物理化学第二章
- 格式:ppt
- 大小:4.61 MB
- 文档页数:104
第二章:热力学第一定律一.基本概念体系与环境体系:在科学研究时必须先确定研究对象,把一部分物质与其余分开,这种分离可以是实际的,也可以是想象的。
这种被划定的研究对象称为体系,亦称为物系或系统。
环境:与体系密切相关、有相互作用或影响所能及的部分称为环境。
体系的分类:(1)敞开体系:体系与环境之间既有物质交换,又有能量交换(2)封闭体系:体系与环境之间无物质交换,但有能量交换(3)孤立体系:体系与环境之间既无物质交换,又无能量交换,故又称为隔离体系。
有时把封闭体系和体系影响所及的环境一起作为孤立体系来考虑体系的性质:广度性质:又称为容量性质,它的数值与体系的物质的量成正比,如体积、质量、熵等。
这种性质有加和性,在数学上是一次齐函数。
强度性质:它的数值取决于体系自身的特点,与体系的数量无关,不具有加和性,如温度、压力等。
它在数学上是零次齐函数。
指定了物质的量的容量性质即成为强度性质,如摩尔热容热力学平衡态热平衡:体系各部分温度相等。
力学平衡体系各部的压力都相等,边界不再移动。
如有刚壁存在,虽双方压力不等,但也能保持力学平衡。
相平衡:多相共存时,各相的组成和数量不随时间而改变。
化学平衡:反应体系中各物的数量不再随时间而改变。
状态函数:体系的一些性质,其数值仅取决于体系所处的状态,而与体系的历史无关;它的变化值仅取决于体系的始态和终态,而与变化的途径无关。
具有这种特性的物理量称为状态函数状态函数的特性可描述为:异途同归,值变相等;周而复始,数值还原。
状态函数在数学上具有全微分的性质。
状态方程体系状态函数之间的定量关系式称为状态方程对于一定量的单组分均匀体系,状态函数T,p,V 之间有一定量的联系。
经验证明,只有两个是独立的,它们的函数关系可表示为:T=f(p,V)p=f(T,V)V=f(p,T)热和功热:体系与环境之间因温差而传递的能量称为热,用符号Q表示。
Q的取号:体系吸热,Q>0;体系放热,Q<0 。
第二章 主要公式及适用条件热力学第一定律dU = δQ + δW 或 ∆U = Q + W一.体积功WdV p W amb -=⎰或 dV p W amb -=δ 适用于任何系统、任何过程的体积功的计算。
1.自由膨胀过程(向真空膨胀): W = 02.恒外压过程: )(12V V p W amb --=3.恒容过程:4. 恒压过程: )(12V V p W --= 一定量理想气体恒压过程 T nR W ∆-=5.一定量理想气体恒温可逆过程:1221ln ln p p nRT V V nRT W ==6.一定量理想气体绝热可逆过程W = ΔU = n C v.m (T 2-T 1) 或)11(1111211----=γγγγV V V p W(其中 γ = C p.m / C v.m 称为绝热指数 也称热容商。
)7.恒温恒压相变过程: W = - p (V β-V α )若β相为理想气体: W = - p V g = -nRT8.恒温恒压化学反应;且气体视为理想气体W = - R T(g ) (式中为反应计量系数,反应物为“-”,产物为“+”。
)二.热容热容定义 C = Q / ΔT = δQ / d TC v. m = δQ v / d T = (әU m / әT )vC p. m =δQ p / d T = (әH m /әT )p对理想气体 C p.m – C v.m = R单原子分子 C v.m = 3R /2 , C p.m = 5R / 2双原子分子 C v.m = 5R/2, C p.m =7R /2多原子分子 C v.m = 3 R , C p.m = 4 R三. 热1.封闭体系无非体积功恒容变温过程:dT nC Q T T m V V ⎰=21, 若常数=m V C ,,则)(12,T T nC Q m V V -=2.封闭体系无非体积功恒压变温过程: dT nC Q T T m p V ⎰=21,若常数=m p C ,,则)(12,T T nC Q m p p -=3.绝热过程及理想气体自由膨胀过程:Q = 04.恒温恒压无非体积功的相变过程:Q p = n ΔH m5.恒温恒压与恒温恒容化学反应 Q p 与Q v 关系:Q p –Q v = Δr H – Δr U = R T Δn或Q p.m –Q v.m = Δr H m – Δr U m = R T四.热力学能(内能):ΔU = Q + W1.一定量理想气体恒温过程或隔离体系任何过程 ΔU = 02.封闭体系无非体积功恒容变化或一定量理想气体任何过程dT nC U T T m V ⎰=∆21, 3.绝热过程:ΔU = W (Q =0)五.焓:定义: H = U + p V1. 封闭体系任何过程ΔH = ΔU + Δ(p V ) = ΔU + (p 2V 2 – p 2V 2 )2.封闭体系无非体积功的恒压变化或一定量理想气体任何状态变化过程dT nC H T T m p ⎰=∆21, 3.一定量理想气体恒温、实际气体节流膨胀及恒压无非体积功的绝热化学反应过程 ΔH = 0 。
第二章热力学第一定律2.1 热力学的理论基础与方法1.热力学的理论基础热力学涉及由热所产生的力学作用的领域,是研究热、功及其相互转换关系的一门自然科学。
热力学的根据是三件事实:①不能制成永动机。
②不能使一个自然发生的过程完全复原。
③不能达到绝对零度。
热力学的理论基础是热力学第一、第二、第三定律。
这两个定律是人们生活实践、生产实践和科学实验的经验总结。
它们既不涉及物质的微观结构,也不能用数学加以推导和证明。
但它的正确性已被无数次的实验结果所证实。
而且从热力学严格地导出的结论都是非常精确和可靠的。
不过这都是指的在统计意义上的精确性和可靠性。
热力学第一定律是有关能量守恒的规律,即能量既不能创造,亦不能消灭,仅能由一种形式转化为另一种形式,它是定量研究各种形式能量(热、功—机械功、电功、表面功等)相互转化的理论基础。
热力学第二定律是有关热和功等能量形式相互转化的方向与限度的规律,进而推广到有关物质变化过程的方向与限度的普遍规律。
利用热力学第三定律来确定规定熵的数值,再结合其他热力学数据从而解决有关化学平衡的计算问题。
2.热力学的研究方法热力学方法是:从热力学第一和第二定律出发,通过总结、提高、归纳,引出或定义出热力学能U,焓H,熵S,亥姆霍茨函数A,吉布斯函数G;再加上可由实验直接测定的p,V,T等共八个最基本的热力学函数。
再应用演绎法,经过逻辑推理,导出一系列的热力学公式或结论。
进而用以解决物质的p,V,T变化、相变化和化学变化等过程的能量效应(功与热)及过程的方向与限度,即平衡问题。
这一方法也叫状态函数法。
热力学方法的特点是:(i)只研究物质变化过程中各宏观性质的关系,不考虑物质的微观结构;(ii)只研究物质变化过程的始态和终态,而不追究变化过程中的中间细节,也不研究变化过程的速率和完成过程所需要的时间。
因此,热力学方法属于宏观方法。
2.2 热力学的基本概念1.系统与环境系统:作为某热力学问题研究对象的部分;环境:与系统相关的周围部分;按系统与环境交换内容分为:(1)敞开系统(open system) :体系与环境间既有物质交换又有能量交换的体系。
第二章 热力学第二定律内容提要一、自发过程及其不可逆性(1)自发过程(spontaneous process ):不靠外力就能自动进行的过程。
自发过程都有确定的方向,它的逆过程绝不会自发进行。
若靠外力干涉,使原过程逆相进行,体系恢复原状,则在环境中会留下无论如何也不能消除的后果。
这种不能消除的后果就是自发过程的不可逆性。
即一切自发过程都是不可逆的。
(2)可逆过程(reversible process):可逆过程是由一连串近平衡态的微小变化组成的。
变化的动力与阻力相差无限小,因而可逆变化进行的无限缓慢。
循原过程相反方向无限缓慢变化,可使体系与环境同时恢复原状,可逆过程的后果是可以消除的。
可逆过程中,体系对环境做功最大,环境对体系做功最小。
过程在热力学上是否可逆,最终归结为过程热功的转换问题。
由于热不能完全变为功,所以凡是涉及热的过程都是不可逆的。
二、热力学第二定律的表述及公式1、Kelvin 表述:“不可能从单一热源取热使之完全变为功而不产生其它变化”。
单一热源取热使之完全变为功虽不违背热力学第一定律,但涉及热功转换现象。
此表述也可说成“第二类永动机不可能制成”。
2、Clausius 表述:“热不能自动地由低温热源传到高温热源而不发生其它变化”。
两种表述都断言:一切实际过程都是不可逆的。
3、Clausius (克劳修斯)不等式(Clausius ineauality ):d S ≥δQ/T 或 T d S ≥δQ“=”适用于可逆过程,“>”适用于不可逆过程。
该不等式表示:可逆过程的热温商δQ/T 等于过程的熵变d S ;不可逆过程的热温商δQ/T 小于过程的熵变d S 。
三、熵(entropy )的定义及计算1、熵(entropy )的定义熵是体系的性质,状态函数,以符号S 表示。
⎰=∆BA R T Q S 式中,Q 为可逆过程的热,T 是可逆过程体系的温度。
2、熵的微观解释:体系任一平衡的宏观状态都与一定的微观状态数,即称混乱度相对应。