圆的方程;空间两点的距离公式
- 格式:doc
- 大小:267.50 KB
- 文档页数:16
高一数学知识点总结_圆与方程知识点高一数学怎么学?首先应做好课前的物质准备和精神准备,以使得上课时不至于出现书、本等物丢三落四的现象;今天小编在这给大家整理了高一数学知识点总结,接下来随着小编一起来看看吧!高一数学知识点总结(一)圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形。
(3)求圆方程的方法:一般都采用待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:①圆x2+y2=r2,圆上一点为(x0,y0),则过此点的切线方程为(课本命题).②圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2(课本命题的推广).4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆。
高一数学知识点总结(二)直线、圆的位置关系由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:(1)相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.(2)相切:直线和圆有公共点时,叫做直线和圆相切.这时直线叫做圆的切线,的公共点叫做切点.(3)相离:直线和圆没有公共点时,叫做直线和圆相离.直线与圆的位置关系的数量特征1、迁移:点与圆的位置关系(1)点P在⊙O内dr.2、归纳概括:如果⊙O的半径为r,圆心O到直线l的距离为d,那么(1)直线l和⊙O相交dr.练习题:1.直线L上的一点到圆心的距离等于⊙O的半径,则L与⊙O的位置关系是()A.相离B.相切C.相交D.相切或相交2.圆的的弦长为12cm,如果直线与圆相交,且直线与圆心的距离为d,那么()A.d<6cmB.6cmC.d≥6cmD.d>12cm3.P是⊙O外一点,PA、PB切⊙O于点A、B,Q是优弧AB上的一点,设∠APB=α,∠AQB=β,则α与β的关系是()A.α=βB.α+β=90°C.α+2β=180°D.2α+β=180°4.在⊙O中,弦AB和CD相交于点P,若PA=4,PB=7,CD=12,则以PC、PD的长为根的一元二次方程为()A.x2+12x+28=0B.x2-12x+28=0C.x2-11x+12=0D.x2+11x+12=0高一数学知识点总结(三)空间直角坐标系空间直角坐标系定义:过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位、这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴、通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x 轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。
空间两点间的距离公式整体设计教学分析平面直角坐标系中,两点之间的距离公式是学生已学的知识,不难把平面上的知识推广到空间,遵循从易到难、从特殊到一般的认识过程,利用类比的思想方法,借助勾股定理得到空间任意一点到原点的距离;从平面直角坐标系中的方程x 2+y 2=r 2表示以原点为圆心,r 为半径的圆,推广到空间直角坐标系中的方程x 2+y 2+z 2=r 2表示以原点为球心,r 为半径的球面.学生是不难接受的,这不仅不增加学生负担,还会提高学生学习的兴趣.三维目标1.掌握空间两点间的距离公式,会用空间两点间的距离公式解决问题.2.通过探究空间两点间的距离公式,灵活运用公式,初步意识到将空间问题转化为平面问题是解决问题的基本思想方法,培养类比、迁移和化归的能力.3.通过棱与坐标轴平行的特殊长方体的顶点的坐标,类比平面中两点之间的距离的求法,探索并得出空间两点间的距离公式,充分体会数形结合的思想,培养积极参与、大胆探索的精神.重点难点教学重点:空间两点间的距离公式.教学难点:一般情况下,空间两点间的距离公式的推导.课时安排1课时教学过程导入新课思路1.距离是几何中的基本度量,几何问题和一些实际问题经常涉及距离,如飞机和轮船的航线的设计,它虽不是直线距离,但也涉及两点之间的距离,一些建筑设计也要计算空间两点之间的距离,那么如何计算空间两点之间的距离呢?这就是我们本堂课的主要内容. 思路2.我们知道,数轴上两点间的距离是两点的坐标之差的绝对值,即d=|x 1-x 2|;平面直角坐标系中,两点之间的距离是d=212212)()(y y x x -+-.同学们想,在空间直角坐标系中,两点之间的距离应怎样计算呢?又有什么样的公式呢?因此我们学习空间两点间的距离公式.推进新课新知探究提出问题①平面直角坐标系中,两点之间的距离公式是什么?它是如何推导的?②设A(x,y,z)是空间任意一点,它到原点的距离是多少?应怎样计算?③给你一块砖,你如何量出它的对角线长,说明你的依据.④同学们想,在空间直角坐标系中,你猜想空间两点之间的距离应怎样计算?⑤平面直角坐标系中的方程x 2+y 2=r 2表示什么图形?在空间中方程x 2+y 2+z 2=r 2表示什么图形?⑥试根据②③推导两点之间的距离公式.活动:学生回忆,教师引导,教师提问,学生回答,学生之间可以相互交流讨论,学生有困难教师点拨.教师引导学生考虑解决问题的思路,要全面考虑,大胆猜想,发散思维.①学生回忆学过的数学知识,回想当时的推导过程;②解决这一问题,可以采取转化的方法,转化成我们学习的立体几何知识来解;③首先考虑问题的实际意义,直接度量,显然是不可以的,我们可以转化为立体几何的方法,也就是求长方体的对角线长.④回顾平面直角坐标系中,两点之间的距离公式,可类比猜想相应的公式;⑤学生回忆刚刚学过的知识,大胆类比和猜想;⑥利用③的道理,结合空间直角坐标系和立体几何知识,进行推导.讨论结果:①平面直角坐标系中,两点之间的距离公式是d=212212)()(y y x x -+-,它是利用直角三角形和勾股定理来推导的.图1②如图1,设A(x,y,z)是空间任意一点,过A 作AB ⊥xOy 平面,垂足为B,过B 分别作BD ⊥x 轴,BE ⊥y 轴,垂足分别为D,E.根据坐标的含义知,AB=z,BD=x,BE=OD=y,由于三角形ABO 、BOD 是直角三角形,所以BO 2=BD 2+OD 2,AO 2=AB 2+BO 2=AB 2+BD 2+OD 2=z 2+x 2+y 2,因此A 到原点的距离是d=222z y x ++.③利用求长方体的对角线长的方法,分别量出这块砖的三条棱长,然后根据对角线长的平方等于三条边长的平方的和来算.④由于平面直角坐标系中,两点之间的距离公式是d=212212)()(y y x x -+-,是同名坐标的差的平方的和再开方,所以我们猜想,空间两点之间的距离公式是d=212212212)()()(z z y y x x -+-+-,即在原来的基础上,加上纵坐标差的平方.⑤平面直角坐标系中的方程x 2+y 2=r 2表示以原点为圆心,r 为半径的圆;在空间x 2+y 2+z 2=r 2表示以原点为球心,r 为半径的球面;后者正是前者的推广.图2 ⑥如图2,设P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)是空间中任意两点,我们来计算这两点之间的距离. 我们分别过P 1P 2作xOy 平面的垂线,垂足是M,N,则M(x 1,y 1,0),N(x 2,y 2,0),于是可以求出|MN|=212212)()(y y x x -+-.再过点P 1作P 1H ⊥P 2N,垂足为H,则|MP 1|=|z 1|,|NP 2|=|z 2|,所以|HP 2|=|z 2-z 1|.在Rt △P 1HP 2中,|P 1H|=|MN|=212212)()(y y x x -+-,根据勾股定理,得|P 1P 2|=2221||||HP H P +=221221221)()()(z z y y x x -+-+-.因此空间中点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)之间的距离为|P 1P 2|=221221221)()()(z z y y x x -+-+-. 于是空间两点之间的距离公式是d=212212212)()()(z z y y x x -+-+-.它是同名坐标的差的平方的和的算术平方根.应用示例例1 已知A(3,3,1),B(1,0,5),求:(1)线段AB 的中点坐标和长度;(2)到A,B 两点的距离相等的点P(x,y,z)的坐标满足的条件.活动:学生审题,教师引导学生分析解题思路,已知的两点A 、B 都是空间直角坐标系中的点,我们直接利用空间两点间的距离公式求解即可.知识本身不难,但是我们计算的时候必须认真,决不能因为粗心导致结果错误.解:(1)设M(x,y,z)是线段AB 的中点,则根据中点坐标公式得x=213+=2,y=203+=23,z=215+=3.所以AB 的中点坐标为(2,23,3). 根据两点间距离公式,得 d(A,B)=29)15()30()31(222=-+-+-,所以AB 的长度为29.(2)因为点P(x,y,z)到A,B 的距离相等,所以有下面等式: 222222)5()0()1()1()3()3(-+-+-=-+-+-z y x z y x .化简得4x+6y-8z+7=0,因此,到A,B 两点的距离相等的点P(x,y,z)的坐标满足的条件是4x+6y-8z+7=0. 点评:通过本题我们可以得出以下两点:①空间两点连成的线段中点坐标公式和两点间的距离公式是平面上中点坐标公式和两点间的距离公式的推广,而平面上中点坐标公式和两点间的距离公式又可看成空间中点坐标公式和两点间的距离公式的特例.②到A,B 两点的距离相等的点P(x,y,z)构成的集合就是线段AB 的中垂面.变式训练在z 轴上求一点M,使点M 到点A(1,0,2),B(1,-3,1)的距离相等.解:设M(0,0,z),由题意得|MA|=|MB|,2222222)1()30()30()10()2()00()10(-+++++-=++-+-z z ,整理并化简,得z=-3,所以M(0,0,-3).例2 证明以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的△ABC 是一等腰三角形.活动:学生审题,教师引导学生分析解题思路,证明△ABC 是一等腰三角形,只需求出|AB|,|BC|,|CA|的长,根据边长来确定.证明:由两点间距离公式得: |AB|=,72)12()31()47(222=-+-+- |BC|=6)23()12()75(222=-+-+-, |CA|=6)31()23()54(222=-+-+-.由于|BC|=|CA|=6,所以△ABC 是一等腰三角形.点评:判断三角形的形状一般是根据边长来实现的,因此解决问题的关键是通过两点间的距离公式求出边长.变式训练三角形△ABC 的三个顶点坐标为A(1,-2,-3),B(-1,-1,-1),C(0,0,-5),试证明△ABC 是一直角三角形.活动:学生先思考或交流,然后解答,教师及时提示引导,要判定△ABC 是一直角三角形,只需求出|AB|,|BC|,|CA|的长,利用勾股定理的逆定理来判定.解:因为三个顶点坐标为A(1,-2,-3),B(-1,-1,-1),C(0,0,-5),所以 |AB|=222)13()12()11(+-++-++=3, |BC|=23)15()10()10(222=+-++++, |CA|=222)53()02()01(+-+--+-=3.又因为|AB|2+|CA|2=|BC|2,所以△ABC 是直角三角形.例3 已知A(x,5-x,2x-1),B(1,x+2,2-x),则|AB|的最小值为( ) A.0 B.735 C.75 D.78 活动:学生阅读题目,思考解决问题的方法,教师提示,要求|AB|的最小值,首先我们需要根据空间两点间的距离公式表示出|AB|,然后再根据一元二次方程求最值的方法得出|AB|的最小值.解析:|AB|=222)33()23()1(-+-+-x x x =1932142+-x x =73575)78(142≥+-x . 当x=78时,|AB|的最小值为735. 故正确选项为B.答案:B点评:利用空间两点间的距离公式转化为关于x 的二次函数求最值是常用的方法. 知能训练课本本节练习1、2、3、4.拓展提升已知三棱锥P —ABC(如图4),PA ⊥平面ABC,在某个空间直角坐标系中,B(3m,m,0),C(0,2m,0),P(0,0,2n),画出这个空间直角坐标系并求出直线AB 与x 轴所成的较小的角.图3解:根据已知条件,画空间直角坐标系如图3:以射线AC 为y 轴正方向,射线AP 为z 轴正方向,A 为坐标原点建立空间直角坐标系O —xyz,过点B 作BE ⊥Ox,垂足为E,∵B(3m,m,0),∴E(3m,0,0).在Rt △AEB 中,∠AEB=90°,|AE|=3m,|EB|=m,∴tan ∠BAE=m m AE EB 3|||| =33.∴∠BAE=30°, 即直线AB 与x 轴所成的较小的角为30°.课堂小结1.空间两点间的距离公式的推导与理解.2.空间两点间的距离公式的应用.3.建立适当的空间直角坐标系,综合利用两点间的距离公式.作业习题4.3 A 组3,B 组1、2、3.。
4.3.1 空间直角坐标系4.3.2 空间两点间的距离公式知识导图学法指导1.结合长方体、正棱锥等常见几何体,把握建系的方法,并能写出空间中的点在坐标系中的坐标.2.类比平面上两点间的距离,熟记空间两点间的距离公式.3.体会利用空间直角坐标系解决问题的步骤.高考导航1.空间直角坐标系的应用很少单独命题,一般是在解答题中应用建立空间直角坐标系的方法求解,分值为2~3分.2.通过建立空间直角坐标系,计算两点间的距离公式或确定点的坐标,是常考知识点,常与后面将要学习的立体几何等知识相结合,分值为4~6分.知识点一空间直角坐标系的建立及坐标表示1.空间直角坐标系(1)空间直角坐标系及相关概念①空间直角坐标系:从空间某一定点O引三条两两垂直,且有相同单位长度的数轴:x 轴、y轴、z轴,这样就建立了一个空间直角坐标系Oxyz.②相关概念:点O叫作坐标原点,x轴、y轴、z轴叫作坐标轴,通过每两个坐标轴的平面叫作坐标平面,分别称为xOy平面、yOz平面、zOx平面.(2)右手直角坐标系在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系.2.空间一点的坐标空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫作点M 在此空间直角坐标系中的坐标,记作M(x,y,z),其中x叫作点M的横坐标,y叫作点M的纵坐标,z叫作点M的竖坐标.空间直角坐标系的画法(1)x 轴与y 轴成135 °(或45 °),x 轴与z 轴成135 °(或45 °).(2)y 轴垂直于z 轴,y 轴和z 轴的单位长相等,x 轴上的单位长则等于y 轴单位长的12.知识点二 空间两点间的距离公式1.空间中任意一点P (x ,y ,z )与原点之间的距离|OP |=x 2+y 2+z 2; 2.空间中任意两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)之间的距离 |P 1P 2|=x 2-x 12+y 2-y 12+z 2-z 12.1.空间两点间的距离公式可以类比平面上两点间的距离公式,只是增加了对应的竖坐标的运算.2.空间中点坐标公式:设A(x 1,y 1,z 1),B(x 2,y 2,z 2),则AB 中点P(x 1+x 22,y 1+y 22,z 1+z 22).[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)空间直角坐标系中,在x 轴上的点的坐标一定是(0,b ,c )的形式.( ) (2)空间直角坐标系中,在xOz 平面内的点的坐标一定是(a,0,c )的形式.( ) (3)空间直角坐标系中,点(1,3,2)关于yOz 平面的对称点为(-1,3,2).( ) 答案:(1)× (2)√ (3)√2.在空间直角坐标系中,下列各点中位于yOz 平面内的是( ) A .(3,2,1) B .(2,0,0) C .(5,0,2) D .(0,-1,-3)解析:位于yOz 平面内的点,其x 坐标为0,其余坐标任意,故(0,-1,-3)在yOz 平面内.答案:D3.点(2,0,3)在空间直角坐标系中的( ) A .y 轴上 B .xOy 平面上 C .zOx 平面上 D .第一象限内解析:点(2,0,3)的纵坐标为0,所以该点在zOx 平面上. 答案:C4.若已知点A(1,1,1),B(-3,-3,-3),则线段AB的长为( )A.4 3 B.2 3C.4 2 D.3 2解析:|AB|=-3-2+-3-2+-3-2=4 3.答案:A类型一空间中点的坐标的确定例1 如图,在长方体ABCD-A1B1C1D1中,|AD|=3,|AB|=5,|AA1|=4,建立适当的直角坐标系,写出此长方体各顶点的坐标.【解析】如图,以DA所在直线为x轴,以DC所在直线为y轴,以DD1所在直线为z 轴,建立空间直角坐标系Oxyz.因为长方体的棱长|AD|=|BC|=3,|DC|=|AB|=5,|DD1|=|AA1|=4,显然D(0,0,0),A在x轴上,所以A(3,0,0);C在y轴上,所以C(0,5,0);D1在z轴上,所以D1(0,0,4);B在xOy平面内,所以B(3,5,0);A1在xOz平面内,所以A1(3,0,4);C1在yOz平面内,所以C1(0,5,4).由B1在xOy平面内的射影为B(3,5,0),所以B1的横坐标为3,纵坐标为5,因为B1在z轴上的射影为D1(0,0,4),所以B1的竖坐标为4,所以B1(3,5,4).(1)建立适当的空间直角坐标系.(2)利用线段长度结合符号写出各点坐标.要注意与坐标轴正向相反的坐标为负.方法归纳(1)建立空间直角坐标系时,要考虑如何建系才能使点的坐标简单、便于计算,一般是要使尽量多的点落在坐标轴上.(2)对于长方体或正方体,一般取相邻的三条棱为x轴、y轴、z轴建立空间直角坐标系;确定点的坐标时,最常用的方法就是求某些与轴平行的线段的长度,即将坐标转化为与轴平行的线段长度,同时要注意坐标的符号,这也是求空间点的坐标的关键.跟踪训练1 在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标.解析:如图所示,取AC 的中点O 和A 1C 1的中点O 1,连接BO ,OO 1,可得BO ⊥AC ,OO 1⊥AC ,OO 1⊥BO ,分别以OB ,OC ,OO 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系.∵三棱柱各棱长均为1,∴OA =OC =O 1C 1=O 1A 1=12,OB =32,∵点A ,B ,C 均在坐标轴上,∴A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0.∵点A 1,C 1在yOz 平面内,∴A 1⎝ ⎛⎭⎪⎫0,-12,1,C 1⎝ ⎛⎭⎪⎫0,12,1. ∵点B 1在xOy 平面内的射影为点B ,且BB 1=1, ∴B 1⎝ ⎛⎭⎪⎫32,0,1,∴各点的坐标分别为A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝⎛⎭⎪⎫0,12,0,A 1⎝⎛⎭⎪⎫0,-12,1,B 1⎝ ⎛⎭⎪⎫32,0,1,C 1⎝ ⎛⎭⎪⎫0,12,1.建立空间直角坐标系,求出有关线段的长,再写出各点的坐标. 类型二 空间直角坐标系中的点的对称点例2 在空间直角坐标系中,点P (-2,1,4)关于x 轴对称的点P 1的坐标是________;关于xOy 平面对称的点P 2的坐标是________;关于点A (1,0,2)对称的点P 3的坐标是________.【解析】 点P 关于x 轴对称后,它的横坐标不变,纵坐标和竖坐标均变为原来的相反数,所以点P 关于x 轴的对称点P 1的坐标为(-2,-1,-4).点P 关于xOy 平面对称后,它的横坐标和纵坐标均不变,竖坐标变为原来的相反数,所以点P 关于xOy 平面的对称点P 2的坐标为(-2,1,-4).设点P 关于点A 的对称点的坐标为P 3(x ,y ,z ),由中点坐标公式可得⎩⎪⎨⎪⎧-2+x2=1,1+y2=0,4+z 2=2,解得⎩⎪⎨⎪⎧x =4,y =-1,z =0.故点P 关于点A (1,0,2)对称的点P 3的坐标为(4,-1,0).【答案】 (-2,-1,-4) (-2,1,-4) (4,-1,0)利用对称规律解决关于坐标轴、坐标平面的对称问题,利用中点坐标公式解决点关于点的对称问题.方法归纳在空间直角坐标系内,已知点P(x,y,z),则有:①点P关于原点的对称点是P1(-x,-y,-z)②点P关于横轴(x轴)的对称点是P2(x,-y,-z)③点P关于纵轴(y轴)的对称点是P3(-x,y,-z)④点P关于竖轴(z轴)的对称点是P4(-x,-y,z)⑤点P关于xOy坐标平面的对称点是P5(x,y,-z)⑥点P关于yOz坐标平面的对称点是P6(-x,y,z)⑦点P关于xOz坐标平面的对称点是P7(x,-y,z).跟踪训练2 已知M(2,1,3),求M关于原点对称的点M1,M关于xOy平面对称的点M2,M 关于x轴、y轴对称的点M3,M4.解析:由于点M与M1关于原点对称,所以M1(-2,-1,-3);点M与M2关于xOy平面对称,横坐标与纵坐标不变,竖坐标变为原来的相反数,所以M2(2,1,-3);M与M3关于x 轴对称,则M3的横坐标不变,纵坐标和竖坐标变为原来的相反数,即M3(2,-1,-3),同理M4(-2,1,-3).方法归纳求对称点的坐标问题一般依据“关于谁对称谁不变,其余均改变”来解决.如关于横轴(x轴)的对称点,横坐标不变,纵坐标、竖坐标变为原来的相反数;关于xOy 坐标平面的对称点,横坐标、纵坐标不变,竖坐标变为原来的相反数.要特别注意:点关于点的对称要用中点坐标公式解决.类型三空间两点间的距离,,例3 如图,已知正方体ABCD-A′B′C′D′的棱长为a,M为BD′的中点,点N在A′C′上,且|A′N|=3|NC′|,试求|MN|的长.【解析】由题意应先建立坐标系,以D为原点,建立如图所示空间直角坐标系.因为正方体棱长为a,所以B(a,a,0),A′(a,0,a),C′(0,a,a),D′(0,0,a).由于M为BD′的中点,取A′C′的中点O′,所以M ⎝ ⎛⎭⎪⎫a 2,a 2,a 2,O ′⎝ ⎛⎭⎪⎫a 2,a2,a . 因为|A ′N |=3|NC ′|,所以N 为A ′C ′的四等分点,从而N 为O ′C ′的中点,故N ⎝ ⎛⎭⎪⎫a 4,34a ,a .根据空间两点间的距离公式,可得 |MN |=⎝ ⎛⎭⎪⎫a 2-a 42+⎝ ⎛⎭⎪⎫a 2-3a 42+⎝ ⎛⎭⎪⎫a 2-a 2=64a .建立空间直角坐标系,先确定相关点的坐标,然后根据两点间的距离公式求解. 方法归纳求空间两点间的距离时,一般使用空间两点间的距离公式,应用公式的关键在于建立适当的坐标系,确定两点的坐标.确定点的坐标的方法视具体题目而定,一般说来,要转化到平面中求解,有时也利用几何图形的特征,结合平面直角坐标系的知识确定.跟踪训练3 求A (0,1,3),B (2,0,1)两点之间的距离. 解析:|AB |=-2+-2+-2=3.解答本题可直接利用空间两点间的距离公式.[基础巩固](20分钟,40分)一、选择题(每小题5分,共25分)1.点M (0,3,0)在空间直角坐标系中的位置是在( ) A .x 轴上 B .y 轴上 C .z 轴上 D .xOz 平面上解析:因为点M (0,3,0)的横坐标、竖坐标均为0,纵坐标不为0,所以点M 在y 轴上. 答案:B2.点P (1,4,-3)与点Q (3,-2,5)的中点坐标是( ) A .(4,2,2) B .(2,-1,2) C .(2,1,1) D .(4,-1,2)解析:设点P 与点Q 的中点坐标为(x ,y ,z ),则x =1+32=2,y =4-22=1,z =-3+52=1.答案:C3.在空间直角坐标系中,已知点P(1,2,3),过P作平面yOz的垂线PQ,则垂足Q的坐标为( )A.(0,2,0) B.(0,2,3)C.(1,0,3) D.(1,2,0)解析:根据空间直角坐标系的概念知,yOz平面上点Q的x坐标为0,y坐标、z坐标与点P的y坐标2,z坐标3分别相等,∴Q(0,2,3).答案:B4.已知M(4,3,-1),记M到x轴的距离为a,M到y轴的距离为b,M到z轴的距离为c,则( )A.a>b>c B.c>b>aC.c>a>b D.b>c>a解析:借助长方体来思考,a、b、c分别是三条面对角线的长度.∴a=10,b=17,c=5.答案:B5.已知A点坐标为(1,1,1),B(3,3,3),点P在x轴上,且|PA|=|PB|,则P点坐标为( )A.(0,0,6) B.(6,0,1)C.(6,0,0) D.(0,6,0)解析:设P(x,0,0),|PA|=x-2+1+1,|PB|=x-2+9+9,由|PA|=|PB|,得x=6.答案:C二、填空题(每小题5分,共15分)6.如图,长方体ABCD-A1B1C1D1中,已知A1(a,0,c),C(0,b,0),则点B1的坐标为________.解析:由题中图可知,点B1的横坐标和竖坐标与点A1的横坐标和竖坐标相同,点B1的纵坐标与点C的纵坐标相同,所以点B1的坐标为(a,b,c).答案:(a,b,c)7.在空间直角坐标系中,点(4,-1,2)关于原点的对称点的坐标是________.解析:空间直角坐标系中关于原点对称的点的坐标互为相反数,故点(4,-1,2)关于原点的对称点的坐标是(-4,1,-2).答案:(-4,1,-2)8.点P (-1,2,0)与点Q (2,-1,0)的距离为________. 解析:∵P (-1,2,0),Q (2,-1,0), ∴|PQ |=-1-2+[2--2+02=3 2.答案:3 2三、解答题(每小题10分,共20分)9.已知直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,|AB |=|AC |=|AA 1|=4,M 为BC 1的中点,N 为A 1B 1的中点,求|MN |.解析:如右图,以A 为原点,射线AB ,AC ,AA 1分别为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系,则B (4,0,0),C 1(0,4,4),A 1(0,0,4),B 1(4,0,4),因为M 为BC 1的中点,N 为A 1B 1的中点,所以由空间直角坐标系的中点坐标公式得M (4+02,0+42,0+42),N (0+42,0+02,4+42),即M (2,2,2),N (2,0,4).所以由两点间的距离公式得 |MN |=-2+-2+-2=2 2.10.已知点P (2,3,-1),求:(1)点P 关于各坐标平面对称的点的坐标; (2)点P 关于各坐标轴对称的点的坐标; (3)点P 关于坐标原点对称的点的坐标.解析:(1)设点P 关于xOy 坐标平面的对称点为P ′,则点P ′的横坐标、纵坐标与点P 的横坐标、纵坐标相同,点P ′的竖坐标与点P 的竖坐标互为相反数.所以点P 关于xOy 坐标平面的对称点P ′的坐标为(2,3,1).同理,点P 关于yOz ,xOz 坐标平面的对称点的坐标分别为(-2,3,-1),(2,-3,-1).(2)设点P 关于x 轴的对称点为Q ,则点Q 的横坐标与点P 的横坐标相同,点Q 的纵坐标、竖坐标与点P 的纵坐标、竖坐标互为相反数.所以点P 关于x 轴的对称点Q 的坐标为(2,-3,1).同理,点P 关于y 轴,z 轴的对称点的坐标分别为(-2,3,1),(-2,-3,-1). (3)点P (2,3,-1)关于坐标原点对称的点的坐标为(-2,-3,1).[能力提升](20分钟,40分)11.在空间直角坐标系中,点M 的坐标是(4,7,6),则点M 关于y 轴对称的点在xOz 平面上的射影的坐标为( )A .(4,0,6)B .(-4,7,-6)C .(-4,0,-6)D .(-4,7,0)解析:点M 关于y 轴对称的点是M ′(-4,7,-6),点M ′在xOz 平面上的射影的坐标为(-4,0,-6).答案:C12.已知点P ⎝ ⎛⎭⎪⎫32,52,z 到线段AB 中点的距离为3,其中A (3,5,-7),B (-2,4,3),则z =________.解析:由中点坐标公式,得线段AB 中点的坐标为⎝ ⎛⎭⎪⎫12,92,-2.又点P 到线段AB 中点的距离为3,所以⎝ ⎛⎭⎪⎫32-122+⎝ ⎛⎭⎪⎫52-922+[z --2=3,解得z =0或z =-4. 答案:0或-413.如图,已知长方体ABCD -A 1B 1C 1D 1的对称中心在坐标原点,交于同一顶点的三个面分别平行于三个坐标平面,顶点A (-2,-3,-1),求其他七个顶点的坐标.解析:由题意,得点B 与点A 关于xOz 平面对称, 故点B 的坐标为(-2,3,-1);点D 与点A 关于yOz 平面对称,故点D 的坐标为(2,-3,-1); 点C 与点A 关于z 轴对称,故点C 的坐标为(2,3,-1); 由于点A 1,B 1,C 1,D 1分别与点A ,B ,C ,D 关于xOy 平面对称,故点A 1,B 1,C 1,D 1的坐标分别为A 1(-2,-3,1),B 1(-2,3,1),C 1(2,3,1),D 1(2,-3,1).14.已知点M (3,2,1),N (1,0,5),求: (1)线段MN 的长度;(2)到M ,N 两点的距离相等的点P (x ,y ,z )的坐标满足的条件. 解析:(1)根据空间两点间的距离公式得 |MN |=-2+-2+-2=26,所以线段MN 的长度为2 6.(2)因为点P (x ,y ,z )到M ,N 两点的距离相等,所以x -2+y -2+z -2=x -2+y -2+z -2,化简得x +y -2z +3=0,因此,到M,N两点的距离相等的点P(x,y,z)的坐标满足的条件是x+y-2z+3=0.。
必修2一、面积公式1.直棱柱的侧面积h C S = 为底面周长,h 为高2.正棱锥的侧面积12S C h '= C 为底面周长,h '为斜高3.正棱台的侧面积()12S C C h ''=+ C 为下底面周长,C '为上底面周长,h '为斜高4.圆柱的侧面积h r S π2= r 为底面半径,h为高 5.圆锥的侧面积l r S π= r 为底面半径,l 为母线6.球的表面积24R S π= R 为球半径二、体积公式1.长方体的体积h S V = 为底面积,h 为高2.棱柱、圆柱的体积柱体 h S V = S 为底面积,h 为高 圆柱 h r V 2π= r 为底面圆半径,h 为高3.棱锥、圆锥的体积锥体 h S V 31=S 为底面积,h 为高 圆锥 h r V 231π= r 为底面圆半径,h 为高 4.棱台、圆台的体积台体 ()13V h S S '=++ S 为下底面积,S '为上底面积,h 为高 圆台 ()2213V h r r r r π''=++ r 为下底面半径,r '为上底面半径,h 为高5.球的体积334R V π= R 为球半径三、平面直角坐标系中的基本公式1.数轴上两点间的距离公式()12,x x AB B A d -==2.平面内两点间的距离公式 ()()212212y y x x AB -+-=3.中点坐标公式221x x x += 221y y y +=四、直线方程1.斜率公式()121212x x x x y y k ≠--=2.点斜式方程()00x x k y y -=-3.斜截式方程b kx y +=4.两点式方程()2121121121y y x x x x x x y y y y ≠≠--=--5.截距式方程()001≠≠=+b a b ya x6.一般式()0022≠+=++B A C By Ax五、两条直线的位置关系1.两条直线相交的条件01221≠-B A B A2.两条直线平行的条件01221=-B A B A 且 01221≠-C B C B 或 01221≠-C A C A 2121b b k k ≠=3.两条直线重合的条件212121C C B B A A λλλ===2121b b k k == 4.两条直线垂直的条件02121=+B B A A121-=k k与直线()0022≠+=++B A C By Ax 垂直的直线方程可表示为0=+-D Ay Bx与直线b kx y +=垂直的直线方程可表示为11b x k y +-= 5.点到直线的距离2211B A Cy B x A d +++=6.两条平行线间的距离2221B A C C d +-=六、圆的方程1.圆的标准方程()()222r b y a x =-+- 圆心不在原点 222r y x =+ 圆心在原点2.圆的一般方程()0402222>-+=++++F E D F y E x D y x七、空间两点的距离公式 ()()()212212212z z y y x x d -+-+-=222z y x d ++= 一点在原点。
学圆与方程空间两点间的距离公式学圆与线的距离公式可以应用于空间中的距离计算。
在空间中,一个点到一个平面的距离是指从该点引一条垂直于该平面的线段的长度。
同样,一个点到一个曲面(例如一个球、一个圆锥或一个椭球面等)的距离,也是指该点到该曲面上最近点的距离。
设学圆的方程为(x-a)²+(y-b)²+(z-c)²=r²,其中(a,b,c)是学圆的圆心坐标、r是学圆的半径。
设方程空间的方程为Ax+By+Cz+D=0,其中A、B、C和D是方程空间的系数。
要计算学圆与方程空间的距离,首先需要确定学圆所在平面的法向量和方程空间的法向量。
然后,通过计算两个法向量之间的夹角来确定距离。
学圆所在平面的法向量可以通过学圆的法线方向来确定。
学圆的法线方向可以通过将学圆的方程转化为一般式Ax+By+Cz+D=0,并提取系数A、B和C,然后将它们除以半径r来得到统一方向。
因此,学圆所在平面的法向量为(A/r,B/r,C/r)。
方程空间的法向量可以通过系数A、B和C来确定。
因此,方程空间的法向量为(A,B,C)。
现在,需要计算学圆所在平面的法向量和方程空间的法向量之间的夹角。
可以通过以下公式计算夹角的余弦值:cosθ = (学圆所在平面的法向量.dot乘以方程空间的法向量) /(学圆所在平面的法向量的模长× 方程空间的法向量的模长)夹角的余弦值计算得到之后,可以使用以下公式计算学圆与方程空间的距离:距离=,学圆的圆心坐标与方程空间的距离,=,(A×a+B×b+C×c+D)/√(A²+B²+C²)需要注意的是,如果学圆所在平面与方程空间平行或重合,那么学圆与方程空间的距离将会是零。
综上所述,学圆与方程空间的距离可以通过计算学圆所在平面的法向量和方程空间的法向量之间的夹角,并使用相关公式进行计算得到。
同学们我们在初中的时候已经学习了圆的几何性质,今天开始我们从代数坐标系的角度再来学习圆的一些性质.1.圆的要素:在平面直角坐标系中,当圆心位置与半径大小确定后,圆就唯一确定了.因此,确定一个圆的基本要素是圆心与半径,即位置与大小.2.圆的定义:描述一:在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆.描述二:在同一平面内,到定点的距离等于定长的点的集合叫做圆. 如图所示:O 为定点(圆心),P 为动点()r b y a x =-+-⇒22)(根据点到点距离公式我们将上面这个方程平方也就得到了圆的标准方程.3.圆的标准方程: ()().11)0,0(),()0(22222称为单位圆的圆半径单位圆:我们把圆心为,半径圆心>=+==-+-y x r rb a r r b y a x理解:所说的标准方程其实也只是圆方程的一种书写形式,该方程的优势体现在能直观的看出圆心和半径长.其中标准方程的右边必须大于零才能表示圆,如果等于零,方程表示的只是一个点),(b a .现在我们将圆的标准方程括号去掉化简就可以得到圆的一般方程.※圆与方程4.圆的一般方程:24-2204-0222222F E D r ED FE DF Ey Dx y x +=--+=++++),圆心(>圆的判别式:一般方程:.022项,也没有的系数相同且与理解:xy y x ≠图像不存在<③表示点②表示圆>①一般方程:配方⇒+--⇒=+⇒++=+++−−→−=++++04-)2,2(04-04-44-)2()2(022*********2F E D ED FE DF E D FE D E y D xF Ey Dx y x圆的标准方程与一般方程在形式上存在区别,但又可以通过配方将二者相互转化.5.圆的参数方程:(一般用于求最值)()()[)πθθθθθθ2.0(sin cos sin cos 1)()()0(222222∈⎩⎨⎧+=+=⇒⎪⎪⎩⎪⎪⎨⎧=-=-⇒=-+-−−−−−−→−=-+-为参数,圆的参数方程>等号左右两边同除以b r y a r x rb y r a x rb y r a x r r b y a x r圆成立的条件很重要:0422>F E D -+例1:写出以下方程的圆心、半径、参数方程再作出图像,将标准方程化为一般方程,将一般方程化为标准方程.[)()⎩⎨⎧∈+====+-+=-+πθθθ2,02sin cos 1)2,0(0341)2(2222y x r y y x y x ,圆心一般方程:例:064)1(22=+-+y x y x 022)2(22=-++y x y x2)1()2)(3(22=-++y x 31)33()4(22=++y x2)1()1)(5(22=++-y x 0)6(22=++-y y x x例2:的取值范围是表示圆,则方程m m y mx y x 052422=+-++ .例3:写出下列圆的方程.2),1,2()1(半径长是圆心- .1),,0()2(半径长是圆心m -.),,()3(a b a 半径长是圆心- .1,)4(半径长是轴圆心在x.,012)5(轴相切的圆且与上圆心在直线y y x =+-)2,0(),3,2()6(为圆直径的两个端点分别.)4,3(),2,1(),5,0()7(三个点圆的方程求过---C B A.)5,2(),3,2(,032)8(的圆的标准方程且过点上求圆心在---=--B y x类型一:点与圆位置关系()()())(0)()3()(0)()2()(0)()1(),(002020********020********0202202000r d F Ey Dx y x r b y a x r d F Ey Dx y x r b y a x r d F Ey Dx y x r b y a x y x >>或>点在圆外<<或<点在圆内或点在圆上点++++-+-⇒++++-+-⇒==++++=-+-⇒.,011122的取值范围求始终存在公共点与圆:直线例a ay x y x kx y =+++++=例2:一束光线从点)1,1(-A 出发x 轴反射,到达圆1)3()2(:22=-+-y x C 上一点的最短距离是多少?:例3已知圆1)3()2(221=-+-y x C :,圆9)4()3(222=-+-y x C :,N M 、分别是圆21C C 、上的动点,P 是x 轴上的动点,则PN PM +的最小值为?:例4若点),15(a a M +在圆26)1(22=+-y x 的内部,则实数a 的取值范围是?1:图形表示与判断方法关系 相交 相切 相离图 像几 何 法r d <r d =r d >联立方程方程组两个解方程组一个解方程组无解直线与圆交点个数两个公共点一个公共点没有公共点判别式法0>∆0=∆0<∆:例1直线2+=kx y 与圆122=+y x 没有公共点,求k 的取值范围?:例2不论k 为何实数,直线1+=kx y 与圆0422222=--+-+a a ax y x 恒有交点,则实数a 的取值范围是?:例3若圆4)1(22=+-y x 关于直线022=+-+m y x 对称,则实数m 的值为?关系 外离外切相交内切内含图 像几 何 法d 为圆心距21r r d +>21r r d +=2121r r d r r +-<<21r r d -=210r r d -≤<公切线 四条三条两条一条无位置 关系几个结论(1)经过圆()()222r b y a x =-+-上一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+--.(掌握)(2)已知圆222r y x =+的切线的斜率为k ,则圆的切线方程为12+±=k r kx y .(了解) (3)切点弦方程:过圆()()222r b y a x =-+-外一点),(00y x P 引圆的两条切线,切点分别为B A 、,则过B A 、的直线方程为200))(())((r b y b y a x a x =--+--(掌握)(4)圆与圆公共弦方程:()0)(00212121222222111221=-+-+-=++++=++++F F y E E x D D F y E x D y x O F y E x D y x O :公共弦,该直线方程为若两圆相交,则有一条:与圆:圆(5)弦长公式ak d r AB ∆⋅+=-=22212 )(为平方项的系数为斜率,其中a k(6)半圆、直线、射线、点29x y -= 0)2(22=-+y y x x ()042222=-++y x x241y x -=- ()04122=-+-+y x y x 22x y --=类型一:切线方程、切点弦方程、公共弦方程1.已知圆1)1(22=+-y x O :,求过点)2,2(P 与圆O 相切的切线方程.2.两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.3.过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
平面向量 坐标运算:(1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=-- . (4)设a =(,),x y R λ∈,则λa =(,)x y λλ. (5)设a =11(,)x y ,b =22(,)x y ,则a ·b =1212()x x y y +.向量内积:a 与b 的数量积(或内积):a ·b =|a ||b |cos θ 两向量的夹角公式:121222221122cos ||||x x y y a b a b x y x y θ+⋅==⋅+⋅+ (a =11(,)x y ,b =22(,)x y ).平面两点间的距离公式:,A B d 222121()()x x y y =-+- (A 11(,)x y ,B 22(,)x y ). 向量的平行与垂直 :设a =11(,)x y ,b =22(,)x y ,且b ≠0 ,则:a ||b 12210x y x y ⇔-=.(交叉相乘差为零) a ⊥b (a ≠0 )⇔ a ·b =012120x x y y ⇔+=.(对应相乘和为零)线段的定比分公式 :设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ= ,则 121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ 直线和圆斜率公式 :2121y y k x x -=-(111(,)P x y 、222(,)P x y ). 直线方程:(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式 112121y y x x y y x x --=--(12y y ≠) (111(,)P x y 、222(,)P x y (1212,x x y y ≠≠))(4)截距式 1x y a b+=(a b 、分别为直线的横、纵截距,00a b ≠≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 直线0Ax By C ++=的法向量:(,)l A B '= ,方向向量:(,)l B A =-夹角公式:(1)2121tan ||1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π.1l 到2l 的角:(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π. 点到直线的距离 :0022||Ax By C d A B++=+(点00(,)P x y ,直线l :0Ax By C ++=).圆的四种方程:(1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.点与圆的位置关系:点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种:2200()()d a x b y =-+-, 则d r >⇔点P 在圆外; d r =⇔点P 在圆上; d r <⇔点P 在圆内.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(22BA C Bb Aa d +++=): 0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d . 两圆位置关系的判定方法:设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21,则:条公切线外离421⇔⇔+>r r d ;条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ;无公切线内含⇔⇔-<<210r r d .立体几何空间中的平行问题线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
圆的准线方程上古时期,士学家们就曾经研究过圆的准线方程,其历史悠久。
圆的准线方程是一种准线方程,其解决的是一个圆的形状,其中,圆心位置固定,半径不变,且处于空间平面的形态中。
圆的准线方程可以表述为:x + y = r其中,R代表圆的半径,X和Y分别表示圆心到圆弧上的任意一个点的水平距离和垂直距离。
圆的准线方程由古罗马数学家和哲学家凯撒山东尼拉斯(Cicero,106-43 BC)开发。
在他的《关于几何和数学的文章》中,他首先提出了这种准线方程,但他引用了古希腊数学家尤里厄尼斯特洛(Euclid)的说法,这表明这一方程可能存在于早期古希腊几何学家和数学家中。
尤里厄尼斯特洛(Euclid)使用这种方程来描述球体。
他以准确的几何方法证明,球面等于其半径的平方,即:P = 4πR在18世纪,法国数学家和自然学家约翰贝索斯(Jean Bernoulli)将此方程应用于分析平面中的弧形。
他指出,若将一个圆周上的一段弧形长度和一个原点和圆心之间的距离相比较,则此比率总是相同的,即:L:r =约翰贝索斯也提出了椭圆的准线方程,其中,两个基本参数a和b表示椭圆的两个主要轴的长度。
x/a + y/b = 119世纪的德国数学家卡尔黎斯特(Karl Riest)提出了一种根据圆的准线方程绘制空间曲线的方法,称为黎斯特轴线(Riest Axis)。
他的发现有助于更好地理解几何形状,如惯性坐标系,椭圆,同心圆和椭圆等。
卡尔黎斯特(Karl Riest)还提出了一种利用圆的准线方程来确定平面上两点之间的连线的新方法,即最短距离连接两点的直线,称为黎斯特最短距离连接。
它的计算公式是:中心点(h,k)到圆上任意点(x,y)的距离是d=√((x-h)+(y-k))圆的准线方程存在着广泛的应用,事实上,它是用来解决许多几何问题的重要工具和技术:从建筑或科学问题到计算机科学,政治地理学,以及空间科学等等都应用着圆的准线方程。
例如,圆的准线方程可以用来计算一个球体内的体积,检查一个物体是否处于圆心点也可以用它来完成。
圆与方程一、圆的标准方程 1、情境设置:在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究: 2、探索研究:确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。
(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点Mr = ①化简可得:222()()x a y b r -+-= ②引导学生自己证明222()()x a y b r -+-=为圆的方程,得出结论。
方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。
1. 圆的标准方程:方程222()()(0)x a y b r r -+-=>表示圆心为A (a ,b ),半径长为r 的圆.2. 求圆的标准方程的一般步骤为:(1)根据题意,设所求的圆的标准方程为222)()(r b y a x =-+-.(2)根据已知条件,建立关于a ,b ,r 的方程组; (3)解此方程组,求出a ,b ,r 的值; .(4)将所得的a ,b ,r 的值代回所设的圆的方程中,就得到所求的圆的标准方程.3. 求圆的标准方程的常用方法:(1)几何法:根据题意,求出圆心坐标与半径,然后写出标准方程;(2)待定系数法:先根据条件列出关于a ,b ,r 的方程组,然后解出a ,b ,r ,再代入标准方程. 二、圆的一般方程1.方程022=++++F Ey Dx y x 表示的曲线不一定是圆,只有当0422>-+F E D 时,它表示的曲线才是圆,我们把形如022=++++F Ey Dx y x 的表示圆的方程称为圆的一般方程.2. 对于方程022=++++F Ey Dx y x .(1)当D 2+E 2-4F >0时,方程表示(1)当0422>-+F E D 时,表示以(-2D,-2E )为圆心,F E D 42122-+为半径的圆;(2)当0422=-+F E D 时,方程只有实数解2D x -=,2E y -=,即只表示一个点(-2D,-2E); (3)当0422<-+F E D 时,方程没有实数解,因而它不表示任何图形3.圆的一般方程的特点:(1)①x 2和y 2的系数相同,不等于0. ②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D ,E ,F ,因之只要求出这三个系数,圆的方程就确定了.(3)与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显. 例1.求过三点A (0,0),B (1,1),C (4,2)的圆的方程,并求这个圆的半径长和圆心坐标。
圆的方程;空间两点的距离公式一. 本周教学内容:圆的方程,空间两点的距离公式教学目的:1. 理解并掌握圆的标准方程,会根据不同条件求得圆的标准方程,能从圆的标准方程中熟练求出它的圆心和半径;能够运用圆的标准方程解决一些简单的实际问题;探索并掌握圆的一般方程,会用待定系数法求圆的标准方程和一般方程。
2. 能够根据给定直线、圆的方程,会用代数方法讨论直线与圆的三种位置关系;能够根据给定的圆的方程,判断圆与圆的位置关系。
3. 掌握空间直角坐标系的有关概念,会根据坐标找相应的点,会写一些简单几何题的有关坐标;掌握空间两点的距离公式,会应用距离公式解决有关问题。
二. 重点、难点重点:1. 圆的标准方程以及会根据不同条件求得圆的标准方程;圆的一般方程和如何由圆的一般方程求圆的圆心坐标和半径长,理解关于二元二次方程表示圆的条件。
2. 直线和圆的位置关系的判断和应用;两圆位置关系的判断。
3. 空间直角坐标系和点在空间直角坐标系中的坐标;空间两点距离公式。
难点:1. 圆的标准方程的探寻过程和对圆的一般方程的认识。
2. 通过圆心到直线的距离与半径的大小关系判断直线与圆的位置关系;通过两圆方程联立方程组的解来研究两圆位置关系。
3. 确定点在空间直角坐标系中的坐标;空间距离公式的推导。
知识分析:(一)圆的标准方程1. 圆的定义:平面内到一定点的距离等于定长的点的轨迹叫做圆。
定点叫圆的圆心,定长叫做圆的半径。
2. 圆的标准方程:已知圆心为(a,b),半径为r,则圆的方程为 ;若点M(x1,y1)在圆内,则点到圆心的距离小于圆的半径,即(二)圆的一般方程任何一个圆的方程都可以写成下面的形式:当 )为圆心,以时,方程①只有实数解 );当时,方程①表示一个圆,方程①叫做圆的一般方程。
圆的标准方程的优点在于它明确地指出了圆心和半径,而一般方程突出了方程形式上的特点:(1)<0" > 和<1" > 的系数相同,且不等于0;(2)没有xy这样的二次项。
点到圆的距离公式
点到圆的距离公式为:设点(x,y),那么点到圆的距离d=根号下(x²+y ²)。
点到圆心的距离公式也就是两点间距离公式,因为点到圆的距离实际计算的是点到圆心的距离。
圆的标准方程是(x-a)²+(y-b)²=r²中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。
两点间距离公式常用于函数图形内求两点之间距离、求点的坐标的基本公式,是距离公式之一。
两点间距离公式叙述了点和点之间距离的关系。
两平行线之间的距离公式:
设两条直线方程为
Ax+By+C1=0
Ax+By+C2=0
则其距离公式为|C1-C2|/√(A²+B²)
推导:两平行直线间的距离就是从一条直线上任一点到另一条直线的距离,设点P(a,b)在直线Ax+By+C1=0上,则满足Aa+Bb+C1=0,即Aa+Bb=-C 1,由点到直线距离公式,P到直线Ax+By+C2=0距离为
d=|Aa+Bb+C2|/√(A²+B²)
=|-C1+C2|/√(A²+B²)
=|C1-C2|/√(A²+B²)。