LAMP技术及应用
- 格式:pptx
- 大小:11.76 MB
- 文档页数:36
LAMP原理及引物设计与实例.LAMP引物的设计LAMP引物的设计主要是针对靶基因的六个不同的区域,基于靶基因3' 端的F3c、F2c和Flc区以及5' 端的Bl、B2和B3区等6个不同的位点设计4种引物。
FIP(Forward Inner Primer):上游内部引物,由F2区和F1C区域组成,F2区与靶基因3’端的F2c区域互补,F1C区与靶基因5' 端的Flc区域序列相同。
F3引物:上游外部引物(Forward Outer Primer),由F3区组成,并与靶基因的F3c区域互补。
BIP引物:下游内部引物(Backward Inner Primer ),由B1C和B2区域组成,B2区与靶基因3' 端的B2c区域互补,B1C域与靶基因5' 端的Blc区域序列相同.B3引物:下游外部引物(Backward Outer Primer ),由B3区域组成,和靶基因的B3c区域互补。
2.扩增原理60-65℃是双链DNA复性及延伸的中间温度,DNA在65℃左右处于动态平衡状态。
因此,DNA在此温度下合成是可能的。
利用4种特异引物依靠一种高活性链置换DNA聚合酶。
使得链置换DNA合成在不停地自我循环。
扩增分两个阶段。
第1阶段为起始阶段,任何一个引物向双链DNA的互补部位进行碱基配对延伸时,另一条链就会解离,变成单链。
上游内部引物FIP的F2序列首先与模板F2c结合(如图B所示),在链置换型DNA聚合酶的作用下向前延伸启动链置换合成。
外部引物F3与模板F3c结合并延伸,置换出完整的FIP连接的互补单链(如图C所示)。
FIP上的F1c与此单链上的Fl 为互补结构。
自我碱基配对形成环状结构(如图C所示)。
以此链为模板。
下游引物BIP与B3先后启动类似于FIP和F3的合成,形成哑铃状结构的单链。
迅速以3' 末端的Fl区段为起点。
以自身为模板,进行DNA合成延伸形成茎环状结构。
LAMP(环介导等温扩增)技术2011-07-28 11:46 来源:北京蓝谱点击次数:1341 关键词:LAMP PCR技术环介导等温扩增分享到:收藏夹腾讯微博新浪微博开心网PCR方法在人类及动植物疾病基因诊断、食品分析和环境监测等领域发挥着举足轻重的作用,其灵敏度高、特异性好,是目前最精准的基因诊断方法。
然而PCR方法操作起来较复杂,对仪器和人员要求比较高,不适合基层或现场快速诊断,因此在国内的推广速度并不是很快。
2000年日本学者Notomi在Nucleic Acids Res杂志上公开了一种新的基因诊断技术,即LAMP (L oop-mediated isothermal amplification),中文名为“环介导等温扩增反应”,受到了世卫组织WHO、各国学者和相关政府部门的关注,短短几年,该技术已成功地应用于SARS、禽流感、HIV等疾病的检测中,在这次甲型H1N1流感事件中,日本荣研化学公司接受WHO的邀请进行H1N1 LAMP试剂盒的研制。
通过荣研公司近十年的推广,LAMP技术已广泛应用于日本国内各种病毒、细菌、寄生虫等引起的疾病检测、食品化妆品安全检查及进出口快速诊断中,并得到了欧美国家的认同。
LAMP方法的优势除了高特异性、高灵敏度外,操作十分简单,对仪器设备要求低,一台水浴锅或恒温箱就能实现反应,结果的检测也很简单,不需要像PCR那样进行凝胶电泳,LAMP反应的结果通过肉眼观察白色浑浊或绿色荧光的生成来判断,简便快捷,适合基层快速诊断。
可以预见,在未来的基因诊断领域,LAMP方法将占据大壁江山。
目前,在万方数据库搜索LAMP文章500多篇。
详见:/paper.asp x?q=loop-mediated+isothermal+amplification&o=sortby+CitedCount+CoreRank+date+relevanc e%2fweight%3d5&f=top&n=10&p=11. 优缺点介绍:LAMP方法优点:灵敏度高(比传统的PCR方法高2~5个数量级);反应时间短(30~60min就能完成反应);临床使用不需要特殊的仪器(试剂盒研发阶段推荐用实时浑浊仪);操作简单(不论是DNA还是RNA,检测步骤都是需将反应液、酶和模板混合于PCR管中,置于水浴锅或恒温箱中63℃左右保温30~60min,肉眼观察结果)。
LAMP技术研究进展及其在动物疫病检测中的应用LAMP(Loop-Mediated Isothermal Amplification)技术是一种能够在恒温下快速、高效地进行核酸扩增的方法。
它通过特殊的引物和酶,在简单的实验条件下可以在短时间内扩增大量目标DNA序列,并且具有高度的特异性和灵敏性。
LAMP技术最早由日本学者Notomi等人于2000年首次提出,自此以后,LAMP技术在许多领域得到了广泛的应用,尤其在动物疫病检测中。
1.快速诊断:LAMP技术可以在一个小时内进行核酸扩增反应,比传统的PCR方法要快得多。
这对于迅速确定疫病的诊断结果非常重要,可以提高动物疫病的早期预警和防控能力。
2.高度特异性:LAMP技术使用多个特异性引物,在同一个反应体系中进行扩增,可以显著提高对目标序列的特异性识别能力。
这对于区分不同疫病病原体或者同一病原体的不同亚型具有重要意义,可以帮助鉴定传染病源和病原菌的变异。
3.高灵敏性:LAMP技术不仅在快速扩增速度上具有优势,还在扩增效果上具有高灵敏性。
在初始目标DNA浓度低至10个分子时,LAMP技术仍能够进行有效扩增,这对于低浓度病原体的检测非常关键。
4.操作简便性:LAMP技术不需要复杂的设备和特殊的实验条件,只需要一个简单的恒温器就可以进行核酸扩增反应。
这极大地降低了操作门槛,使得不同实验室和场所都可以进行动物疫病的检测工作。
5.物价低廉:LAMP技术所需的试剂和设备成本相对较低,特别是与PCR技术相比较,更加经济实惠。
这对于资源有限的地区和农村地区的疫病监测和防控工作尤为适用。
目前,LAMP技术已经在许多动物疫病的检测中得到了应用。
比如,它被成功用于禽流感、猪瘟、传染性胸膜炎、家禽新城疫等重大疫病的快速检测。
通过该技术,可以快速而准确地检测出病原体的存在,为疫病的早期检测和防控提供了有力的手段。
总之,LAMP技术在动物疫病检测中具有广阔的应用前景。
随着该技术的不断进步和完善,相信将能够更好地满足动物疫病检测的需求,为动物疫病的防控提供更加可靠、快速和经济实惠的手段。
lamp技术原理和引物设计LAMP原理及引物设计与实例(LAMP引物的设计LAMP引物的设计主要是针对靶基因的六个不同的区域,基于靶基因3' 端的F3c、F2c和Flc区以及5' 端的Bl、B2和B3区等6个不同的位点设计4种引物。
FIP(Forward Inner Primer):上游内部引物,由F2区和F1C区域组成,F2区与靶基因3’端的F2c区域互补,F1C区与靶基因5' 端的Flc区域序列相同。
F3引物:上游外部引物(Forward Outer Primer),由F3区组成,并与靶基因的F3c区域互补。
BIP引物:下游内部引物(Backward Inner Primer ),由B1C和B2区域组成,B2区与靶基因3' 端的B2c区域互补,B1C域与靶基因5' 端的Blc区域序列相同.B3引物:下游外部引物(Backward Outer Primer ),由B3区域组成,和靶基因的B3c区域互补。
2(扩增原理60-65?是双链DNA复性及延伸的中间温度,DNA在65?左右处于动态平衡状态。
因此,DNA在此温度下合成是可能的。
利用4种特异引物依靠一种高活性链置换DNA聚合酶。
使得链置换DNA合成在不停地自我循环。
扩增分两个阶段。
第1阶段为起始阶段,任何一个引物向双链DNA的互补部位进行碱基配对延伸时,另一条链就会解离,变成单链。
上游内部引物FIP的F2序列首先与模板F2c结合(如图B所示),在链置换型DNA聚合酶的作用下向前延伸启动链置换合成。
外部引物F3与模板F3c结合并延伸,置换出完整的FIP连接的互补单链(如图C所示)。
FIP上的F1c与此单链上的Fl为互补结构。
自我碱基配对形成环状结构(如图C所示)。
以此链为模板。
下游引物BIP与B3先后启动类似于FIP和F3的合成,形成哑铃状结构的单链。
迅速以3' 末端的Fl区段为起点。
以自身为模板,进行DNA合成延伸形成茎环状结构。
3随着经济的迅速发展,人们对各类食品的需求也日益增大,食品安全问题越来越受到人们的重视,微生物对食品的污染问题也相应地备受关注。
然而,使用传统的检测方法即非选择性和选择性增菌、生长法及血清学鉴定虽然比较准确,但繁琐费时。
此外,低水平的病原菌污染,食品加工后导致菌体的“致伤”及食品其它成分的干扰等因素,使得传统的检测方法受到了一定的限制,因此,急需一些灵敏度更高、特异性更强、简便快捷的食品安全检测技术和方法,以及时发现致病菌,控制污染及其可能对人体健康产生的危害。
科技的进步使得新的检测方法层出不穷,如ATP 荧光检测法,酶联免疫吸附法(ELISA),生物传感器技术,基因芯片技术,以及目前被广泛应用的基于PCR 的检测技术。
ELISA 由于免疫反应特异性强,对试剂的选择性高,致使很难同时分析多种成分;对结构类似的化合物有一定程度的交叉反应;分析分子量很小的化合物和很不稳定的化合物有一定的困难[1]。
生物传感器技术以生物分子特异识别为基础,而非特异性信号干扰常使其检测底限和可信度受到影响。
目前多数生物传感器制作的相对不够均一,使设置对照检测的作用降低,且多数传感器检测对象只限于一种目标物[2]。
基因芯片技术检测的灵敏度较低需要昂贵的尖端仪器,技术上也存在一些问题[3]。
PCR 方法敏感、准确、快速,可替代病原学检测,但由于需要昂贵的仪器设备、较高检测费用以及对检测人员较高的技术要求而使其不适用于现场快速检测及基层普及应用。
2000年,日本学者Notom i 等[4]发明了一种全新的核酸扩增方法—环介导等温扩增技术(LAMP ,loop-mediated isothermal amplification)。
该法在等温条件下(6~65℃)就能完成扩增反应,它可以在以内在恒LAMP 技术在微生物检测中的应用李志强(西华大学生物工程学院,四川成都,610039)摘要LAMP (1oop-m ediated isothermal amplifica tion)技术是一种新的恒温核酸扩增技术,具有特异性强、等温灵敏、操作简单、产物易检测等优点。
lamp技术Lamp技术是一种非常重要的技术,它在现代生活中得到了广泛的应用。
下面将详细介绍Lamp技术及其在不同领域的应用。
Lamp技术,全称是Linux + Apache + MySQL + PHP,它是一种用于构建动态网站的开源技术组合。
Linux是一种操作系统,Apache 是一种服务器软件,MySQL是一种数据库管理系统,PHP是一种服务端脚本语言。
这四者组合在一起,形成了Lamp技术,它成为了构建动态网站的首选技术。
首先,让我们来了解一下Linux操作系统。
Linux是一个开源的操作系统,它继承了Unix操作系统的优点,并且具有高度的稳定性和安全性。
许多服务器都使用Linux作为操作系统,因为它可以有效地管理资源、提供高性能的服务,同时还能够抵御各种网络攻击。
接下来是Apache服务器软件。
Apache是最流行的Web服务器软件之一,在全球范围内被广泛使用。
它可以以高效且安全的方式处理HTTP请求,使得网站能够快速响应用户的访问,提供稳定的服务。
Apache还支持多种模块和插件,可以根据需求对其进行扩展,提供更多的功能。
MySQL是一种功能强大的关系型数据库管理系统。
它可以管理大量的数据,并且支持事务处理,提供高性能的数据库服务。
MySQL使用SQL语言进行数据管理,它的数据结构清晰,操作简单。
因此,许多动态网站都选择使用MySQL作为其底层数据库。
最后是PHP服务端脚本语言。
PHP是一种开源的脚本语言,可以嵌入到HTML中,用于处理动态内容。
它可以与Apache服务器紧密集成,通过与MySQL数据库进行交互,动态地生成网页内容,实现了网站的灵活性和交互性。
PHP还有丰富的函数库和框架,使得开发人员可以更快地开发出功能丰富的网站。
Lamp技术在各个领域都有广泛的应用。
例如,在电子商务领域,许多在线商城都使用Lamp技术来构建他们的网站,以实现商品展示、购物车、订单管理等功能。
Lamp技术的稳定性和高性能使得这些网站可以同时处理大量的用户请求,并保证用户的信息安全。
lamp检测技术原理LAMP(loop-mediated isothermal amplification)技术是一种新开发的核酸扩增技术,采用了一种较为简单的反应体系,它利用单一的酶就能在恒温下迅速扩增寡核苷酸序列。
相对于PCR技术,LAMP技术具有操作简便、响应时间短、在复杂的基因组背景下具有更高的特异性和灵敏度等诸多优点。
本文主要介绍LAMP技术的原理和优缺点以及应用前景。
一、LAMP技术原理LAMP技术的核心是利用反转录酶将RNA模板转录成具有这种序列的cDNA,然后利用核酸聚合酶扩增cDNA。
其反应原理基于无需热循环多重扩增(muliple displacement amplification)的核酸扩增技术,主要分为两个阶段:第一阶段:反应的产物是DNA扩增物。
在此过程中,LAMP引物包括两个外部引物F3和B3,以及两个内部引物FIP和BIP。
FIP包含与F3序列完全匹配的5'端及与目标序列互补的3'端,BIP则包含与B3序列完全匹配的5'端及与目标序列互补的3'端。
引物F3和B3均相似于PCR反应中的起始引物,用于启动扩增反应。
内部引物FIP和BIP通常由两个互补的寡核苷酸序列构成,这个引物可以形成一个干扰环(intra-loop),这个结构能够保护引物与目标序列的杂交效率,并促进反向归一分支(reverse transcription displacement loop,RTDL)的形成。
…1. 优点(1)不需要高昂的设备和专业技术(2)无需基因分离,避免污染和误差(3)反应耗时短,使其更易于操作(4)对反应体系的优化可以大大提高扩增效率(5)对于丰富的背景DNA和RNA不敏感,具有更高的特异性(6)精确和准确度高,可以探测到低浓度的目标核酸2.缺点(1)由于插入引物扩增导致的较多的非特异性扩增,使得LAMP扩增产品更难直接测序,容易产生误导性解释。
LAMP技术在微生物检测中的应用【摘要】本文以LAMP技术的优缺点为分析对象,并食源性致病徽生物和临床致病微生物检测行业的发展现状进行了阐述,结合实际情况,对LAMP技术在微生物检测中的应用进行了探讨。
【关键词】LAMP技术,微生物检测,应用一、前言LAMP技术是随着微生物检测技术发展而不断发展的,LAMP技术在微生物检测中的应用中越来越广泛。
经过几十年的迅速发展,目前LAMP技术已广泛应用于很多微生物检测当中,成为一门实用的技术。
二、LAMP技术的优缺点1、优点(一)、特异性强、灵敏度高4条引物可以严格识别靶核酸序列上的6个独立区域,反应过程不会受到反应混合物种非靶序列DNA的影响,保证了LAMP扩增的高度特异性。
在检测过程中可以根据是否扩增就能判断目标基因是否存在,可用于细菌或病毒的定性检测。
(二)、等温高效LAMP在等温条件下扩增,不会因温度改变而造成时间的损失,在1 h内可将靶序列扩增至109~1010倍。
而且受非靶序列的影响小,模板也不需要热变性。
(三)、整个扩增反应操作简便、快捷LAMP反应过程中会产生白色的焦磷酸镁沉淀,肉眼即可直接观察,是鉴定反应是否进行的最直接方法。
另外,LAMP扩增产物可以像PCR反应利用凝胶电泳结合成像系统进行鉴定,通过产生的不同梯型来区分特异性扩增和非特异性扩增。
(四)、实验装置简单,费用相对较低LAMP反应不需要进行模板的热变性、长时间的温度循环、繁琐的电泳和紫外观察等,在操作过程中,仅需要普通的水浴锅或其他可以得到稳定热源的设备即可。
2、缺点(一)、LAMP技术对试验设计的要求较高需要设计的引物数目相对较多、结构复杂,需要考虑到靶序列的片段及茎环结构等因素。
在检测高度变异的病原体时,实验设计相对比较困难(二)、LAMP技术在一次反应中只能检测一个病原体LAMP技术的阳性反应并不只呈现单条带,而出现拖尾和一些低分子质量的带,一旦产生非特异性扩增,则不易鉴别。
lamp环介导等温扩增技术LAMP环介导等温扩增技术是一种用于检测DNA或RNA的方法,具有快速、高度敏感和特异性等优点。
下面我们来详细介绍一下这种技术的原理和应用。
一、原理LAMP技术是一种环介导等温扩增方法,与PCR不同的是,LAMP不需要高精度的温度控制和特异性引物,只需要4-6个引物就可扩增目标序列。
LAMP反应的基本步骤为:首先,在等温条件下,外部引物(F3和B3)和内部引物(FIP和BIP)结合在DNA目标序列上,形成一个环形结构;然后,在BIP的3'端内部引物(LF和LB)的作用下,DNA目标序列不断的进行扩增,最终形成一个由数以百万计的拷贝构成的扩增产物。
在反应中,LF和LB作为内部补体引物,增强了反应的特异性和扩增效率。
二、优点1、高度敏感:在LAMP扩增反应中,由于不需要复杂的环境条件和反应体系,扩增过程高效,形成的扩增产物数量极多,可以检测到非常微弱的目标DNA或RNA信号。
2、特异性强:LAMP反应需要多个引物结合于目标序列,而且引物是从多个区域的序列中选择设计的,所以扩增的产物只会与目标序列高度特异结合,不会出现交叉反应的问题。
3、环境友好:LAMP扩增只需要一个热水浴,不需要PCR反应所需的高精密温控仪器,同时反应体系中不含有有毒有害的物质,对环境及实验者均无危害。
三、应用LAMP技术已广泛应用于临床医学、食品安全、环境检测和生物技术等领域。
1、临床医学:LAMP技术可以高效、快速、准确地检测病原微生物、基因突变和药物耐药性等,对于疾病的快速诊断和精准治疗提供了有力支持。
2、食品安全:LAMP技术可以检测微生物、病毒和其他有害物质,对于食品安全监管起到了重要作用。
3、环境检测:LAMP技术可以应用于环境污染的检测、植物病害的检测以及水质检测。
4、生物技术:LAMP技术可以用于基因组学、遗传学和分子病理学等领域的基础科研。
总之,LAMP技术作为一种新兴的DNA或RNA检测技术,具有快速、高效、经济和特异性强等优点,已成为分子生物学和生命科学领域的焦点研究。