可.解答:解:∵∠ABC=∠AOC,而∠ABC+∠AOC=90°,∴∠AOC+∠AOC=90°,∴∠AOC=60°.故选:C.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为()A.B.C.D.考点:圆周角定理;勾股定理;锐角三角函数的定义.分析:首先过点A作AD⊥OB于点D,由在Rt△AOD中,∠AOB=45°,可求得AD与OD的长,继而可得BD的长,然后由勾股定理求得AB的长,继而可求得sinC的值.解答:解:过点A作AD⊥OB于点D,∵在Rt△AOD中,∠AOB=45°,∴OD=AD=OA•cos45°=×1=,∴BD=OB﹣OD=1﹣,∴AB==,∵AC是⊙O的直径,∴∠ABC=90°,AC=2,∴sinC=.故选:B.点评:此题考查了圆周角定理、三角函数以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.4.如图,在⊙O中,AB是直径,BC是弦,点P是上任意一点.若AB=5,BC=3,则AP的长不可能为()A. 3 B.4 C.D. 5考点:圆周角定理;勾股定理;圆心角、弧、弦的关系.专题:几何图形问题.分析:首先连接AC,由圆周角定理可得,可得∠C=90°,继而求得AC的长,然后可求得AP的长的取值范围,继而求得答案.解答:解:连接AC,∵在⊙O中,AB是直径,∴∠C=90°,∵AB=5,BC=3,∴AC==4,∵点P是上任意一点.∴4≤AP≤5.故选:A.点评:此题考查了圆周角定理以及勾股定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.5.如图,已知A,B,C在⊙O上,为优弧,下列选项中与∠AOB相等的是()A.2∠C B.4∠B C.4∠A D.∠B+∠C考点:圆周角定理.分析:根据圆周角定理,可得∠AOB=2∠C.解答:解:如图,由圆周角定理可得:∠AOB=2∠C.故选:A.点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.6.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°考点:圆周角定理;平行线的性质.分析:连接OC,由AO∥DC,得出∠ODC=∠AOD=70°,再由OD=OC,得出∠ODC=∠OCD=70°,求得∠COD=40°,进一步得出∠AOC,进一步利用圆周角定理得出∠B的度数即可.解答:解:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选:D.点评:此题考查平行线的性质,等腰三角形的性质,三角形的内角和,圆周角定理,正确作出辅助线是解决问题的关键.7.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°考点:圆周角定理;垂径定理.专题:压轴题.分析:利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.解答:解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.点评:此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.8.如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°考点:圆周角定理;含30度角的直角三角形.专题:几何图形问题.分析:由⊙O的直径是AB,得到∠ACB=90°,根据特殊三角函数值可以求得∠B的值,继而求得∠A和∠D 的值.解答:解:∵⊙O的直径是AB,∴∠ACB=90°,又∵AB=2,弦AC=1,∴sin∠CBA=,∴∠CBA=30°,∴∠A=∠D=60°,故选:C.点评:本题考查的是圆周角定理及直角三角形的性质,比较简单,但在解答时要注意特殊三角函数的取值.二.填空题(共6小题)9.如图,点A,B,C在⊙O上,若∠ABC=40°,则∠AOC的度数为80°.考点:圆周角定理.分析:直接根据圆周角定理求解.解答:解:∵∠ABC=40°,∴∠AOC=2∠ABC=80°.故答案为80°.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=60度.考点:圆周角定理;平行四边形的性质.专题:计算题.分析:由四边形OABC为平行四边形,根据平行四边形对角相等,即可得∠B=∠AOC,由圆周角定理,可得∠AOC=2∠ADC,又由内接四边形的性质,可得∠B+∠ADC=180°,即可求得∠B=∠AOC=120°,∠ADC=60°,然后又三角形外角的性质,即可求得∠OAD+∠OCD的度数.解答:解:连接DO并延长,∵四边形OABC为平行四边形,∴∠B=∠AOC,∵∠AOC=2∠ADC,∴∠B=2∠ADC,∵四边形ABCD是⊙O的内接四边形,∴∠B+∠ADC=180°,∴3∠ADC=180°,∴∠ADC=60°,∴∠B=∠AOC=120°,∵∠1=∠OAD+∠ADO,∠2=∠OCD+∠CDO,∴∠OAD+∠OCD=(∠1+∠2)﹣(∠ADO+∠CDO)=∠AOC﹣∠ADC=120°﹣60°=60°.故答案为:60.点评:此题考查了圆周角定理、圆的内接四边形的性质、平行四边形的性质以及三角形外角的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.11.如图,A、B、C是⊙O上的三点,∠AOB=100°,则∠ACB=50度.考点:圆周角定理.分析:根据圆周角定理即可直接求解.解答:解:∠ACB=∠AOB=×100°=50°.故答案是:50.点评:此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.如图,OB是⊙O的半径,弦AB=OB,直径CD⊥AB.若点P是线段OD上的动点,连接PA,则∠PAB的度数可以是70°(写出一个即可)考点:圆周角定理;等腰三角形的性质;垂径定理.专题:开放型.分析:当P点与D点重合是∠DAB=75°,与O重合则OAB=60°,∠OAB≤∠PAB≤∠DAB,所以∠PAB的度数可以是60°﹣﹣75°之间的任意数.解答:解:连接DA,OA,则△OAB是等边三角形,∴∠OAB=∠AOB=60°,∵DC是直径,DC⊥AB,∴∠AOC=∠AOB=30°,∴∠ADC=15°,∴∠DAB=75°,∵,∠OAB≤∠PAB≤∠DAB,∴∠PAB的度数可以是60°﹣75°之间的任意数.故答案为:70°点评:本题考查了垂径定理,等边三角形的判定及性质,等腰三角形的判定及性质.13.如图,已知A、B、C三点在⊙O上,AC⊥BO于D,∠B=55°,则∠BOC的度数是70°.考点:圆周角定理.专题:计算题.分析:根据垂直的定义得到∠ADB=90°,再利用互余的定义计算出∠A=90°﹣∠B=35°,然后根据圆周角定理求解.解答:解:∵AC⊥BO,∴∠ADB=90°,∴∠A=90°﹣∠B=90°﹣55°=35°,∴∠BOC=2∠A=70°.故答案为:70°.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.如图,点A、B、C都在圆O上,如果∠AOB+∠ACB=84°,那么∠ACB的大小是28°.考点:圆周角定理.专题:计算题.分析:根据圆周角定理即可推出∠AOB=2∠ACB,再代入∠AOB+∠ACB=84°通过计算即可得出结果.解答:解:∵∠AOB=2∠ACB,∠AOB+∠ACB=84°∴3∠ACB=84°∴∠ACB=28°.故答案为:28°.点评:此题主要考查圆周角定理,关键在于找出两个角之间的关系,利用代换的方法结论.三.解答题(共6小题)15.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.考点:圆周角定理;平行线的性质;三角形中位线定理.专题:几何图形问题.分析:(1)根据圆周角定理可得∠A CB=90°,则∠CAB的度数即可求得,在等腰△AOD中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得;(2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得.解答:解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO===55°∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===.∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=2,∴DE=OD﹣OE=2﹣.点评:本题考查了圆周角定理以及三角形的中位线定理,正确证明OE是△ABC的中位线是关键.16.已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.考点:圆周角定理;等边三角形的判定与性质;勾股定理.专题:证明题.分析:(Ⅰ)利用圆周角定理可以判定△CAB和△DCB是直角三角形,利用勾股定理可以求得AC的长度;利用圆心角、弧、弦的关系推知△DCB也是等腰三角形,所以利用勾股定理同样得到BD=CD=5;(Ⅱ)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5.解答:解:(Ⅰ)如图①,∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵在直角△CAB中,BC=10,AB=6,∴由勾股定理得到:AC===8.∵AD平分∠CAB,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴易求BD=CD=5;(Ⅱ)如图②,连接OB,OD.∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5.点评:本题综合考查了圆周角定理,勾股定理以及等边三角形的判定与性质.此题利用了圆的定义、有一内角为60度的等腰三角形为等边三角形证得△OBD是等边三角形.17.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠BCD.(1)求证:CB∥PD;(2)若BC=3,sin∠BPD=,求⊙O的直径.考点:圆周角定理;平行线的判定与性质;垂径定理;解直角三角形.专题:几何图形问题.分析:(1)根据圆周角定理和已知求出∠D=∠BCD,根据平行线的判定推出即可;(2)根据垂径定理求出弧BC=弧BD,推出∠A=∠P,解直角三角形求出即可.解答:(1)证明:∵∠D=∠1,∠1=∠BCD,∴∠D=∠BCD,∴CB∥PD;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴∠BPD=∠CAB,∴sin∠CAB=sin∠BPD=,即=,∵BC=3,∴AB=5,即⊙O的直径是5.点评:本题考查了圆周角定理,解直角三角形,垂径定理,平行线的判定的应用,主要考查学生的推理能力.18.如图,△ABC内接于半圆,AB是直径,过A作直线MN,∠MAC=∠ABC,D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F.(1)求证:MN是半圆的切线;(2)求证:FD=FG.(3)若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积.考点:圆周角定理;三角形内角和定理;等腰三角形的判定与性质;切线的判定与性质;相似三角形的判定与性质.专题:证明题.分析:(1)由AB是直径得出∠ACB=90°,推出∠CAB+∠MAC=90°即可;(2)根据三角形的内角和定理求出∠EDB+∠ABD=90°,∠CBG+∠BGC=90°,推出∠EDB=∠DGF即可;(3)根据等腰三角形的性质推出∠DAF=∠ADF,求出AF=DF=FG,推出S△DGF=S△ADG,证△BCG∽△ADG,根据相似三角形的性质求出即可.解答:解:(1)如右图所示,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°,∵∠MAC=∠ABC,∴∠CAB+∠MAC=90°,即∠MAB=90°,∴MN是半圆的切线.(2)证明:∵DE⊥AB,∴∠EDB+∠ABD=90°,∵AB是直径,∴∠ACB=90°,∴∠CBG+∠BGC=90°∵D是弧AC的中点,∴∠CBD=∠ABD,∴∠EDB=∠BGC,∵∠DGF=∠BGC,∴∠EDB=∠DGF,∴DF=FG.(3)如图,连接AD、OD,∵DF=FG,∴∠DGF=∠FDG,∵∠DGF+∠DAG=90°,∠FDG+∠ADF=90°,∴∠DAF=∠ADF,∴AF=DF=GF,∴S△ADG=2S△DGF=9,∵△BCG∽△ADG,∴=,∵△ADG的面积为9,且DG=3,GC=4,∴S△BCG=16.答:△BCG的面积是16.点评:本题主要考查对等腰三角形的性质和判定,三角形的内角和定理,相似三角形的性质和判定,圆周角定理,切线的性质和判定等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.19.如图,已知△ABC中,以AB为直径的半⊙O交AC于D,交BC于E,BE=CE,∠C=70°,求∠DOE的度数.考点:圆周角定理;等腰三角形的性质.分析:连接AE,判断出AB=AC,根据∠B=∠C=70°求出∠BAC=40°,再根据同弧所对的圆周角等于圆心角的一半,求出∠DOE的度数.解答:解:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴AE⊥BC,∵BE=CE,∴AB=AC,∴∠B=∠C=70°,∠BAC=2∠CAE,∴∠BAC=40°,∴∠DOE=2∠CAE=∠BAC=40°.点评:本题考查了等腰三角形的性质和圆周角定理,把圆周角转化为圆心角是解题的关键.20.如图,在半径为5cm的⊙O中,直径AB与弦CD相交于点P,∠CAB=50°,∠APD=80°.(1)求∠ABD的大小;(2)求弦BD的长.考点:圆周角定理;垂径定理.分析:(1)先根据三角形外角的性质求出∠C的度数,由圆周角定理即可得出结论;(2)过点O作OE⊥BD于点E,由垂径定理可知BD=2BE,再根据直角三角形的性质可求出BE的长,进而得出结论.解答:解:(1)∵∠APD是△APC的外角,∠CAB=50°,∠APD=80°,∴∠C=80°﹣50°=30°,∴∠ABD=∠C=30°;(2)过点O作OE⊥BD于点E,则BD=2BE,∵∠ABD=30°,OB=5cm,∴BE=OB•cos30°=5×=cm,∴BD=2BE=5cm.点评:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等是解答此题的关键.。
27.1.3圆周角同步练习一.选择题1.如图,在⊙O中,点B是的中点,点D在上,连接OA、OB、BD、CD.若∠AOB =50°,则∠BDC的大小为()A.50°B.35°C.25°D.15°2.如图,E在⊙O上,B、C分别是弧AD的三等分点,∠AOB=40°,则∠AED度数是()A.80°B.60°C.50°D.40°3.如图,点A、B、C在⊙O上,BC∥OA,连接BO并延长,交⊙O于点D,连接AC,DC.若∠A=25°,则∠D的大小为()A.25°B.30°C.40°D.50°4.如图,AB是⊙O的直径,若∠BAC=20°,则∠ADC=()A.40°B.60°C.70°D.80°5.如图,圆的两条弦AB,CD相交于点E,且,∠A=35°,则且∠CEB的度数为()A.50°B.80°C.70°D.90°6.如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则AB的长为()A.10B.12C.16D.207.如图,四边形ABCD内接于⊙O,DA=DC,若∠CBE=55°,则∠DAC的度数为()A.70°B.67.5°C.62.5°D.65°8.如图,⊙A经过平面直角坐标系的原点O,交x轴于点B(﹣4,0),交y轴于点C(0,3),点D为第二象限内圆上一点.则∠CDO的正弦值是()A.B.﹣C.D.9.如图,AB是⊙O的直径,点D为⊙O内一点,连接OD、AD、BD,且AD⊥OD,垂足为D,若AB=10,OD=3,则BD的长为()A.2B.4C.2D.4.810.如图,点A,B,C,D在⊙O上,OA⊥BC,垂足为E.若∠ADC=30°,AE=1,则BC=()A.2B.4C.D.2二.填空题11.如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=25°,则∠AOD等于.12.如图,AB是⊙O的直径,点C、D是AB两侧⊙O上的点,若∠CAB=34°,则∠ADC =°.13.如图,在扇形AOB中,点C、D在上,连接AD、BC交于点E,若∠AOB=120°,的度数为50°,则∠AEB=°.14.如图,在⊙O的内接五边形ABCDE中,∠CAD=32°,则∠B+∠E=°.15.如图,AB是圆O的弦,AB=,点C是圆O上的一个动点,且∠ACB=60°,若点M、N分别是AB、BC的中点,则MN长度的最大值是.三.解答题16.如图,四边形ABDC内接于⊙O,∠BAC=60°,AD平分∠BAC交⊙O于点D,连接OB,OC,BD,CD.(1)求证:四边形OBDC是菱形;(2)若∠ABO=15°,OB=2,求弦AC长.17.如图,AB是⊙O的直径,C、D、E是⊙O上的点,AD=CD,∠E=68°,求∠ABC 的度数.18.如图,AB是⊙O的直径,B是的中点,弦AC、DB的延长线交于点E,弦AD、CB 的延长线交于点F.(1)求证:BE=BF;(2)若BD=3,CE=4,求⊙O的直径.参考答案一.选择题1.解:连接OC,如图,∵点B是的中点,∴=,∴∠AOB=∠BOC=50°,∵∠BDC=∠BOC=25°.故选:C.2.解:∵B、C分别是弧AD的三等分点,∴==,∴∠COD=∠BOC=∠AOB=40°,∴∠AOD=3×40°=120°,∴∠AED=∠AOD=60°,故选:B.3.解:∵BC∥OA,∴∠ACB=∠A=25°,∠B=∠AOB=2∠ACB=50°,∵BD是⊙O的直径,∴∠BCD=90°,∴∠D=90°﹣∠B=90°﹣50°=40°,故选:C.4.解:∵AB是直径,∴∠ACB=90°,∵∠BAC=20°,∴∠ABC=90°﹣20°=70°,∴∠ADC=∠ABC=70°,故选:C.5.解:∴=,∴∠C=∠A=35°,∴∠CEB=∠A+∠C=35°+35°=70°.故选:C.6.解:连接BD,如图,∵AB为直径,∴∠ADB=∠ACB=90°,∵AD=CD,∴∠DAC=∠DCA,而∠DCA=∠ABD,∴∠DAC=∠ABD,∵DE⊥AB,∴∠ABD+∠BDE=90°,而∠ADE+∠BDE=90°,∴∠ABD=∠ADE,∴∠ADE=∠DAC,∴FD=F A=5,在Rt△AEF中,∵sin∠CAB=,∴EF=3,∴AE==4,DE=5+3=8,∵∠ADE=∠DBE,∠AED=∠BED,∴△ADE∽△DBE,∴DE:BE=AE:DE,即8:BE=4:8,∴BE=16,∴AB=4+16=20.故选:D.7.解:∵四边形ABCD内接于⊙O,∠CBE=55°,∴∠ABC=180°﹣∠CBE=180°﹣55°=125°,∴∠ADC=180°﹣∠ABC=180°﹣125°=55°,∵AD=DC,∴∠DAC=∠DCA=(180°﹣∠DAC)=(180°﹣55°)=62.5°,故选:C.8.解:连接BC,如图,∵B(﹣4,0),C(0,3),∴OB=4,OC=3,∴BC==5,∴sin∠OBC==,∵∠ODC=∠OBC,∴sin∠CDO=sin∠OBC=.故选:A.9.解延长AD交⊙O于C,连接BC,如图,∵OD⊥AC,∴AD=CD,在Rt△OAD中,AD==4,∴CD=4,∵AB为直径,∴∠ACB=90°,在Rt△ABC中,BC==6,在Rt△BCD中,BD==2.故选:C.10.解:连接OC,如图,∵∠ADC=30°,∴∠AOC=60°,∵OA⊥BC,∴CE=BE,在Rt△COE中,OE=OC,CE=OE,∵OE=OA﹣AE=OC﹣1,∴OC﹣1=OC,∴OC=2,∴OE=1,∴CE=,∴BC=2CE=2.故选:D.二.填空题11.解:连接BD,如图,∵CD⊥AB,∴∠C=90°﹣∠CAB=90°﹣25°=65°,∴∠B=∠C=65°,∴∠AOD=2∠B=130°.故答案为130°.12.解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=34°,∴∠ABC=90°﹣∠CAB=56°,∴∠ADC=∠ABC=56°.故答案为:56.13.解:作所对的圆周角∠APB,连接OC、OD、BD,如图,∵∠APB=∠AOB=×120°=60°,∴∠ADB=180°﹣∠APB=180°﹣60°=120°,∵的度数为50°,∴∠COD=50°,∴∠CBD=∠COD=25°,∵∠AEB=∠EDB+∠EBD,∴∠AEB=120°+25°=145°.故答案为145.14.解:如图,连接CE,∵五边形ABCDE是⊙O的内接五边形,∴四边形ABCE是⊙O的内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=32°,∴∠B+∠E=180°+32°=212°.故答案为:212.15.解:连接AO并延长交圆O于点D,连接BD,如图,∴∠ADB=∠ACB=60°,∵AD为圆O的直径,∴∠ABD=90°,∴AD===4,∵点M、N分别是AB、BC的中点,∴MN=AC,当AC为直径时,AC的值最大,∴MN的最大值为2.故答案为:2.三.解答题16.(1)证明:连接OD,由圆周角定理得,∠BOC=2∠BAC=120°,∵AD平分∠BAC,∴,∴∠BOD=∠COD=60°,∵OB=OD,OC=OD,∴△BOD和△COD是等边三角形,∴OB=BD=DC=OC,∴四边形OBDC是菱形;(2)解连接OA,∵OB=OA,∠ABO=15°,∴∠AOB=150°,∴∠AOC=360°﹣150°﹣120°=90°,∴AC=.17.解:连接DB,如图所示:∵∠E=68°,∴∠A=68°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=90°﹣∠A=90°﹣68°=22°,∵AD=CD,∴,∴∠DBC=∠DBA=22°,∴∠ABC=∠DBC+∠DBA=22°+22°=44°.18.(1)证明:∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵B是的中点,∴=,∴BC=BD,在△BCE和△BDF中,∴△BCE≌△BDF(ASA),∴BE=BF;(2)解:∵BC=BD=3,而CE=4,∴BE===5,∵AC=,AD=,而BC=BD,∴AC=AD,设AC=AD=x,在Rt△ADE中,x2+82=(x+4)2,解得x=6,即AC=6,在Rt△ACB中,AB==3,即⊙O的直径为3.。