当前位置:文档之家› 腔体滤波器中的耦合结构

腔体滤波器中的耦合结构

腔体滤波器中的耦合结构
腔体滤波器中的耦合结构

实验二 源-负载耦合的交叉耦合滤波器设计与仿真

实验二源-负载耦合的交叉耦合滤波器设计与仿真 一、实验目的 1.设计一个源-负载耦合的交叉耦合滤波器 2.查看并分析该源-负载耦合的交叉耦合滤波器的S 参数 二、实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、实验原理 交叉耦合滤波器在非相邻谐振腔之间引入了交叉耦合,以得到有限频率传输零点,从而提高了滤波器的选择特性。一般来讲,一个N 腔交叉耦合滤波器最多能实现N-2个传输零点。对于给定的一种含有N 个谐振器的滤波器,如果在源与负载之间也引入耦合,则可实现N 个传输零点。源-负载耦合的交叉耦合滤波器等效电路模型如图所示。 e R 2 在上图所示的等效电路模型中,ij M 表示各个谐振腔之间的耦合系数,Si M 、L i M 分别表示源、负载与第i 个腔之间的耦合系数。SL M 则表示源与负载之间的耦合系数。整个电路由N 个谐振腔构成,各个谐振腔之间是电感耦合。对于窄带滤波器,做如下规一化: 110=?=ωω, 这里0ω为中心频率,ω?为相对带宽。 回路矩阵方程为: R)I M (sU I Z E 0++=?=j 其中,0U 是将(N+2)×(N+2)阶单位矩阵中第一个元素和最后一个元素令为0,其它元素都保持不变所得的矩阵。M 是耦合矩阵,是一个(N+2)×(N+2)阶方阵,其中对角线上的元素代表每一个谐振腔的自耦合,它表示每一个谐振腔的谐振频率i f 与滤波器的中心频率 o f 之间的偏差。(在同步调谐滤波器中,我们认为每个谐振腔的自耦合系数的值都取零)。 矩阵中非对角线上的元素表示各个谐振腔之间的耦合系数。 R 矩阵是(N+2)×(N+2)阶方阵,除21)2,2(,)1,1(R N N R =++=R R 非零以外,其它

交叉耦合带通滤波器

交叉耦合带通滤波器集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

大学 课程设计任务书 注:1.课程设计完成后,学生提交的归档文件应按照:封面—任务书—说明书—图纸的顺序进行装订上交(大张图纸不必装订) 2.可根据实际内容需要续表,但应保持原格式不变。

指导教师签名:日期:

9 0 2 3 4 5 5 7

前言 微波滤波器是微波系统中重要元件之一,它用来分离或者组合各种不同频率信号的重要元件。在微波中继通信、卫信通信、雷达技术、电子对抗及微波测量中,具有广泛的应用。? 众所周知,滤波器的设计在低频电路中是用集总参数元件(电感L 和电容C)构成的谐振回路来实现。但当频率高达300Mhz以上时,低频下的集总参数的LC谐振回路已不再适用了。这一方面由于当回路的线性尺寸和电磁波的波长可以比拟时,辐射相当显着,谐振回路的品质因数大大下降,因而必须采用分布参数的微波滤波器。?任何一个微波系统都是由各种各样的微波器件、有源电路和传输线等组成的。微波元件种类很多。按传输线类型可分为波导式、同轴式和微带式等;按功能可分为连接元件、终端元件、匹配元件、衰减元件、相移元件、分路元件、波型变换元件、滤波元件等;按变换性质可分为互易元件、非互易元件和非线性元件等。 本文正是根据微波滤波器的特性设计一种微带交叉耦合带通滤波器,要求其小型化、频段规则性高、边缘陡峭,可用于小型化天线系统。 摘要: 交叉耦合滤波器具有高选择性、低插入损耗、宽阻带、高的带外截止特性等,已被广泛应用于现代微波通信系统中,本文拟采用高品质谐振腔交叉耦合的形式实现该带通滤波器,结构简单紧凑,通带陡度较

腔体滤波器的设计

腔体滤波器的设计中耦合窗口的计算 马军昌魏文珍 (西安富士达科技股份有限公司,西安710077) Designing Of Cavum Filter(二) Ma junchang Wei wenzhen (XI,AN FORSTAR S&T CO.,LTD,XI,AN710077) 摘要:根据螺旋滤波器耦合窗口,通过螺旋线与谐振杆转换,得出腔体耦合窗口的计算,与实例有很好的吻合。 关键词:同轴腔体滤波器耦合窗口,面积等效 Abstract: according to the spiral bandpass coupling window, through spirals and resonant stem conversion, draw recessed coupled with examples of calculation, window has very good agreement. Keywords: coaxial recessed filter coupling window, an area of equivalent 1 引言 腔体滤波器谐振腔之间的耦合窗口问题比较复杂,用数学分析的方法来解决比较困难,尤其耦合窗口的高度与耦合系数之间的关系,目前还没有准确的数学分析和计算。现在可以借鉴的技术只有螺旋谐振器的耦合系数与窗口高度之间一个关系曲线。如果将其通过等效转换,将螺旋线等效为腔体滤波器的谐振杆,那么问题将会得到解决。为了更好的说明这个问题,在推导完成之后,再通过一个例题去验证它。 2 同轴腔体之间的耦合 2.1 耦合窗口高度和耦合系数之间的关系 螺旋滤波器的窗口h的定义图(右) 通过实验的方法得到如下的关系曲线:

基于ADS的平行耦合微带线带通滤波器的设计

基于ADS的平行耦合微带线带通滤波器的设计 摘要:本文介绍了平行耦合微带线带通滤波器的电路结构,阐述了设计带通滤波器的方法,最后给出了相对带宽为10%的滤波器设计的实例及仿真分析结果,证明了该方法的可行性和便捷性。 关键词: ADS; 微带线;带通滤波器;优化 0 引言 微带滤波器具有小型化、高性能、低成本等优点,在射频电路系统设计中得到广泛的应用。其主要技术指标包括传输特性的插入损耗及回波损耗,通带内的相移与群时延,寄生通带等参数。传统的设计方法是通过经验公式和查表来求得相关参数,方法繁琐且精度不高。近年来,随着射频CAD软件的不断发展,微带滤波器的设计也进入了一个全新的阶段。借助CAD软件可以避开复杂的理论计算,进一步精确和调整设计参数,确保设计出的滤波器特性符合技术要求。本文通过ADS软件对平行耦合微带线带通滤波器进行优化仿真设计,证明了该方法的可行性和便捷性。 1微带带通滤波器的理论设计方法 1.1 微带带通滤波器主要指标和基本设计思想 微带滤波器的主要技术指标包括以下几个: (1) 通带边界频率与通带内衰减、起伏, 以及阻带边界频率与阻带衰减; (2) 通带的输入电压驻波比; (3) 通带内的相移与群时延; (4) 寄生通带, 它是由于分布参数传输线的周期性频率特性引起的, 即离设计通带一定处又产生了通带。 微波带通滤波器应用广泛, 结构多样, 但以微带线实现带通滤波器的结构种类有限, 为此,本文以平行耦合微带线为例来设计微带带通滤波器。由于单个带通滤波器单元不能提供良好的滤波响应及陡峭的通带- 阻带过渡, 而通过级连基本的带通滤波器单元则可以得到高性能的滤波效果。图1所示是一种多节耦合微带线带通滤波器的结构示意图, 这种结构不要求对地连接, 因而结构简单, 易于实现, 这是一种应用广泛的滤波器。整个电路可以印制在很薄(小于1mm) 的介质基片上; 其纵向尺寸虽和工作波长可以比拟, 但采用高介电常数的介质基片则可使线上的波长比自由空间缩小几倍; 此外, 整个微带电路元件共用一个接地板, 且只需由导体带条构成电路图形, 因而结构大为紧凑, 大大减小了其体积和重量。多节耦合微带线带通滤波器的结构示意图 图1 多节耦合微带线带通滤波器的结构示意图

实验一交叉耦合滤波器设计与仿真

实验一交叉耦合滤波器设计与仿真 、实验目的 1?设计一个交叉耦合滤波器 2?查看并分析该交叉耦合滤波器的S参数 、实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、实验原理 具有带外有限传输零点的滤波器,常常采用谐振腔多耦合的形式实现。这种形式的特点 是在谐振腔级联的基础上,非相邻腔之间可以相互耦合即“交叉耦合”,甚至可以采用源与 负载也向多腔耦合,以及源与负载之间的耦合。交叉耦合带通滤波器的等效电路如下图所示。在等效电路模型中,el表示激励电压源,R1、R2分别为电源内阻和负载电阻,ik(k=1,2,3,, ,N) 表示各谐振腔的回路电流,Mj表示第i个谐振腔与第k个谐振腔之间的互耦合系数 (i,j=1,2, , ,N,且片j)。在这里取3 0=1,即各谐振回路的电感L和电容C均取单位值。Mkk (k=1,2,3,, ,N )表示各谐振腔的自耦合系数。 n腔交叉耦合带通滤波器等效电路如下图所示: l i 1H 丄F J 1F L丨「IVI N4r 1F y1 ---- 广、'、、L f A 1 1M1k t 1M kN *'i M2N人 M 1,N _ej■'s jM 12jM 13 0jM12s jM23 0=jM13a jM23s9 0jM1,N 一jM2,N U jM3,N — ■0 一1 1jM 1 N jM 2 N jM 3N jM 1, N J jM 1 N jM 2,N -1 jM 2 N jM 3,N -4jM 3n jM N —, N i N -1 jM N -1, N s R2 JL|N M R i e i k,N 1 1/2H 'N1/2H 1H 1/2H i21/2H ■■-R2 这个电路的回路方程可以写为 〕「h 1 I i2 i3

实验一 交叉耦合滤波器设计与仿真(材料详实)

实验一 交叉耦合滤波器设计与仿真 一、 实验目的 1.设计一个交叉耦合滤波器 2.查看并分析该交叉耦合滤波器的S 参数 二、 实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、 实验原理 具有带外有限传输零点的滤波器,常常采用谐振腔多耦合的形式实现。这种形式的特点是在谐振腔级联的基础上,非相邻腔之间可以相互耦合即“交叉耦合”,甚至可以采用源与负载也向多腔耦合,以及源与负载之间的耦合。交叉耦合带通滤波器的等效电路如下图所示。在等效电路模型中,e1表示激励电压源,R1、R2分别为电源内阻和负载电阻,ik (k=1,2,3,…,N )表示各谐振腔的回路电流,Mij 表示第i 个谐振腔与第k 个谐振腔之间的互耦合系数(i,j=1,2,…,N ,且i ≠j)。在这里取ω0=1,即各谐振回路的电感L 和电容C 均取单位值。Mkk (k=1,2,3,…,N )表示各谐振腔的自耦合系数。 n 腔交叉耦合带通滤波器等效电路如下图所示: ...1F 1/2H 1/2H 1/2H 1/2H 1/2H 1/2H 1H 1F 1F 1F ...i 1 i 2 i k i N i N M N ,1M k 1M kN M N 1 ,2-M 12 M k 2M N k 1 ,-M N N ,1-e 1 R 1 R 2 1F 1H 这个电路的回路方程可以写为 ?? ? ??? ? ?? ? ???????????????????????? ? ?? ???++=????????????????????---------N N N N N N N N N N N N n N N N N N i i i i i R s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s R e 13212,1321,11,31,21,131 ,3231321,22312 11,11312110000M Λ ΛM M ΛM M M ΛΛΛM 或者写成矩阵方程的形式:I R M sU ZI E )(0++==j

微波腔体滤波器的快速设计及仿真

第22卷第4期2006年8月 微波学报 JOURNAL0FMICROWAVES V01.22No.4 Aug.2006 文章编号:1005-6122(2006)04JD053舭 微波腔体滤波器的快速设计及仿真+ 邓贤进1’2李家胤2张健1 (】.中国工程物理研究院电子工程研究所,绵阳621900;2.电子科技大学,成都610Q54) 摘要:经典的微波腔体滤波器设计往往需要大量的复杂公式计算和繁琐的曲线查找。快速设计方法正是为了避免这样的过程。以梳状线带通滤波器为例,通过计算几个典型的归一化杆径和归一化间距,绘制出分别以相对带宽为横坐标,归一化杆径和归一化间距为纵坐标的快速简便的设计曲线。用ANsOFr.HFss仿真软件对用该方法设计出的微波带通滤波器进行结构仿真,最后得到满意的结构设计尺寸,实验测试结果达到了技术指标要求,验证了该方法的正确性。 关键词:微波腔体滤波器,相对带宽,结构仿真 FastDesignandSimlllationforMicrowaVeCaVityFilter DENGXian.jinl”,UJja-yin91,ZHANGJj柚2 (1.风f.旷Eze以rDn如魄i聊e^ng,cAEP,批,咿昭621900,mi加; 2.咖如e倦渺旷Ek£rD疵&如nce口,ld‰lIl加研旷吼iM,ck,lgdu610054,吼i№) Abstract:ThedesignofCl聃sicalmicIDwavecavityfilterrequireslargenumbersofcomplicatedfonnulaeandnumer.ouscun,es.A fastandsimpledesignmetllodcanavoidtlleseprocess.TakingpectinatebaIIdp嬲sfilterforexample,bycalcu—latingsometypical no珊alizeddiametersandspacesbetweenofpoles,af缸tandsimpledesigncurvesisobtainedinwhich,X—c00rdinateisforrel砒ive诵deb蚰d,Y—coordinateisforn0咖alizeddiameterandspacebetweenofp01erespectively.BymeansofANSOFT—HFSS80ftware,stmcturesimulationfortllismicrow“ebandpassfilterdesignedbythiswayscanbea—chieved.Finally,Asatisfactory stmcturesizeisobtained,whichmeetsthespeci6cationsandthevalidityi8provedbyexperi—mentalresult. Keywords:Micmwavecavity矗lter,Relativebandwidth,Stmcturesimulation 引言 由于现代微波滤波器的结构设计涉及到大量的公式计算和图表,要准确设计出所需的滤波器,需要大量的计算和曲线查找,特别是在设计圆杆型的滤波器时,需要一级一级地推算出滤波器的尺寸,工作量很大。同时,在设计过程中,杆的电特性是用各杆对地的单位长自电容c。和相邻两杆的单位长互电容c鼬+,来表现的,忽略了相邻以外的边缘电容的影响,这样表示并不很准确…。此外,在查曲线时也存在较大的误差。所以,从滤波器的设计过程来看,不可能做到完全准确,都有一定的近似。但这些不会影响滤波器的设计,因为我们可以在调试时通 +收稿日期:2005国7—13;定稿日期:2005一11_01 基金项目:“十五”国防预研课题(4210109-3)过改变可调螺钉的位置来弥补这些近似。这正是快速设计方法的依据。从经典的滤波器计算公式和图表曲线可以看出,滤波器的级数n和相对带宽是影响滤波器各种尺寸大小的重要因素,随着相对带宽的增大,带通滤波器的归一化杆径和归一化间距减小。滤波器设计好后,可以通过改变集总电容的大小和调整调谐螺钉的位置来改变滤波器的中心频率。所以滤波器可以在较宽的频率范围滑动,这样就可以把滤波器的频率调整到所需要的中心频率上。正因为如此,为了避免繁琐的计算和复杂的设计步骤,可以以滤波器的相对带宽为横坐标,归一化杆径和归一化间距为纵坐标绘制出快速简便的微波带通滤波器的设计曲线。从该曲线可以方便快速地

平行耦合微带带通滤波器设计知识讲解

平行耦合微带带通滤 波器设计

研究生课程论文(2015-2016学年第一学期) 射频电路分析与设计 研究生:

说明 1、课程论文要有题目、作者姓名、摘要、关键词、正文及参考文献。论文题目由研究生结合课程所学内容选定;摘要500字以下,博士生课程论文要求有英文摘要;关键词3~5个;参考文献不少于10篇,并应有一定的外文文献。 2、论文要求自己动手撰写,如发现论文是从网上下载的,或者是抄袭剽窃别人文章的,按作弊处理,本门课程考核成绩计0分。 3、课程论文用A4纸双面打印。字体全部用宋体简体,题目要求用小二号字加粗,标题行要求用小四号字加粗,正文内容要求用小四号字;经学院同意,课程论文可以用英文撰写,字体全部用Times New Roman,题目要求用18号字加粗;标题行要求用14号字加粗,正文内容要求用12号字;行距为2倍行距(方便教师批注);页边距左为3cm、右为2cm、上为2.5cm、下为2.5cm;其它格式请参照学位论文要求。 4、学位类别按博士、硕士、工程硕士、MBA、MPA等填写。 5、篇幅、内容等由任课教师提出具体要求。

基于ADS设计平行耦合微带线带通滤波器 摘要:介绍了平行耦合微带线带通滤波器设计的基本原理,使用安捷伦公司的ADS电磁仿真软件具体设计了一个通带范围为 4.8GHz至 5.2GHz的一个带通滤波器。该带通滤波器的通带内的插入损耗低于3dB,相对相速度是真空中电磁波传播速度的60%,2倍的归一化频率处的衰减低于50dB,输入输出阻抗均设置成了50 ,设计达到了给定的指标要求。 关键词:ADS 带通滤波器平行耦合微带线 一、平行耦合微带线带通滤波器的基本原理:

实验一 交叉耦合滤波器设计与仿真

实验一交叉耦合滤波器设计与仿真 一、实验目的 1.设计一个交叉耦合滤波器 2.查看并分析该交叉耦合滤波器的S 参数 二、实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、实验原理 具有带外有限传输零点的滤波器,常常采用谐振腔多耦合的形式实现。这种形式的特点是在谐振腔级联的基础上,非相邻腔之间可以相互耦合即“交叉耦合”,甚至可以采用源与负载也向多腔耦合,以及源与负载之间的耦合。交叉耦合带通滤波器的等效电路如下图所示。在等效电路模型中,e1表示激励电压源,R1、R2分别为电源内阻和负载电阻,ik (k=1,2,3,…,N )表示各谐振腔的回路电流,Mij 表示第i 个谐振腔与第k 个谐振腔之间的互耦合系数(i,j=1,2,…,N ,且i ≠j)。在这里取ω0=1,即各谐振回路的电感L 和电容C 均取单位值。Mkk (k=1,2,3,…,N )表示各谐振腔的自耦合系数。 n 腔交叉耦合带通滤波器等效电路如下图所示: e R 2 这个电路的回路方程可以写为 ?? ? ??? ? ??? ????????? ??????????????? ? ?? ???++=????????????????????---------N N N N N N N N N N N N n N N N N N i i i i i R s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s R e 13212,1321,11,31,21,131 ,323 1321,22312 11,11312110000 或者写成矩阵方程的形式:I R M sU ZI E )(0++==j

平行耦合线滤波器的设计

平行耦合线滤波器的设计 摘要:通过ADS软件设计平行耦合线带通滤波器,并通过ADS优化控件优化滤波器电路参数,最后生成版图,并进行二维平面电磁场仿真,即Momentum 仿真。 关键词:滤波器S参数原理图设计优化设计Momentum仿真 一、引言 滤波器是模拟电路中最基本也是最常用的基本器件,在频率较低的模拟电路中,滤波器常用电感、电容等集总参数元件构成,在频率较高的电路中,滤波器则由一些不同长度和宽度的微带线组成,简称微带滤波器。耦合微带线滤波器是最常用的微带滤波器,它由平行的耦合线节相连组成,构成谐振电路。每一个耦合线节是左右对称的,长度约为四分之一波长(对中心频率而言)。本文研究的耦合微带线滤波器为带通滤波器,通带3.0-3.1GHz,带内衰减小于2dB,2.8GHz 以下及3.3GHz以上衰减大于40dB,端口反射系数小于-20dB。 二、设计分析 在进行设计时,主要是以滤波器的S参数作为优化目标进行优化仿真。S21(S12)是传输参数,滤波器通带、阻带的位置以及衰减、起伏全都表现在S21(S12)随频率变化曲线的形状上。S11(S22)参数是输入、输出端口的反射系数,由它可以换算出输入、输出端的电压驻波比。如果反射系数过大,就会导致反射损耗增大,并且影响系统的前后级匹配,使系统性能下降。 三、原理图设计 将滤波器节数定为5节,由于平行耦合线滤波器的结构是对称的,所以五个耦合线节中,第1、5及2、4节微带线长L、宽W和缝隙S的尺寸是相同的。耦合线的这些参数是滤波器设计和优化的主要参数,因此要用变量代替,便于后面修改和优化。滤波器两边的引出线是特性阻抗为50欧姆的微带线,它的宽度W可由微带线计算工具得到。最后分别设置滤波器的尺寸参数和电气参数,得到的滤波器原理图。 四、优化设计 当采用初始设定的参数时,滤波器的性能指标距设计要求相差很远,因此需要对滤波器的各个参数进行优化。 这里总共设置了四个优化目标,前三个的优化参数都是S21,用来设定滤波器的通带和阻带的频率范围及衰减情况(通带衰减小于2dB,阻带衰减大于40dB),最后一个的优化参数是S11,用来设定通带内的反射系数(反射系数小于-20dB)。由于原理图仿真和实际情况会有一定的偏差,在设定优化参数时,可以适当增加通带宽度。对于其它的参数,也可以根据优化的结果进行一定的调整。设定好优化目标后,ADS会自动对电路进行优化,几次优化后的原理图仿真结果如下: 五、版图仿真 微带滤波器的实际电路是由微带线和电路板构成,实际电路的性能可能会与原理图仿真的结果有很大区别,因此在原理图仿真的基础上还要进行版图仿真。版图的仿真是采用矩量法直接对电磁场进行计算,其结果比在原理图中仿真要准确。 首先要由原理图生成版图,生成版图前先要把原理图中用于S参数仿真的两

交叉耦合带通滤波器

大学 课程设计任务书 序进行装订上交(大张图纸不必装订) 2.可根据实际内容需要续表,但应保持原格式不变。 指导教师签名:日期:

前言 (1) 一、背景知识 (2) 1、滤波器的发展 (2) 2、微波滤波器的应用 (2) 3、交叉耦合滤波器提出与发展 (3) 二、交叉耦合带通滤波器设计原理 (4) 1、交叉耦合滤波器的设计思路 (4) 2、新型耦合开环结构 (5) 3、交叉耦合滤波器的设计 (6) 三、仿真步骤 (9) 1、建立新工程 (9) 2、设置求解类型 (9) 3. 设置模型单位 (10) 4、建立滤波器模型 (10) 5、创建端口 (19) 6、创建Air (20) 7、设置边界条件 (20) 8、为该问题设置求解频率及扫频范围 (22) 9、优化仿真 (23) 10、保存工程 (24) 11、后处理操作 (25) 四、设计总结 (25) 参考文献 (27)

前言 微波滤波器是微波系统中重要元件之一,它用来分离或者组合各种不同频率信号的重要元件。在微波中继通信、卫信通信、雷达技术、电子对抗及微波测量中,具有广泛的应用。? 众所周知,滤波器的设计在低频电路中是用集总参数元件(电感L和电容C)构成的谐振回路来实现。但当频率高达300Mhz以上时,低频下的集总参数的LC谐振回路已不再适用了。这一方面由于当回路的线性尺寸和电磁波的波长可以比拟时,辐射相当显着,谐振回路的品质因数大大下降,因而必须采用分布参数的微波滤波器。?任何一个微波系统都是由各种各样的微波器件、有源电路和传输线等组成的。微波元件种类很多。按传输线类型可分为波导式、同轴式和微带式等;按功能可分为连接元件、终端元件、匹配元件、衰减元件、相移元件、分路元件、波型变换元件、滤波元件等;按变换性质可分为互易元件、非互易元件和非线性元件等。 本文正是根据微波滤波器的特性设计一种微带交叉耦合带通滤波器,要求其小型化、频段规则性高、边缘陡峭,可用于小型化天线系统。 摘要: 交叉耦合滤波器具有高选择性、低插入损耗、宽阻带、高的带外截止特性等,已被广泛应用于现代微波通信系统中,本文拟采用高品质谐振腔交叉耦合的形式实现该带通滤波器,结构简单紧凑,通带陡度较高,适合小型化设计,性能较高的天线或雷达双工器等电路使用。 关键词: 交叉耦合滤波器、微带线、设计、HFSS 一、背景知识 1、滤波器的发展 凡是有能力进行信号处理的装置都可以称为滤波器。在近代电信设备和各

平行耦合微带线带通滤波器调试经验

1.通过分析平行耦合微带线带通滤波器的电路结构, 提出了一种消除 滤波器带宽偏离指定设计带宽和在截止频率附近缓和通带内电压驻波比波动过大的方法. 疑问:1.什么是电压驻波比?为什么会导致电压驻波比波动过大?有什么危害?解决的办法? 2.带通滤波器的基本单元:是由2 条相距很近的微带线构成的平衡耦合节, 在这2 条微带线之间会产生电磁耦合现象, 微带线的奇模、偶模通过公共接地板产生的耦合效应产生了奇模特性阻抗( Zoo) 和偶模特性阻抗( Zoe) . 当微带线长度为滤波器中心频率对应波长的1 / 4 时, 微带线就具备了带通滤波器特性, 即可构成一个平衡耦合节. 由于采用 单个带通滤波器单元不能获得良好的滤波器响应和陡峭的通带到阻带 的过渡,因此常将n + 1 个平衡耦合节级连以构成平行耦合微带线带通滤波器。平衡耦合节的两端有短路、开路2种结构 疑问:为什么微带线长度为滤波器中心频率对应波长的四分之一,微带线就具备了带通滤波器的特性? 3.带通滤波器的设计步骤: 1、制定滤波器的技术要求 2、根据技术要求, 选定设计方法和选择合适的标准低通滤波器参 gk(k = 0, 1, ?, n, n + 1) 3、确定归一化带宽、上边频和下边频, 按公式计算奇模、偶模的特征 阻抗值, 从而确定微带线的间隔、宽度、长度 4、应用EDA 工具对初步设计进行仿真、优化, 然后进行误差分析或 谐范围分析以进一步提高设计质量 5、制作样品. 疑问:史密斯圆怎么看?如何计算滤波器的技术参数:截止频率,带内衰减,带外衰减,微带线尺寸如何选择和计算。什么是带内波纹,如何计算,对滤波器有和影响? 采用ADS软件优化过后,采用手工调节曲线时发现改变某些参数时曲线将规律的变化。具体经验如下: 1.当增大s1的值时,S11曲线上移,减小时,S11曲线下移,若曲 线中通带内波纹过大,也可以通过调节S1来使得曲线变得光滑,减小带内纹波,当s1减小时还可以使得S11和S21曲线之间的 距离增大。

《腔体滤波器设计具体步骤》

Advanced Coupling Matrix Synthesis Techniques for Microwave Filters Richard J.Cameron ,Fellow,IEEE Abstract—A general method is presented for the synthesis of the folded-configuration coupling matrix for Chebyshev or other filtering functions of the most general kind,including the fully canonical case, i.e., +2”transversal network coupling matrix,which is able to accommodate multiple input/output couplings,as well as the direct source–load coupling needed for the fully canonical cases.Firstly,the direct method for building up the coupling matrix for the transversal network is described.A simple nonoptimization process is then outlined for the conversion of the transversal matrix to the equivalent “ ”coupling matrix,ready for the realization of a microwave filter with resonators arranged as a folded cross-coupled array.It was mentioned in [1]that,although the polynomial synthesis procedure was capable of generating finite-position zeros could be realized by the coupling matrix.This excluded some useful filtering characteristics,including those that require multiple input/output couplings,which have been finding applications recently [3]. In this paper,a method is presented for the synthesis of the fully-canonical or “coupling matrix. The .(b)Equivalent circuit of the k th “low-pass resonator”in the transversal array. The matrix has the following advantages,as compared with the conventional coupling matrix.?Multiple input/output couplings may be accommodated, i.e.,couplings may be made directly from the source and/or to the load to internal resonators,in addition to the main input/output couplings to the first and last resonator in the filter circuit.?Fully canonical filtering functions (i.e.,coupling matrix, not requiring the Gram–Schmidt orthonormalization stage.The 0018-9480/03$17.00?2003IEEE

平行耦合微带带通滤波器设计

研 究 生 课 程 论 文 (2015-2016学年第一学期) 射频电路分析与设计 研究生:

说明 1、课程论文要有题目、作者姓名、摘要、关键词、正文及参考文献。论文题目由研究生结合课程所学内容选定;摘要500字以下,博士生课程论文要求有英文摘要;关键词3~5个;参考文献不少于10篇,并应有一定的外文文献。 2、论文要求自己动手撰写,如发现论文是从网上下载的,或者是抄袭剽窃别人文章的,按作弊处理,本门课程考核成绩计0分。 3、课程论文用A4纸双面打印。字体全部用宋体简体,题目要求用小二号字加粗,标题行要求用小四号字加粗,正文内容要求用小四号字;经学院同意,课程论文可以用英文撰写,字体全部用Times New Roman,题目要求用18号字加粗;标题行要求用14号字加粗,正文内容要求用12号字;行距为2倍行距(方便教师批注);页边距左为3cm、右为2cm、上为 2.5cm、下为2.5cm;其它格式请参照学位论文要求。 4、学位类别按博士、硕士、工程硕士、MBA、MPA等填写。 5、篇幅、内容等由任课教师提出具体要求。

基于ADS设计平行耦合微带线带通滤波器 摘要:介绍了平行耦合微带线带通滤波器设计的基本原理,使用安捷伦公司的ADS电磁仿真软件具体设计了一个通带范围为4.8GHz至5.2GHz的一个带通滤波器。该带通滤波器的通带内的插入损耗低于3dB,相对相速度是真空中电磁波传播速度的60%,2倍的归一化频率处的衰减低于50dB,输入输出阻抗均设置成了50 ,设计达到了给定的指标要求。 关键词:ADS 带通滤波器平行耦合微带线 一、平行耦合微带线带通滤波器的基本原理:

交叉耦合带通滤波器

大学 课程设计任务书 注:1.课程设计完成后,学生提交的归档文件应按照:封面—任务书—说明书—图纸的顺序进行装订上交(大张图纸不必装订) 2.可根据实际内容需要续表,但应保持原格式不变。 指导教师签名:日期:

前言 (1) 一、背景知识 (2) 1、滤波器的发展 (2) 2、微波滤波器的应用 (2) 3、交叉耦合滤波器提出与发展 (3) 二、交叉耦合带通滤波器设计原理 (4) 1、交叉耦合滤波器的设计思路 (4) 2、新型耦合开环结构 (5) 3、交叉耦合滤波器的设计 (6) 三、仿真步骤 (9) 1、建立新工程 (9) 2、设置求解类型 (9) 3. 设置模型单位 (10) 4、建立滤波器模型 (10) 5、创建端口 (19) 6、创建Air (20) 7、设置边界条件 (20) 8、为该问题设置求解频率及扫频范围 (22) 9、优化仿真 (23) 10、保存工程 (24) 11、后处理操作 (25) 四、设计总结 (25) 参考文献 (27)

前言 微波滤波器是微波系统中重要元件之一,它用来分离或者组合各种不同频率信号的重要元件。在微波中继通信、卫信通信、雷达技术、电子对抗及微波测量中,具有广泛的应用。 众所周知,滤波器的设计在低频电路中是用集总参数元件(电感L和电容C)构成的谐振回路来实现。但当频率高达300Mhz以上时,低频下的集总参数的LC谐振回路已不再适用了。这一方面由于当回路的线性尺寸和电磁波的波长可以比拟时,辐射相当显著,谐振回路的品质因数大大下降,因而必须采用分布参数的微波滤波器。任何一个微波系统都是由各种各样的微波器件、有源电路和传输线等组成的。微波元件种类很多。按传输线类型可分为波导式、同轴式和微带式等;按功能可分为连接元件、终端元件、匹配元件、衰减元件、相移元件、分路元件、波型变换元件、滤波元件等;按变换性质可分为互易元件、非互易元件和非线性元件等。 本文正是根据微波滤波器的特性设计一种微带交叉耦合带通滤波器,要求其小型化、频段规则性高、边缘陡峭,可用于小型化天线系统。 摘要: 交叉耦合滤波器具有高选择性、低插入损耗、宽阻带、高的带外截止特性等,已被广泛应用于现代微波通信系统中,本文拟采用高品质谐振腔交叉耦合的形式实现该带通滤波器,结构简单紧凑,通带陡度较高,适合小型化设计,性能较高的天线或雷达双工器等电路使用。 关键词: 交叉耦合滤波器、微带线、设计、HFSS

ADS仿真平行耦合微带线带通滤波器

ADS仿真平行耦合微带线带通滤波器 滤波器是用来分离不同频率信号的一种器件。它的主要作用是抑制不需要的信号,使其不能通过滤波器,只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。平行耦合微带线带通滤波器在微波集成电路中是被广为应用的带通滤波器。1 基本原理当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。每条微带线的特性阻抗为Z 0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。如果将多个单元级联,级联后的网络可以具有良好的滤波特性。图1 5级耦合微带线带通滤波器2 设计步骤2. 1 设计低通原型根据带通滤波器的一系列参数通过频率变换和查表选择低通原型滤波器的归一化原型参量。用ω1 和ω2 表示带通滤波器的下边界和上边界,ω0表示中心频率。将带通滤波器变换为低通原型。归一化带宽:查表得到归一化设计参数g1, g2. . . gN gN + 1。2. 2 计算各节偶模和奇模的特性阻抗设计用g1, g2. . . gN gN + 1和BW 确定带通滤波器电路中的设计参数耦合传输线的奇模和偶模的特性阻抗:2. 3 计算微带线的几何尺寸根据微带线的偶模和奇模阻抗,按照给定的微带线路板的参数,使用ADS 中的微带线计算器L ineC alc计算得到微带线的几何尺寸W, S, L。2. 4 仿真及优化连接好电路,将计算出的W, S, L 输入,扫描参数为S11, S21,进行仿真。一般来说用理论值的得到仿真结果和实际想要得到结果有出入,这就需要进行优化。我们可以用ADS中的Opt im 工具来进行多次的优化直到达到预定的设计要求。3 设计实例设计指标: 中心频率f 0 为2. 6 GHz,带宽200MH z,在f = 2. 8 GH z及2. 4 GHz上衰减不小于40 dB,通带内纹波3 dB,输入输出特性阻抗均为50 。微带电路板的参数如下: 厚度H = 0. 4mm,介质相对介电常数为E r = 3. 66,相对磁导率为Mur= 1,金属层厚度T = 0. 03mm,损耗正切角TanD = 0。根据设计的指标及式( 1) 我们选用n = 5 的3 dB纹波切比雪夫低通原型。查表求得低通滤波器原型的原件取值为:g0 = g6 = 1, g1 = g5 = 3. 481 7, g2 = g4 = 0. 761 8,g3 = 4. 538 1由式( 3)得:计算平行耦合线的W, S, L,由ADS中的L ineC alc得到。表1 各节耦合微带线的尺寸单位: mm 图2 ADS L inecalc模块。将上述的结构尺寸输入ADS中并设置微带电路板的参数和S参数的频率扫描范围进行原理图仿真。以下图3是理论计算值的仿真原理图,图4是仿真结果。图3 微带线带通滤波器设计原理图。图4 传输、反射系数仿真曲线图。经过分析仿真结果出现了中心频率点偏移的,并且通带内的反射系数较大,在2. 4 GH z上衰减没有达到要求,因此需要对其进行优化。优化时要注意: 耦合线的W, S, L 不要设为具体的值,而是要有各个变量来代替,因为这些参数就是优化的目标。变量的设置要需要借助变量控件VAR来完成,在VAR中要设置合理的数据范围。优化还需要Optim 控件和目标控件Goa,l 将Opt im 控件中的M axlters的值该为100,增加优化次数。根据我们的设计要求设置四个Goal控件。依次分别为: 优化通带内的S ( 2, 1)、优化通带内的S ( 1, 1) (优化通带内的反射系数)、优化低端阻带内的S ( 2, 1) (设定2. 4 GH z以下达到40 dB衰减)和优化高端阻带内的S ( 2, 1) (设定2. 8 GH z以上衰减达到40 dB)。如果一次优化不能满足设计指标的要求,则需要再改变变量的取值范围,进行重新优化,直到满足要求为止。图5为优化原理图,图6是优化后生成的仿真结果。由图6 中可以看到f = 2. 6 GHz时, S ( 2,1) =- 0. 113 dB, f= 2. 8 GH z和f = 2. 4 GH z时衰减都大于40 dB,反射系数也比较

交叉耦合吸收滤波器的设计

交叉耦合吸收滤波器的设计 微波滤波器一般将电磁(EM)波从负载反射回信号源。但在有些情况下,例如要将反射波从输入中分离出来,以便保护信号源免受过高的功率。基于这个原因,已经开发出吸收滤波器以尽量减少反射。 图1表示了吸收滤波器的基本结构。这种类型的滤波器非常有用,其不仅是一个吸收滤波器,还是功率合成器或双工器。当仅有一个信号输入(端口1)时,端口2是吸收端口,而端口3是隔离端口。端口4是输出端口。当不同的输入信号作用于端口1和端口3时,该结构也可以作为一个信号合成器。最近,在微波和毫米波系统的波导应用中已经提出了基片集成波导(SIW)技术2,3。SIW由基片上的各种金属阵列组成。采用标准印制电路板(PCB)或低温共烧陶瓷(LTCC)基片来制造SIW器件。SIW技术具有一定的优势,例如高品质因数(Q)、低插入损耗、减小了体积、降低了成本,并易于与平面电路进行集成。因此,SIW 技术广泛地应用于各种不同的滤波器以及双工器的设计。 在本文中,已经研制成功一种基于SIW技术的新型交叉耦合吸收滤波器。其具有锐选择性和高Q值,并易于与平面电路进行集成。本文中研发的3-dB两步混合耦合器与先前已出版的著作不同。这一3-dB混合耦合器具有良好的功率分配性能。该吸收滤波器采用标准PCB板进行制作,并且将实测数据与仿真结果进行比较后表明二者相差很小。很明显,以空气填充波导管变换的SIW与SIW-微带波导管变换相比可以提高功率并减小插入损耗。 例如,吸收滤波器常常用于将反射EM波从输入信号端口分离出来,从而保护该端口免于信号过载。吸收滤波器的结构(图1)也可用于其他应用。图1中的两个滤波器是一致的。

实验二源-负载耦合的交叉耦合滤波器设计与仿真

实验二源 -负载耦合的交叉耦合滤波器设计与仿真 一、实验目的 1.设计一个源 -负载耦合的交叉耦合滤波器 2.查看并分析该源-负载耦合的交叉耦合滤波器的S 参数 二、实验设备 装有 HFSS 13.0软件的笔记本电脑一台 三、实验原理 交叉耦合滤波器在非相邻谐振腔之间引入了交叉耦合,以得到有限频率传输零点,从而提高了滤波器的选择特性。一般来讲,一个 N 腔交叉耦合滤波器最多能实现 N-2 个传输零点。对于给定的一种含有 N 个谐振器的滤波器,如果在源与负载之间也引入耦合,则可实 现 N 个传输零点。源-负载耦合的交叉耦合滤波器等效电路模型如图所示。 R1M S 1M1k M kN 1F M NL 1F1F e1i s01/2H i 11/2H ...1/2H i k 1/2H ... 1/2H i N1/2H i L R 2 M Sk M kL M 1 N M SL 在上图所示的等效电路模型中,M ij表示各个谐振腔之间的耦合系数,M Si、 M i L分别表示源、负载与第i个腔之间的耦合系数。M SL则表示源与负载之间的耦合系数。整个电 路由 N 个谐振腔构成,各个谐振腔之间是电感耦合。对于窄带滤波器,做如下规一化: 01,1 这里0为中心频率,为相对带宽。 回路矩阵方程为: E Z I (sU0j M R)I 其中, U 0是将(N+2)× (N+2) 阶单位矩阵中第一个元素和最后一个元素令为0,其它元素都保持不变所得的矩阵。M 是耦合矩阵,是一个(N+2) × (N+2) 阶方阵,其中对角线上的元素代表每一个谐振腔的自耦合,它表示每一个谐振腔的谐振频率 f i与滤波器的中心频率 f o之间的偏差。(在同步调谐滤波器中,我们认为每个谐振腔的自耦合系数的值都取零)。 矩阵中非对角线上的元素表示各个谐振腔之间的耦合系数。 R 矩阵是(N+2)×(N+2)阶方阵,除R(1,1)R1, R( N 2, N 2)R2非零以外,其它

相关主题
文本预览
相关文档 最新文档