工程问题应用题专项练习A(含解析)
- 格式:docx
- 大小:71.61 KB
- 文档页数:13
1. 熟练掌握工程问题的基本数量关系与一般解法;2. 工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理;3. 根据题目中的实际情况能够正确进行单位“1”的统一和转换;4. 工程问题中的常见解题方法以及工程问题算术方法在其他类型题目中的应用.工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。
工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。
在教学中,让学生建立正确概念是解决工程应用题的关键。
一. 工程问题的基本概念定义 : 工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。
工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,必须做到以下几方面:① 具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;② 在理解、掌握分数的意义和性质的前提下灵活运用;③ 学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;④ 学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.三、利用常见的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.知识精讲教学目标工程问题(二)例题精讲模块一、工程问题——变速问题【例 1】 甲打一篇文稿,打完一半后吃晚饭,晚饭后每分钟比晚饭前多打32个字.前后共打50分钟,前25分钟比后25分钟少打640个字.文稿一共( )字.【考点】工程问题 【难度】3星 【题型】解答 、【关键词】走美杯,三年级,初赛,四年级【解析】 由“前25分钟比后25分钟少打640个字”,可知:多打这640个字需要的时间是:640÷32=20(分钟),那么就知饭前用了30分钟,饭后用了20分钟,如果这640个字全部用饭前的速度打,则需要10分钟,故可知饭前的速度是64个字每分钟,饭后的速度是96个字每分钟,则文稿一共有:64×30+96×20=3840个字。
小学数学工程问题专题训练40题〔有答案〕在分析解答工程问题时,一般常用的数量关系式是:工作量=工作效率×工作时间,工作时间=工作量÷工作效率,工作效率=工作量÷工作时间。
工作量指的是工作的多少,它可以是全部工作量,一般用数1表示,也可工作效率指的是干工作的快慢,其意义是单位时间里所干的工作量。
单位时间的选取,根据题目需要,可以是天,也可以是时、分、秒等。
工作效率的单位是一个复合单位,表示成“工作量/天〞,或“工作量/时〞等。
但在不引起误会的情况下,一般不写工作效率的单位。
1、单独干某项工程,甲队需100天完成,乙队需150天完成。
甲、乙两队合干50天后,剩下的工程乙队干还需多少天?2、某项工程,甲单独做需36天完成,乙单独做需45天完成。
如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。
问:甲队干了多少天?3 、单独完成某工程,甲队需10天,乙队需15天,丙队需20天。
开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。
问:甲队实际工作了几天?4、一批零件,张师傅独做20时完成,王师傅独做30时完成。
如果两人同时做,那么完成任务时张师傅比王师傅多做60个零件。
这批零件共有多少个?5 、一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。
如果一开始是空池,翻开放水管1时后又翻开排水管,那么再过多长时间池内将积有半池水?6、甲、乙二人同时从两地出发,相向而行。
走完全程甲需60分钟,乙需40分钟。
出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟。
甲再出发后多长时间两人相遇?7、某工程甲单独干10天完成,乙单独干15天完成,他们合干多少天才可完成工程的一半?8、某工程甲队单独做需48天,乙队单独做需36天。
甲队先干了6天后转交给乙队干,后来甲队重新回来与乙队一起干了10天,将工程做完。
六上数学工程问题的应用题六上数学工程问题的应用题11、一件工作,单独一个人做,张师傅有8小时完成,李师傅要12小时完成。
现在两个人合做,多少小时完成?2、修一条的路,甲队单独修要20天,乙队单独修要30天。
两队同时修,要多少天完成?3、运一批货物,大卡车单独运20次运完,小卡车单独运要40次运完。
两辆卡车同时运,多少次可以运?4、一项工程,A队要40天完成,B队要60天完成,两队合做20天,完成了全工程的几分之几?还剩几分之几?5、从A地到B地,客车8小时行完全程,货车要10小时行完全程。
现在两车同时从两地相向出发,多少小时两车相遇?6、一件工作,张师傅要8天完成,李师傅3天完成了,两位师傅合做,多少天可以完成?7、加工一批零件,黄师傅完成,洪师傅天完成。
两人合作多少天完成?8、挖一条水渠,甲组要12天挖完,乙组要15天挖完。
现在甲组先挖4天,然后两组合挖,还有多少天完成?9、一项工程,甲队单独做要20天完成,乙队单独做要25天完成。
现在两队先合做2天,如果由甲对单独做,还要多少天完成?10、甲、乙两个工程队修一条铁路,两队合修12天完成,甲队单独修要20天完成。
乙队单独修要多少天完成?11、加工一批服装,甲车间要20天完成,乙车间要30天完成,两个车间同时做多少天可以完成一半?12、一件工作,甲、乙合做12天完成,已知甲、乙工作效率的比是1:3。
两人单独做各要多少天?六上数学工程问题的应用题2工程问题简介在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是:工作量=工作效率×时间。
在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”。
常见工程问题解题方法工程问题,究其本质是运用分数应用题的量率对应关系,即用对应分率表示工作总量与工作效率,这种方法可以称作是一种“工程习惯”。
存在以下比例关系:工作总量相同,工作效率和工作时间成反比;工作时间相同,工作效率和工作总量成正比;工作效率相同,工作时间和工作总量成正比。
【奥数专题】精编人教版小学数学6年级上册工程问题(试题)含答案与解析奥数专题:精编人教版小学数学6年级上册工程问题(试题)含答案与解析工程问题是小学数学中常见的题型之一,能够锻炼学生的逻辑思维和综合运算能力。
本文将为大家精编人教版小学数学6年级上册的工程问题试题,并附带详细的答案与解析,希望能够帮助到同学们更好地理解和掌握这一题型。
1. 小明修建了一个半径为3米的圆形花坛,请问这个花坛的周长是多少米?答案与解析:圆的周长公式为C = 2πr,其中r为半径,π取近似值3.14。
代入已知数据,得C = 2 × 3.14 × 3 = 18.84(米),所以这个花坛的周长为18.84米。
2. 小红家的房屋正前方有一个边长为6米的正方形草坪,现在要在这个草坪上种植鲜花,请问这个草坪的面积是多少平方米?答案与解析:正方形的面积公式为A = a^2,其中a为边长。
代入已知数据,得A = 6^2 = 36(平方米),所以这个草坪的面积为36平方米。
3. 丽丽要制作一个高度为2米的三角形旗帜,其中底边长为4米,请问这个旗帜的面积是多少平方米?答案与解析:三角形的面积公式为A = 0.5 ×底边长 ×高,代入已知数据,得A = 0.5 × 4 × 2 = 4(平方米),所以这个旗帜的面积为4平方米。
4. 小华要铺设一条长为5米的沟渠,他计划将沟渠分为相等的5段,请问每段的长度是多少米?答案与解析:将沟渠分为相等的5段,则每段的长度为总长度除以段数,即5 ÷ 5 = 1(米)。
所以每段的长度为1米。
5. 小明用了21个园木将一条长20米的小路两侧都种满,请问每个园木之间的距离是多少米?答案与解析:将小路分为21段,则每个园木之间的距离为总长度除以段数减1,即20 ÷ (21-1) = 1(米)。
所以每个园木之间的距离为1米。
6. 小红需要用12个石板铺满一个长为3米的小路,请问每块石板的长度是多少米?答案与解析:将小路分为12段,则每块石板的长度为总长度除以段数,即3 ÷ 12 = 0.25(米)。
一、填空题。
1.一项工程,李叔叔做需要15天完成,王叔叔做需要20天完成,李叔叔与王叔叔的工作效率比是.2.植树造林,绿化家园.现有一批树苗,如果一队单独种,需要6天,如果二队单独种,需要8天.现在两队合种,天能种完。
3.一条长1200米的小路。
甲队单独修6小时修完,乙队单独修8小时修完,两队合作3小时后,还剩米没修完。
4.一项工程,甲队单独做需要10天完成,乙队单独做需要18天,丙队单独做需要15天。
如果只安排两个队完成工程,最少需要天。
5.甲18天或乙15天可以完成一项工程.如果两人合作,中途甲休息4天,自开始到完工共需天。
二、解答题。
1.挖通一条隧道,甲队单独挖需10天完成,乙队单独挖需15天完成,如果甲队和乙队合作同时进行,需要多少天可以挖通这条隧道?2.一件工作,甲独做要6天完成,乙的工效是甲的2倍,两人同时合作,几天能完成?3.一项工程,甲独做要18天完成,乙独做要15天,二人合作6天,其余的由乙单独做,还要几天做完?4.一项工程,由甲单独做30天完成,这项工程先由甲乙两队合做8天,余下的甲队10天完成,那么乙单独做这项工程需要多少天完成?5.一件工程,甲,乙合作需6天完成,乙,丙合作需9天完成,甲,丙合作需15天完成,现在甲,乙,丙三人合作需要多少天完成?6. 有一项任务,a 队单独做10小时完成,b 队单独做15小时完成,两队合做多少小时能完成这个任务的21?7. 一项工作,甲乙合作要12天完成,若甲先做3天后,再由乙工作8天,共完成这件工作的125。
如果这件工作由甲乙单独做完,甲需要多少天?乙需要多少天?8.一份稿件,甲单独打字需6小时完成,乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时,那么甲打字用了多少小时?9.一项工程,甲队单独做需7天完成,乙队单独做需5天完成,现由甲队单独做1天后,乙队加入,则乙队做了几天后完成了这项工程?10.一项工程,甲队单独做8天完成,乙队单独做2天可以完成全工程的16,如果两队先合作若干天后,甲队再单独做3天完成了剩余的任务.甲队一共工作了多少天?11.一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。
小学数学六年级工程问题应用题及答案小学数学六年级工程问题应用题及答案 1工科一直是考试的必答题。
我们来看看一些典型的问题。
例1:一群工人完成了某个项目。
如果能再增加6个工人,10天就能完成;如果能加2个人,需要20天才能完成。
现在只能增加两个人,那么这个项目需要多少天才能完成?根据题目意思,我们先假设原来有工人为x人那么我们可以列出等式:(x+6)×10=(x+2)×2010x+60=20x+4010x=20x=2(个)那么工作的总量我们就能算出来(2+6)×10=80增加两个人的需要的天数就可以算出来为80÷(2+2)=20(天)a:那么完成这个项目需要20天。
例2:A队和B队共同修复一段公路。
如果A队单独做,需要20天,B队单独做需要12天。
现在两队同时从两端出发,在距离中点750米处相遇。
这条路有多长?根据题目意思,我们知道甲和乙的速度比(1÷20除以1÷12)=3÷5我们假设这段公路总共为8份,那么甲修了公路的3÷8,乙修了公路的5÷8他们同时开工,在距离中点750米处相遇,那么我们就知道乙比甲·多修了750×2=1500(米)3÷8-5÷8=1÷4,这是乙比甲多修的为总路程的1÷4我们就可以算出这段公路总长为1500除以1÷4=6000(米)答:这段公路长6000米。
例3:有一批零件要加工。
A一个人做要8天,B一个人做要10天。
如果两个人合作,那么A在完成任务时比B多做了40个零件。
这批有多少零件?根据题目意思,我们知道甲和乙做同样的工作,工作时间比是8➗10=4÷5那么他们的工作效率之比位5÷4我们设这批零件总量为9份,那么完成任务时甲比乙多做了40个,这就是其中的一份那么零件的总数量就可以算出来了为40➗1÷9=40×9=360(个)答:这批零件共有360个。
人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练1.一项工作,如果由甲单独做,需6小时完成;如果由乙单独做,需要5小时完成.如果让甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需多长时间完成?2.一项道路工程,甲队单独做9天完成,乙队单独做天完成.现在甲、乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,则乙队还需几天才能完成?3.整理一批图书,由一个人做要10小时完成.现计划由一部分人先做1小时,然后增加2人与他们一起做2小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?4.某地为了打造风光带,将一段长为的河道整治任务分配给甲,乙两个工程队先后接力完成,共用时天,已知甲工程队每天整治,乙工程队每天整治.求:(1)甲,乙两个工程队分别整治了多长的河道?(2)甲、乙两工程队各整治河道的天数.5.甲、乙两队修一座桥,如果由甲队单独完成,需要15天;如果由乙队单独完成,需要30天.现在由甲队单独做了3天后,承办方接到通知,需要加快修桥进度,后续工程由甲、乙两队共同完成,则甲、乙两队后续需要合作多少天才能修完这座桥?6.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?12360m 2024m 16m7.将一批工业最新动态信息输入管理储存网络,甲单独完成需要4小时,乙单独完成需要6小时.(1)如果让甲、乙合作,需几小时完成这项工作任务的一半?(2)如果乙先做90分钟,然后甲、乙合作,还需多长时间才能完成这项工作?8.某工程队修一条隧道,计划每天修600米,20天完成,而实际每天多修25%,实际可以提前几天完成?(用比例解)9.一项工程,甲单独做需20天完成 ,乙单独做需15天完成,现在先由甲、乙合作若干天后,剩下的部分由乙独做,先后共用12天,请问甲做了多少天?10.修一条高速公路,甲队修了全长的60%,乙队修了全长的30%,甲队比乙队多修27千米,这条公路全长多少千米?11.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.正常情况下,甲、乙两人能否履行该合同?12.为了打赢蓝天保卫战,某市环保局对一段长的河道进行整治,整治任务由甲、乙两个工程队来完成.已知甲工程队每天完成,乙工程队每天完成.(1)若该任务由甲、乙两个工程队合作完成,则整治这段河道需要多少天?(2)若甲工程队先单独整治一段时间后离开,剩下的由乙工程队来完成,两队共用时天,求甲、乙工程队分别整治了多长的河道.13.修一条公路,甲单独完成需要20天,乙单独完成需要12天,甲先修4天后,为加快工程进度,乙加入,二人合作完成余下的任务,问还需多少天完成?(列方程解)2400m 30m 50m 6020.某信息管理中心,在距下班还剩4小时的时候,接到将一批工业最新动态信息输入管理储存网络的任务,甲单独做需6小时完成,乙单独做需4小时完成:(1)甲乙合作需要小时完成?(2)若甲先做30分钟,然后甲、乙合作,则甲、乙合作还需多少小时才能完成工作?(3)若甲先做30分钟,然后甲、乙合作1小时,这时又接到新的工作任务,必须调走一人,问剩下那人能否在下班之前完成这项工作?参考答案:。
工程问题【习题】姓名:___________________ 成绩:_____________________1.一项工程,如果甲单独做,需要18天完成;如果甲、乙两队合作, 6天就能完成全部工程的12,如果乙队单独做,需要多少天完成?2.一条水渠,甲独做40天完成,乙独做60天完成,甲、乙二人合做,因为途中甲休息几天,所以30天才完成。
问甲休息了多少天?3.加工一批零件,王师傅单独做需要50小时,李师傅单独做需要75小时,已知每小时王师傅比李师傅多做18个,如果李师傅的工作效率提高50%,而王师傅每小时比原来多做12个,那么两人合作加工这批零件的35需要多少小时?4.一条公路,甲队独修需24天完成,乙队独修需30天完成,甲、乙两队合修若干天后,乙队停工休息,甲队继续修了6天完成,乙队修了多少天?5.一批需加工的电路板,甲、乙两人合作3天可以完成,乙、丙两人合作5天可以完成,甲、丙两人合作6天可以完成,如果三人一起合作多少天可以完成?6.一项工程,甲队单独做需30天完成,乙队单独做需20天完成,两队合做了若干天后,中间将乙队调出,所以整个工程经过18天才完成,问乙队调出多少天?7.一项工程,甲独做10天完成,乙独做8天完成,若甲先做若干天后乙接着做共用了9天完成,甲做了多少天?8.一条水渠,甲、乙、丙三人合做8天完成一半,甲、乙合做8天完成了剩下工程的35,最后由甲单独做12天完成,甲、乙、丙单独完成各需多少天?9.甲、乙、丙三人合修一围墙。
甲、乙合修5天修好围墙的13,乙、丙合修2天修好余下围墙的14,剩下的围墙甲、丙又合修5天才完成。
三人若单独修各需多少天?工程问题【答案】姓名:___________________ 成绩:_____________________1.一项工程,如果甲单独做,需要18天完成;如果甲、乙两队合作, 6天就能完成全部工程的12,如果乙队单独做,需要多少天完成?① 1÷18=118②12÷6=112③112-118=136④ 1÷136=36(天)答:需要36天完成。
(小学数学)小升初复习《工程问题》30道专题应用题训练试题(附答案详解)(小学数学)小升初复习《工程问题》30道专题应用题训练试题(附答案详解)1.某修路队修好一条路,第一天修了全长的14;第二天修了余下的13,正好是150米。
这条路长多少米? 【答案】600米【解析】【详解】(1-14)×13=14150÷14=600(米) 答:这条路长600米。
2.一条公路,如果由甲队单独修,24天可以修完;如果由乙队单独修,36天可以修完,现在由乙队先修6天,剩下的由两队合修,还要多少天可以修完?【答案】12天【解析】【详解】÷=÷ =12(天)3.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时。
丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?【答案】35【解析】把一池水的水量看为单位 “1”,5小时甲乙两个水管共注水1195201616⎛⎫+⨯= ⎪⎝⎭,离注满还有716,这时打开丙管,则注满水池需要的时间为711116201610⎛⎫÷+- ⎪⎝⎭。
【详解】11111152016201610⎡⎤⎛⎫⎛⎫-+⨯÷+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ =716÷180=35(小时)答:水池注满还需要35小时。
【点睛】本题考查工程问题,此类问题需要掌握工作效率、工作时间和工作总量之间的基本关系:工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4.修一条路,甲工程队单独修需要20天,乙工程队单独修需30天,先由甲单独修5天,再由甲、乙两个工程队合修,还需多少天完成?【答案】9天【解析】【详解】1÷20=1 201÷30=1 30(1-120×5)÷(120+130)=9(天)答:由甲单独修5天,再由甲、乙两个工程队合修,还需9天完成.5.某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需要48天完成。
六年级上册工程问题专项练习A一、选择题1.一项工程,甲单独做20天完成,甲乙两队合做12天完成,乙队单独做( )天完成.A .5B .8C .62.一项工程,甲独做12天完成,乙独做4天完成。
若甲先做若干天后,由乙接着做余下的工程,直至完成全部任务,这样前后共用了6天,甲先做了( )天.A .3B .4C .53.一件工程,甲单独做需8天完成,甲乙合作需6天完成.现由甲先做3天后,余下的工作由乙单独完成,还需( )天.A .15B .9C .124.甲乙两人合作打一份材料.开始甲每分钟打100个字,乙每分钟打200个字.合作到完成总量的一半时,甲速度变为原来的3倍,而乙休息了5分钟后继续按原速度打字.最后当材料完成时,甲、乙打字数相等.那么,这份材料共( )个字.A .3000B .6000C .12000D .18000二、填空题5.某种速印机每小时可以印3600张纸,那么印240张纸需要__________分钟。
6.一种产品是由一个大零件和两个小零件组成,已知师傅每小时可生产9个大零件或者14个小零件,徒弟每小时可生产3个大零件或者10个小零件.如果要生产27套这种产品,那么师、徒两人至少需要合作__________小时。
7.某水池可以用甲、乙两个水管注水,单开甲管需12小时注满,单开乙管需24小时注满,若要求10小时注满水池,且甲、乙两管同时打开的时间尽量少,那么甲、乙最少要同时开放__________小时.8.一项工程,甲乙两人合作需36天完成;乙丙两人合作需要45天完成;甲丙两人合作要60天完成。
那么,只要一人独做,最少需要__________天完成。
9.某项工程,开始由6人用35天完成了全部工程的,此后,增加了6人一起来完成这项工程,则完成这项工程共用__________天。
10.某项工程需要100天完成,开始由10个人用30天完成了全部工程的,随后再增加10个人来完成这项工程,那么能提前__________天完成任务。
六年级上册工程问题专项练习A一、选择题1.一项工程,甲单独做20天完成,甲乙两队合做12天完成,乙队单独做( )天完成.A .5B .8C .62.一项工程,甲独做12天完成,乙独做4天完成。
若甲先做若干天后,由乙接着做余下的工程,直至完成全部任务,这样前后共用了6天,甲先做了( )天.A .3B .4C .53.一件工程,甲单独做需8天完成,甲乙合作需6天完成.现由甲先做3天后,余下的工作由乙单独完成,还需( )天.A .15B .9C .124.甲乙两人合作打一份材料.开始甲每分钟打100个字,乙每分钟打200个字.合作到完成总量的一半时,甲速度变为原来的3倍,而乙休息了5分钟后继续按原速度打字.最后当材料完成时,甲、乙打字数相等.那么,这份材料共( )个字.A .3000B .6000C .12000D .18000二、填空题5.某种速印机每小时可以印3600张纸,那么印240张纸需要__________分钟。
6.一种产品是由一个大零件和两个小零件组成,已知师傅每小时可生产9个大零件或者14个小零件,徒弟每小时可生产3个大零件或者10个小零件.如果要生产27套这种产品,那么师、徒两人至少需要合作__________小时。
7.某水池可以用甲、乙两个水管注水,单开甲管需12小时注满,单开乙管需24小时注满,若要求10小时注满水池,且甲、乙两管同时打开的时间尽量少,那么甲、乙最少要同时开放__________小时.8.一项工程,甲乙两人合作需36天完成;乙丙两人合作需要45天完成;甲丙两人合作要60天完成。
那么,只要一人独做,最少需要__________天完成。
9.某项工程,开始由6人用35天完成了全部工程的,此后,增加了6人一起来完成这项工程,则完成这项工程共用__________天。
10.某项工程需要100天完成,开始由10个人用30天完成了全部工程的,随后再增加10个人来完成这项工程,那么能提前__________天完成任务。
三、解答题11.一件工作,甲独做需要6天,乙单独做需要8天,两人合做几小时,可以完成这件工作的?12.一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?13.一水池装有一个进水管和一个排水管。
如果单开进水管,5小时可将空池灌满;如果单开排水管,7小时可将整池水排完。
现在先打开进水管,2小时后打开排水管。
请问:再过多长时间池内将恰好存有半池水?14.蓄水池有甲、乙两个进水管,单开甲管需12小时注满水,单开乙管需18小时注满水。
现要求10小时注水池,那么甲、乙两管至少要合开多长时间?15.修一条路,甲队每天修8小时,5天完成;乙队每天修10小时,6天完成。
两队合作,每天工作6小时,几天可以完成?16.甲、乙、丙三人同时分别在3个条件和工作量相同的仓库工作,搬完货物甲用10小时,乙用12小时,丙用15小时.第二天三人又到两个大仓库工作,这两个仓库的工作量相同.甲在A仓库,乙在B仓库,丙先帮甲后帮乙,用了16个小时将两个仓库同时搬完.丙在A仓库搬了多长时间?17.甲、乙合作一件工程,由于配合得好,甲的工作效率比单独做时提高,乙的工作效率比单独做时提高.甲、乙两人合作6小时,完成全部工作的,第二天乙又单独做了6小时,还留下这件工作的尚未完成,如果这件工作始终由甲一人单独来做,需要多少小时?18.有甲乙两个工程,张三单独做完甲工程需要12天,单独做完乙工程需要15天;李四单独做完甲工程需要8天,单独做完乙工程20天.张三李四二人共同完成这个工程最少需要多少天?19.单独完成一件工程,甲需要24天,乙需要32天.若甲先独做若干天后乙单独做,则共用26天完成工作.问甲做了多少天?20.一项工程,甲队单独做需30天完成,乙队单独做需40天完成。
甲队单独做若干天后,由乙队接着做,共用35天完成了任务。
甲、乙两队各做了多少天?21.甲、乙两人合作加工一批零件,8天可以完成。
中途甲因事停工3天,因此,两人共用了10天才完成。
如果由甲单独加工这批零件,需要多少天才能完成?22.有一批待加工的零件,甲单独做需4天,乙单独做需5天,如果两人合作,那么完成任务时,甲比乙多做了20个零件。
问这批零件共有多少个?23.甲、乙两人共同加工一批零件,8小时可以完成任务.如果甲单独加工,便需要12小时完成.现在甲、乙两人共同生产了小时后,甲被调出做其他工作,由乙继续生产了420个零件才完成任务.问乙一共加工零件多少个?24.一段布,可以做30件上衣,也可做48条裤子。
如果先做20件上衣后,还可以做多少条裤子?25.一项工程,甲、乙合作需要20天完成,乙、丙合作需要15天完成,由乙单独做需要30天完成,那么如果甲、乙、丙合作,完成这项工程需要多少天?26.有一条公路,甲队独修需10天,乙队独修需12天,丙队独修需15天。
现在让3个队合修,但中途甲队撤出去到另外工地,结果用了6天才把这条公路修完.当甲队撤出后,乙、丙两队又共同合修了多少天才完成?解析1.答案:C;试题分析:试题分析:根据题意可知甲的工作效率是,甲乙合作的效率是,可求乙的工作效率,从而根据工作量÷工作效率=工作时间,此题可解。
解:÷(-)=÷=6(天)答:乙队单独做6天完成.故选:C.2.答案:A;试题分析:试题解析:把这项工程看做单位“1”,设甲先做x天,根据等量关系式;甲做的工作量+乙做的工作量=工作总量,列方程即可解答.解:设甲先做了x天,则乙就做了(6-x)天.x+(6-x)×=1x+-x=1x=x=3则甲先做了3天.故选:A.3.答案:A;试题分析:试题分析:首先根据一件工程,甲单独做需8天完成,甲乙合作需6天完成,分别求出甲、甲乙的工作效率,进而用减法求出乙的工作效率;然后根据工作量=工作效率×工作时间,求出甲3天的工作量,进而求出剩下的工作量;最后根据工作时间=工作量÷工作效率,求出余下的工作由乙单独完成,还需几天完成即可.解:(1-×3)÷(-)=÷=15(天)故选:A.4.答案:D;试题分析:试题分析:前一半时乙的工作量是甲的2倍,所以后一半甲应是乙的2倍,把后一半工作量分为6份,甲应为4份,乙应为2份,说明乙休息时甲打了1份,这一份的量是100×3×5=1500字,故总工作量是1500×6×2=18000字.故选:D.5.答案:4;试题分析:试题分析:化1小时=60分钟,先依据工作效率=工作总量÷工作时间,求出速印机的工作效率,再根据工作时间=工作总量÷工作效率即可解答。
解:1小时=60分钟,240÷(3600÷60)=240÷60=4(分钟),答:印240张纸需要4分钟;故答案为:4.6.答案:4.5;试题分析:试题分析:师徒二人各自加工2小时,一小时加工大零件,一小时加工小零件,共计完成12个大零件,24个小零件,正好配套。
也就是2小时完成12套,求完成27套,看27里面有多少个12即可。
解:9+3=12,10+14=24,12×2=24,师徒二人2小时完成12套,27÷12×2=2.25×2=4.5(小时)答:师、徒两人至少需要合作4.5小时。
故答案为:4.5.7.答案:4;试题分析:试题分析:因为甲水管注水快,所以甲水管要一直开满10小时,这样,在10小时里面甲能注满水池的.剩下的由乙水管注入.乙水管开的时间,就是他们共同注水的时间.解:要想同时开的时间最小,则根据工效,让甲“满负荷”地做,才可能使得同时开放的时间最小.所以,乙开放的时间为(1-×10)÷=4(小时),即甲、乙最少要同时开放4小时.故答案为:4.8.答案:60;试题分析:试题分析:根据工程问题进行解答即可。
解:⇒甲+乙+丙=⇒⇒乙最大为-=⇒1÷=60(天)故答案为:60.9.答案:70;试题分析:试题分析:应先算出一个人的工作效率,进而算出12个人的工作效率,还需要的天数=剩余的工作量÷12个人的工作效率,把相关数值代入即可求得还需要的天数,再加35天即可。
解:总工作量看做单位“1”.剩余工作量为1-=,一个人的工作效率为÷6÷35,(1-)÷[÷6÷35×(6+6)]=÷(÷6÷35×12)=÷=35(天)35+35=70(天)所以完成这项工程共用70天。
故答案为:70.10.答案:10;试题分析:试题分析:根据工作效率=工作量÷工作时间进行分析求解。
解:假设每人每天的工作效率为a份,全部的工作总量是10a×30÷=1500a(份);增加10分后完成的天数是:(1500a-30×10a)÷(10a+10a)=60(天),提前10-30-60=10(天)完成。
故答案为:10.11.答案:2;试题分析:试题分析:用除以他们每小时的效率之和即可.解:÷(+)=×=2(小时)答:两人合做2小时,可以完成这件工作的.12.答案:28;试题分析:试题分析:将整个工程的工作量看作“1”个单位,求出甲的工作效率,然后求出甲、乙合作的工作效率,进一步求出乙的工作效率,即可求出乙独干需要的时间。
解:甲每天完成总量的,甲、乙合作每天完成总量的,乙单独做每天能完成总量的-=,所以乙单独做28天能完成;故答案为:28.13.答案:小时;试题分析:试题分析:解:2小时后水池水量有×2=,还需要(-)÷(-)=小时故答案为:小时14.答案:3;试题分析:试题分析:当甲管一直开,乙管开一段时间,此时甲注水池,则乙管注水池的1-,然后再除以乙管的工作效率即为乙管要开的时间,即为合开的时间.解:(1-×10)÷=3(小时)答:甲、乙两管至少需要合开3小时.故答案为:3.15.答案:4;试题分析:试题解析:把前两个条件综合为“甲队40小时完成”,后两个条件综合为“乙队60小时完成”.解:1÷[+]÷6=4(天)答:4天可以完成.16.答案:6小时;试题分析:试题分析:由“搬完货物甲用10小时,乙用12小时,丙用15小时”可知,甲乙丙的工作效率分别是、、,由于每个人的工作效率不变,而第二天的工作可以认为是三人合作完成用了16小时,根据工作总量=工作效率×工作时间,可以求出第二天A、B两个仓库的工作总量为(+ +)×16=4,又因为两个仓库的工作量相同,因此每个仓库的工作总量都是4÷2=2,要求丙在A仓库工作的时间,只要用丙在A仓库完成的工作量除以丙的工作效率即可,而丙在A仓库完成的工作量等于A仓库的工作总量减去甲在A仓库16小时完成的工作量,即列式为(2-×16)÷,求解即可。