空间两点间的距离公式
- 格式:ppt
- 大小:556.00 KB
- 文档页数:11
两点之间的距离公式
两点之间的距离公式:
两点之间的距离可以用一个简单的公式来表示:距离=根号((x1-x2)的平方)+((y1-y2)的平方)。
该公式也叫欧几里得距离,是基于欧几里得几何定义的直线距离。
两点之间的距离公式是由古希腊数学家欧几里得提出的,它描述了任何两点之间的距离,包括二维平面和三维空间中的两点。
公式可以用来计算距离,也可以用来计算两个点之间的距离。
欧几里得距离是常见的距离计算公式,在几何学和数学中都有广泛的应用。
它在许多地方都有用,比如计算两个城市之间的距离,或者在数据分析中计算两个点之间的相似度。
欧几里得距离公式也可以用来对多维数据进行分析。
例如,可以使用它来比较两个点在某个维度上的距离,从而确定它们之间的相似性。
它还可以用来计算两个点之间的距离,从而确定它们之间的差异性。
因此,欧几里得距离公式是一个重要的数学工具,它能够帮助我们快速计算两点之间的距离,从而发现数据之间的相关性以及差异性。
它在许多领域得到了广泛的应用,是一个非常有用的工具。
求两点间的距离公式在数学中,求两点间的距离是一种基本的计算方法。
无论是在平面上还是在空间中,我们都会使用这个公式进行计算。
在本文中,我们将探讨如何求两点间的距离公式,以及其应用。
一、平面上的两点间距离平面上两个点之间的距离,可以通过勾股定理来计算。
在坐标系中,设点A的坐标为(x1,y1),点B的坐标为(x2,y2),则这两个点之间的距离公式为:d = √[(x2-x1)² + (y2-y1)²]其中,√ 表示平方根。
例如,若点A的坐标为(2,3),点B的坐标为(5,7),则这两个点之间的距离公式为:d = √[(5-2)² + (7-3)²]= √[3² + 4²]= √(9+16)= √25= 5这代表点A和点B之间的距离为5个单位长度。
二、空间中的两点间距离与平面上不同,空间中的两点之间的距离需要使用三维勾股定理来计算。
在三维坐标系中,设点A的坐标为(x1,y1,z1),点B的坐标为(x2,y2,z2),则这两个点之间的距离公式为:d = √[(x2-x1)² + (y2-y1)² + (z2-z1)²]例如,若点A的坐标为(2,3,4),点B的坐标为(5,7,2),则这两个点之间的距离公式为:d = √[(5-2)² + (7-3)² + (2-4)²]= √[3² + 4² + (-2)²]= √(9+16+4)= √29这代表点A和点B之间的距离为√29个单位长度。
三、应用求两点间距离的公式,可以广泛应用于各个领域。
以下是一些例子:1. 道路建设:在规划道路时,需要计算两个建筑物之间的距离,以确定最佳道路位置。
2. GPS导航:GPS系统利用卫星定位技术来计算用户当前位置和目的地之间的距离。
3. 机器人设计:在设计机器人的路径规划系统时,需要计算机器人当前位置和目标位置之间的距离,以决定机器人的运动路径。
3.2空间两点间的距离公式学习目标1.会推导空间两点间的距离公式;2.能够应用空间两点间的距离公式解决一些简单问题. 重点空间两点的距离公式的应用. 难点空间两点的距离公式的应用. 学习过程:在平面上任意两点A ),(11y x ,B ),(22y x 之间距离的公式为|AB|=221221)()(y y x x -+-,那么对于空间中任意两点A ),,(111z y x ,B ),,(222z y x 之间距离的公式会是怎样呢?(2)空间中任意一点P ),,(z y x 到原点之间的距离公式会是怎样呢?O yzxP(x,y,z)B(x,y,0)A[1]222z y x OP ++=<3>类比平面两点间距离公式的推导,您能猜想一下空间两点),,(1111z y x P ,),,(2222z y x P 间的距离公式吗?<4>如果||OP 是定长,那么2222r z y x =++表示什么图形?结论:<3>先看简单的情形.设空间直角坐标系中点),,z y x P (,求点P 到原点O 的距离.如图所示,设点P 在xoy 平面上的射影是B ,则点B的坐标是(x,y,0).在xoy 平面上,我们可以得到结论有|OB|=22y x +.在直角三角形OBP 中,根据勾股定理|OP|=22||||BP OB +,因为|BP|=|z|,所以|OP|=222z y x ++.这说明,在空间直角坐标系Oxyz 中,任意一点P(x,y,z)与原点之间的距离是|OP|=22||||BP OB +下面再看一般的情况,设点),,(1111z y x P ,),,(2222z y x P 是空间任意两点,且两点在xoy 平面上的射影分别为M,N ,那么M,N 的坐标为)0,,(11y x M ,)0,,(22y x N .在xoy 平面上,221221)()(||y y x x MN -+-=.过点1P 做N P 2的垂线,垂足为H ,则|||||,|||2211z NP z MP ==,所以||||212z z HP -=.在直角三角形21HP P 中,==||||1MN H P 221221)()(y y x x -+-,根据勾股定理,得到结论如下所示:222121||||||HP H P P P +=221221221)()()(z z y y x x -+-+-=.因此空间中点),,(1111z y x P ,),,(2222z y x P 间的距离公式为可以表示成下面形式:||21P P 221221221)()()(z z y y x x -+-+-=.<4>表示一个球面.例1.在四面体P-ABC 中,PA 、PB 、PC 两两垂直,设PA=PB=PC=a ,求点P 到平面ABC 的距离。
张喜林制 2.4.2 空间两点的距离公式教材知识检索考点知识清单空间两点的距离公式空间两点),,(),,(222111z y x B z y x A h 的距离公式=||AB ;特别地,点A (x ,y ,z )到原点的距离公式为要点核心解读(1)设空间两点),,,(),,(222111z y x B z y x A 、则空间两点间的距离公式为221221221)()()(||z z y y x x AB -+-+-⋅=推导空间两点距离公式的思路是过两点分别作三个坐标平面的平行平面(如图2 -4 -2 -1),则这六个平面围成一个长方体.我们知道,长方体的对角线长的平方等于一个顶点上三条棱长的平方和.于是,只要写出交于一个顶点的三条棱的棱长用坐标计算的表达式,就能导出两点的距离公式.(2)学习求空间两点间的距离要注意的方法:①求空间两点间的距离,要学会利用长方体模型,构造三角形,运用勾股定理,比较平面与空间的两点间距离公式的异同.②不仅要学会运用空间两点的距离公式求给出的点的距离,更要学会在简单的几何体中求两点间的距离,也要学会求解实际问题中的空间两点间的距离,③在解题中,注意灵活运用空间两点的距离公式,敏感图形的特殊性,点的位置的特殊性,典例分类剖析考点1 求空间两点间的距离命题规律给定几何体,求空间两点间的距离.[例1] 如图2-4-2-2所示,在长方体-OABC 1111C B A O 中,E AA AB OA ,2||,3||,2||1===是BC 的中点,作OD ⊥AC 于D ,求点1O 到点D 的距离.[答案] 由题意得点⋅)0,3,0()2,0,0()0,0,2(1C O A 、、设点D (x ,y ,O ),在Rt △AOC 中,,3||,2||==OC OA ⋅==∴=13136136||,13||OD AC 在Rt△ODA 中,⋅=⋅⋅==∴⋅=131821336|||,|||||2x x OA x OD 在Rt△ODC 中,|,|.|2C O y OD ⋅=∴===∴131231336||y y 点⋅)0,1312,1318(D ⋅==++=∴1328621311444)1312()1318(||2221D O [点拨] 此题也可以在D O Rt 01∆中求解,即=21||D O ,138841336||||212=+=+OO OD ⋅==∴1328621388||1D O 母题迁移 1.如图2 -4 -2 -3所示,建立空间直角坐标系Dxyz.已知正方体l D C B A ABCD 111-的棱长为1,点P 是正方体体对角线B D 1的中点,点Q 在棱1CC 上.(1)当||||21QC Q C =时,求∣PQ ∣;(2)当点Q 在棱1CC 上移动时,求∣PQ ∣的最小值.考点2 两点问距离公式的应用命题规律利用两点间距离公式求点的坐标或动点的轨迹.[例2] 正方形ABCD 、ABEF 的边长都是l ,而且平面ABCD 与平面ABEF 互相垂直,点M 在AC 上移动,点N 在BF 上移动,若⋅<<==)20(a a BN CM(1)求MN 的长;(2)求a 为何值时,MN 的长最小.[答案] ,ABEF ABCD 面面⊥ ,AB ABEF ABCD =与平面面⊥⊥AB BE AB ,,CBBE BC AB ABC BE 、、面,⊥∴两两互相垂直.∴ 以B 为原点,以B 、BE 、BC 所在直线为x 轴、y 轴和x 轴,建立如图2 -4-2-4所示的空间直角坐标系.则点),221,0,22(a a M -点⋅)0,22,22(a a N 222)0221()220()2222(||--+-+-=∴a a a a MN ⋅+-=+-=21)22(1222a a a ∴ 当22=a 时,∣MN ∣最短为,22此时,M 、N 恰为 AC 、BF 的中点. [点拨] 该题的求解方法尽管很多,但利用坐标法求解应该说是最简捷的方法.方法的对照比较,体现出了坐标法解题的优越性.母题迁移 2.在三棱柱///O B A ABO -中,,90 =∠AOB 侧棱⊥/OO 面.2OA ,/===OO OB OAB (1)若C 为线段A O /的中点,在线段/BB 上求一点E ,使∣EC ∣最小;(2)若E 为线段/BB 的中点,在A O /上找一点C ,使|EC|最小,优化分层测讯学业水平测试1.在长方体1111D C B A ABCD -中,若已知点,0,4()0,0,0(A D 、),3,0,4()0,2,4()01A B 、、则对角线1AC 的长为( ).9.A 29.B 5.C 62.D2.已知两点),1,3,1()2,0,1(-B A 、点M 在z 轴上且到A 、B 两点的距离相等,则M 点的坐标为( ).)0,0,3.(-A )0,3,0.(-B )3,0,0.(-C )3,0,0.(D3.在空间直角坐标系中,已知正方体1111D C B A ABCD -的顶点A (3,-1,2),其中心M 的坐标为(0,1,2),则该正方体的棱长等于4.写出与原点距离等于2的点的坐标所满足的条件5.设点.11||),,2,6()1,7,4(=-AB z B A 、求z .6.在x 轴上求与点A (4,-1,7)和点B (-3,5,-2)等距离的点,高考能力测试(测试时间:45分钟测试满分:100分)一、选择题(5分×8 =40分)1.点M(2,-3,5)到x 轴的距离(....).=d2225)3(2.+-+A 25)3(.+-B 22)3(2.-+C 2252.+D2.已知点),1,0,2()2,1,1()1,1,2(C B A 、、则下列说法正确的是( ).A.A 、B 、C 三点可以构成直角三角形B.A 、B 、C 三点可以构成锐角三角形C.A 、B 、C 三点可以构成钝角三角形D.A 、B 、C 三点不能构成任何三角形3.若点P(x ,y , z)满足,2)1()1()1(222=++-+-z y x 则点P 在( ).A .以点(1,1,-1)为球心,半径为2的球上B .以点(1,1,-1)为中心,棱长为2的正方体上C .以点(1,1,-1)为球心,半径为2的球上D .无法确定4.已知正方体的每条棱都平行于坐标轴,两个顶点为A (-6,-6,-6)B(8,8,8),且两点不在正方体的同一个面上,则正方体的对角线长为( ). 314.A 143.B 425.C 542.D5.若空间一点P 到xOy 平面、yoz 平面、xoz 平面的距离之比是3:4:5,则满足条件的点P 的个数为( ).A.l 个B.2个C.4个D.8个6.已知点),2,2,1().12,5,(x x B x x x A -+--当∣AB ∣取最小值时,x 的值为( ).19.A 78.-B 78.C 1419.D 7.已知点)1,2,(x P 到点)1,1,2()2,1,1(R Q 、的距离相等,则x 的值为( ).21.A 1.B 23.C 2.D 8.到点A (-1,-1,-1)、B(l ,1,1)的距离相等的点C (x ,y ,z )的坐标满足( ). 1.-=++z y x A 0.=++z y x B 1.=++z y x C 4.=++z y x D二、填空题(5分x4 =20分)9.在三角形ABC 中,若三个顶点坐标分别为,2()3,2,1(B A 、-),3,25,21()3,2C 、-则AB 边上的中线CD 的长是10.已知空间两点),3,2,2()1,1,3(---B A 、在Oz 轴上有一点C ,它与A 、B 的距离相等,则C 点的坐标是11.已知□ABCD 的两个顶点)2,3,1()5,3,2(---B A 、及它的对角线的交点E(4,-1,7),则顶点C 的坐标为 ,D 的坐标为 。