主动激光锁模技术原理.共53页
- 格式:ppt
- 大小:5.37 MB
- 文档页数:53
4.7 激光锁模技术目的:压缩脉冲宽度,高峰值功率。
Q开关激光器般脉宽达10s 10s量级,如果再压缩开关激光器一般脉宽达-8s~10-9量级如果再压缩脉宽,Q开关激光器已经无能为力,但有很多实际应用需要更窄的脉冲。
(1964年后发展了锁模技术,可将脉冲压缩到10-11~10-14s(ps)量级。
)例:1. 激光测距:为了提高测距的精度,则脉宽越窄越好.2激光高速摄影为了拍照高速运动的物体提高照片的2. 激光高速摄影:为了拍照高速运动的物体,提高照片的清晰度,也要压缩脉宽.3. 对一些超快过程的研究,激光核聚变,激光光谱,荧光3对一些超快过程的研究激光核聚变激光光谱荧光寿命的测定,非线性光学的研究等需窄的脉宽。
(掺钛蓝)。
宝石自锁模激光器中得到了8.5fs的超短光脉冲序列14.7.1 锁模原理多模激光器的输出特性一、多模激光器的输出特性自由运转激光器的输出一般包含若干个超过阈值的般包含若干个超过阈值的纵模,如图所示。
这些模的振幅及相位都不固定,激光输出随时间的变化是它们无规则叠加的结果,是一种时间平均的统计值间平均的统计值。
假设在激光工作物质的净增益线宽内包含有N 个纵模,每个纵模输出的电场分那么激光器输出的光波电场个纵模电场的和即量可用下式表示:)(q q t i eE t E ϕω+=+=t i q q )(ϕω是N 个纵模电场的和,即(4-73)(4-74)2)(q q ∑qq eE t E )((473)(474))()(q q t i q q eE t E ϕω+=∑+=t i q q q eE t E )()(ϕωqE q 、ωq 、φq 为第q 个模式的振幅、角频率及初位相。
各个模式的振幅E 、初位相均无确定关系,各个模式互不相干,因而q 、φq ,,激光输出是它们的无规叠加的结果,输出强度随时间无规则起伏。
假设有三个光波,频率分别为v 1、v 2和v 3,沿相同方向传播,并且有如下关系:3213112302, ,v v v v E E E E =====在未锁定时,初相彼此无关。
锁模激光器的工作原理及其特性摘要: 本文主要介绍了锁模的基本原理和实现方法,并简单介绍了锁模激光器。
关键词:锁模,速率方程,工作原理一、引言如果在激光谐振腔内不加入任何选模装置,那么激光器的输出谱线是由许多分立的,由横纵模确定的频谱组成的。
锁模就是将多纵模激光器中各纵模的初相位关系固定,形成等时间间隔的光脉冲序列。
使各纵模在时间上同步,频率间隔也保持一定,则激光器将输出脉宽极窄、峰值功率很高的超短脉冲。
二、锁模的概念一般非均匀加宽激光器,如果不采取特殊选模措施,总是得到多纵模输出。
并且,由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模。
每个纵模输出的电场分量可用下式表示])-([),(q q z t i q q e E t z E ϕυω+= (2.1)式中,q E 、q ω、q ϕ为第q 个模式的振幅、角频率及初相位。
各个模式的初相位q ϕ无确定关系,各个模式互不相干,因而激光输出是它们的无规叠加的结果,输出强度随时间无规则起伏。
但如果使各振荡模式的频率间隔保持一定,并具有确定的相位关系,则激光器将输出一列时间间隔一定的超短脉冲。
这种激光器称为锁模激光器。
假设只有相邻两纵模振荡,它们的角频率差Ω='=L cq q πωω1-- (2.2)它们的初相位始终相等,并有01-==q q ϕϕ。
为分析简单起见,假设二模振幅相等,二模的行波光强I I I q q ==1-。
现在来讨论在激光束的某一位置(设为0=z )处激光场随时间的变化规律。
不难看出,在0=t 时,二纵模的电场均为最大值,合成行波光强是二模振幅和的平方。
由于二模初相位固定不变,所以每经过一定的时间0T 后,相邻模相位差便增加了π2,即πωω2-01-0=T T q q (2.3)因此当0mT t =时(m 为正整数),二模式电场又一次同时达到最大值,再一次发生二模间的干涉增强。
于是产生了具有一定时间间隔的一列脉冲,脉冲峰值光强为I 4,由式(2.3)可求出脉冲周期为cL T '=Ω=220π 如果二纵模初相位随机变化,则在0=z 处,合成行波光强在I 2附近无规涨落。
锁模激光器的产生原理
锁模的基本原理,就是激光器内放置损耗调制元件,假设激光器
的腔长时L,则激光器的震荡频率为c/2L。
调制元件的调制周期刚好是光脉冲在腔内一周所需要的的时间2L/c。
因此在谐振腔中往返运行的激光束在通过调制器的时候,总是处在相同的调制周期内。
假如调制器放在谐振腔的一端,再假设t1时刻,某一光信号受到的损耗是a(t1),则,这一信号在腔内往返一周后,将受到同样的损耗,若a(t1)≠0,则该信号在腔内往返一次则遭受到一次损耗,如果损耗大于增益的话,在信号最后会衰减为零,该部分光消失。
而a(t1)=0时,光每次通过衰减器的损耗为零,加上光波在腔内工作物质中的放大,光会不断得到放大,光波振幅不断变大。
如果腔内的损耗和增益物质控制得当,就可以产生脉冲周期为2L/c的脉冲序列输出。
现假设在增益曲线的中心处的纵模频率为v0,由于它的增益最大,首先得到振荡,通过调制器时,受到损耗调制,调制的结果是产生两个边频v0+/—vm,当损耗的变化频率和腔内纵模的频率间隔相等时,即vm=c/2L时,由调制激发的边频实际上与v0相邻的两个纵模频率相等,它们之间具有相同的振幅和相位关系,它们可以开始震荡。
而后,两个边频开始被放大,得到调制,调制后又激发新的边频,以此类推达到了锁模的目的,这些模式叠加起来发生剧烈的耦合,形成了强而窄的光脉冲序列。
彭亦超2.28。