高中数学必修二第二章 2.1.1课件
- 格式:ppt
- 大小:6.31 MB
- 文档页数:27
第二章随机变量及其分布2.1离散型随机变量及其分布列2.1.1离散型随机变量问题导航(1)随机变量和离散型随机变量的概念是什么?随机变量是如何表示的?(2)随机变量与函数有什么区别与联系?1.随机变量(1)定义:在随机试验中,确定了一个对应关系,使得每一个________试验结果都用一个________确定的数字表示.在这个对应关系下,________数字随着________试验结果的变化而变化.像这种随着________试验结果变化而变化的变量称为随机变量.(2)表示:随机变量常用字母________X,Y,ξ,η,…表示.2.离散型随机变量所有取值可以________一一列出的随机变量,称为离散型随机变量.1.判断(对的打“√”,错的打“×”)(1)离散型随机变量的取值是任意的实数.()(2)随机变量的取值可以是有限个,也可以是无限个.()(3)离散型随机变量是指某一区间内的任意值.()答案:(1)×(2)√(3)×2.下列变量中,不是随机变量的是()A.掷一枚骰子,所得的点数B.一射手射击一次的环数C.某日上证收盘指数D.标准状态下,水在100 ℃时会沸腾答案:D3.抛掷两枚骰子一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为ξ,则“ξ≥5”表示的试验结果是()A.第一枚6点,第二枚2点B.第一枚5点,第二枚1点C.第一枚1点,第二枚6点D.第一枚6点,第二枚1点答案:D4.在8件产品中,有3件次品,5件正品,从中任取一件取到次品就停止,抽取次数为X,则X=3表示的试验是________.答案:共抽取3次,前两次均是正品,第3次是次品1.对随机变量的再认识(1)随机变量是用来表示不同试验结果的量.(2)试验结果和实数之间的对应关系产生了随机变量,随机变量每取一个确定的值对应着试验的不同结果,试验的结果对应着随机变量的值,即随机变量的取值实质上是试验结果所对应的数.2.离散型随机变量的特征(1)可用数值表示.(2)试验之前可以判断其出现的所有值.(3)在试验之前不能确定取何值.(4)试验结果能一一列出.随机变量的概念判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.(1)北京国际机场候机厅中2016年5月1日的旅客数量;(2)2016年1月1日到6月1日期间所查酒驾的人数;(3)2016年6月1日济南到北京的某次动车到北京站的时间;(4)体积为1 000 cm3的球半径长.[解](1)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(2)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(3)动车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.(4)球的体积为1 000 cm3时,球的半径为定值,不是随机变量.解答此类题目的关键在于分析变量是否满足随机试验的结果,随机变量从本质上讲就是以随机试验的每一个可能结果为一个映射,即随机变量的取值实质上是试验结果对应的数,但这些数是预先知道所有可能取的值,而不知道在一次试验中哪一个结果发生,随机变量取哪一个值.1.(1)10件产品中有3件次品,从中任取2件,可作为随机变量的是()A.取到产品的件数B.取到正品的概率C.取到次品的件数D.取到次品的概率解析:选C.对于A中取到产品的件数是一个常量不是变量,B、D也是一个定值,而C 中取到次品的件数可能是0,1,2,是随机变量.(2)指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由.①任意掷一枚质地均匀的硬币5次,出现正面向上的次数;②掷一枚质地均匀的正方体骰子出现的点数(最上面的数字);③某个人的属相随年龄的变化关系.解:①任意掷一枚质地均匀的硬币1次,可能出现正面向上也可能出现反面向上,因此掷5次硬币,出现正面向上的次数可能是0,1,2,3,4,5,而且出现哪一个结果是随机的,因此是随机变量.②掷一枚质地均匀的骰子出现的结果是1点,2点,3点,4点,5点,6点中的一个,而且出现哪一个结果是随机的,因此是随机变量.③属相是人出生时便确定的,不随年龄的变化而变化,不是随机变量.离散型随机变量的判定指出下列随机变量是否是离散型随机变量,并说明理由.(1)湖南矮寨大桥桥面一侧每隔30 m有一路灯,将所有路灯进行编号,其中某一路灯的编号X;(2)在一次数学竞赛中,设一、二、三等奖,小明同学参加竞赛获奖等次X;(3)一天内气温的变化值X.[解](1)桥面上的路灯是可数的,编号X可以一一列出,是离散型随机变量.(2)小明获奖等次X可以一一列出,是离散型随机变量.(3)一天内的气温变化值X,可以在某区间内连续取值,不能一一列出,不是离散型随机变量.判断一个变量是否为离散型随机变量,首先看它是不是随机变量,其次看可能取值是否能一一列出,也就是说变量的取值若是有限的,或者是可以列举出来的,就可以视为离散型随机变量,否则就不是离散型随机变量.2.下面给出四个随机变量:①某高速公路上某收费站在未来1小时内经过的车辆数X是一个随机变量;②一个沿直线y=x进行随机运动的质点,它在该直线上的位置Y是一个随机变量;③某网站未来1小时内的点击量;④一天内的温度η.其中是离散型随机变量的为()A.①②B.③④C.①③D.②④解析:选C.①是,因为1小时内经过该收费站的车辆可一一列出.②不是,质点在直线y=x上运动时的位置无法一一列出.③是,1小时内网站的访问次数可一一列出.④不是,1天内的温度η是该天最低温度和最高温度这一范围内的任意实数,无法一一列出.用随机变量描述随机现象写出下列随机变量的可能取值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有2个白球和5个黑球,从中任取3个,其中所含白球的个数ξ;(2)从标有1,2,3,4,5,6的6张卡片中任取2张,所取卡片上的数字之和.[解](1)ξ可取0,1,2.ξ=i,表示取出的3个球中有i个白球,3-i个黑球,其中i=0,1,2.(2)设所取卡片上的数字之和为X,则X=3,4,5, (11)X=3,表示取出标有1,2的两张卡片;X=4,表示取出标有1,3的两张卡片;…X =11,表示取出标有5,6的两张卡片.解答此类问题的关键在于明确随机变量的所有可能的取值,以及取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果,解答过程中不要漏掉某些试验结果.3.(1)抛掷2枚骰子,所得点数之和记为ξ,那么“ξ=4”表示的随机试验的结果是( ) A .2枚都是4点B .1枚是1点,另1枚是3点C .2枚都是2点D .1枚是1点,另1枚是3点,或者2枚都是2点解析:选D.抛掷2枚骰子,其中1枚是x 点,另1枚是y 点,其中x ,y =1,2, (6)而ξ=x +y ,ξ=4⇔⎩⎪⎨⎪⎧x =1,y =3或⎩⎪⎨⎪⎧x =2,y =2. (2)写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.①在2016年北京大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X ; ②射手对目标进行射击,击中目标得1分,未击中目标得0分,该射手在一次射击中的得分用ξ表示.解:①X 可能取值0,1,2,3,4,5,X =i 表示面试通过的有i 人,其中i =0,1,2,3,4,5. ②ξ可能取值为0,1,当ξ=0时,表明该射手在本次射击中没有击中目标; 当ξ=1时,表明该射手在本次射击中击中目标.(2015·南充高二检测)一个木箱中装有6个大小相同的篮球,编号为1,2,3,4,5,6,现随机抽取3个篮球,以ξ表示取出的篮球的最大号码,则ξ的试验结果有________种.[解析] 从6个球中选出3个球,当ξ=3时,另两个球从1,2中选取,有一种抽法; 当ξ=4时,另两个球从1,2,3中任取两个球,有C 23=3种; 当ξ=5时,另两个球从1,2,3,4中任取两个球,有C 24=6种; 当ξ=6时,另两个球从1,2,3,4,5中任取两个球,有C 25=10种. 所以,ξ的试验结果共有1+3+6+10=20种. [答案] 20[错因与防范] 本题易遗漏ξ=3,4,5的情况;对题目中给出的条件作出正确判断是解决数学问题的关键,如本例中“以ξ表示取出的篮球的最大号码”指的是“随机抽取3个篮球”中的最大号码,而不是ξ=6.4.袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,取后不放回,直到取出的球是白球为止,求随机变量的取值.解:设所需要的取球次数为X,则X=1,2,3,4,…,10,11,X=i表示前i-1次取到红球,第i次取到白球,这里i=1,2, (11)1.一个袋子中有质量相等的红、黄、绿、白四种小球各若干个,一次倒出三个小球,下列变量是离散型随机变量的是()A.小球滚出的最大距离B.倒出小球所需的时间C.倒出的三个小球的质量之和D.倒出的三个小球的颜色的种数解析:选 D.A.小球滚出的最大距离不是一个随机变量,因为不能明确滚动的范围;B.倒出小球所需的时间不是一个随机变量,因为不能明确所需时间的范围;C.三个小球的质量之和是一个定值,不是随机变量,就更不是离散型随机变量了;D.颜色的种数是一个离散型随机变量.2.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球,取后不放回直到取出的球是白球为止,所需要的取球次数为随机变量X,则X的可能取值为() A.1,2,3,…,6 B.1,2,3,…,7C.0,1,2,…,5 D.1,2,…,5解析:选B.因红球共有6个,在取到白球前可取6次,第7次取球只能取白球停止,所以X可能取值有1,2,3, (7)3.下列随机变量中是离散型随机变量的是________.①某鱼塘所养的鲤鱼中,重量在2.5千克以上的条数X;②任意取直线y=x上的整点的个数X;③放学后,小明同学离开学校大门的距离X;④网站中,歌曲《爱我中华》一天内被点击的次数X.解析:③中距离X可取某区间内的任意值,∴③中X不是离散型随机变量.①②④的X 可以一一列举,且②中的X是无限的.答案:①②④4.某篮球运动员在罚球时,罚中1球得2分,罚不中得0分,该队员在5次罚球中命中的次数ξ是一个随机变量.(1)写出ξ的所有取值及每一个取值所表示的结果;(2)若记该队员在5次罚球后的得分为η,写出所有η的取值及每一个取值所表示的结果.解:(1)ξ可取0,1,2,3,4,5.表示在5次罚球中分别罚中0次,1次,2次,3次,4次,5次.(2)η可取0,2,4,6,8,10.表示5次罚球后分别得0分,2分,4分,6分,8分,10分.[A.基础达标]1.给出下列四个命题:①某次数学期中考试中,其中一个考场30名考生中做对选择题第12题的人数是随机变量;②黄河每年的最大流量是随机变量;③某体育馆共有6个出口,散场后从某一出口退场的人数是随机变量;④方程x 2-2x -3=0根的个数是随机变量.其中正确的个数是( )A .1B .2C .3D .4解析:选C.①②③是正确的,④中方程x 2-2x -3=0的根有2个是确定的,不是随机变量.2.抛掷两枚骰子一次,X 为第一枚骰子掷出的点数与第二枚掷出的点数之差,则X 的所有可能的取值为( )A .0≤X ≤5,X ∈NB .-5≤X ≤0,X ∈ZC .1≤X ≤6,X ∈ND .-5≤X ≤5,X ∈Z解析:选D.两次掷出点数均可取1~6所有整数, ∴X ∈[-5,5],X ∈Z .3.袋中有2个黑球和6个红球,从中任取两个,可以作为随机变量的是( ) A .取到的球的个数 B .取到红球的个数 C .至少取到一个红球D .至少取到一个红球的概率解析:选B.袋中有2个黑球和6个红球,从中任取两个,取到球的个数是一个固定的数字,不是随机变量,故不选A ,取到红球的个数是一个随机变量,它的可能取值是0,1,2,故B 正确;至少取到一个红球表示取到一个红球,或取到两个红球,表示一个事件,故C 不正确;至少取到一个红球的概率是一个古典概型的概率问题,不是随机变量,故D 不正确,故选B.4.袋中装有10个红球,5个黑球,每次随机抽取一个球,若取到黑球,则另换一个红球放回袋中,直到取到红球为止,若抽取的次数为X ,则表示“放回5个球”的事件为( )A .X =4B .X =5C .X =6D .X ≤4解析:选C.第一次取到黑球,则放回1个球;第二次取到黑球,则放回2个球……共放了五回,第六次取到了红球,试验终止,故X =6.5.袋中装有大小和颜色均相同的5个乒乓球,分别标有数字1,2,3,4,5,现从中任意抽取2个,设两个球上的数字之积为X ,则X 所有可能值的个数是( )A .6B .7C .10D .25解析:选C.X 的所有可能值有1×2,1×3,1×4,1×5,2×3,2×4,2×5,3×4,3×5,4×5,共计10个.6.(2015·济南高二检测)已知Y =2X 为离散型随机变量,Y 的取值为1,2,3,4,…,10,则X 的取值为______________________.解析:由题意可知X =12Y .又Y ∈{1,2,3,4,5,6,7,8,9,10}, 故X ∈⎩⎨⎧⎭⎬⎫12,1,32,2,52,3,72,4,92,5.答案:12,1,32,2,52,3,72,4,92,57.在考试中,需回答三个问题,考试规则规定:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分ξ的所有可能取值是________.解析:若答对0个问题得分-300; 若答对1个问题得分-100; 若答对2个问题得分100; 若问题全答对得分300.答案:-300,-100,100,300 8.某射手射击一次所击中的环数为ξ(取整数),则“ξ>7”表示的试验结果是________. 解析:射击一次所中环数ξ的所有可能取值为0,1,2,…,10,故“ξ>7”表示的试验结果为“该射手射击一次所中环数为8环、9环或10环”.答案:射击一次所中环数为8环或9环或10环 9.(2015·南京高二检测)小王钱夹中只剩有20元、10元、5元和1元的人民币各一张.他决定随机抽出两张,用来买晚餐,用X 表示这两张金额之和.写出X 的可能取值,并说明所取值表示的随机试验结果.解:X 的可能取值为6,11,15,21,25,30. 其中,X =6,表示抽到的是1元和5元; X =11,表示抽到的是1元和10元; X =15,表示抽到的是5元和10元; X =21,表示抽到的是1元和20元; X =25,表示抽到的是5元和20元; X =30,表示抽到的是10元和20元.10.一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ. (1)列表说明可能出现的结果与对应的ξ的值;(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后不管结果都加上6分.求最终得分η的可能取值,并判定η的随机变量类型.解:(1)(2)由题意可得η=5ξ+6,而ξ可能的取值范围为{0,1,2,3},∴η对应的各值是:5×0+6,5×1+6,5×2+6,5×3+6.故η的可能取值为{6,11,16,21},显然η为离散型随机变量.[B.能力提升]1.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是( )A .第5次击中目标B .第5次未击中目标C.前4次均未击中目标D.第4次击中目标解析:选C.ξ=5表示射击5次,即前4次均未击中,否则不可能射击第5次,但第5次是否击中目标,就不一定,因为他只有5发子弹.2.一用户在打电话时忘了号码的最后四位数字,只记得最后四位数字两两不同,且都大于5,于是他随机拨最后四位数字(两两不同),设他拨到所要号码时已拨的次数为ξ,则随机变量ξ的所有可能取值的种数为()A.20 B.24C.4 D.18解析:选B.由于后四位数字两两不同,且都大于5,因此只能是6,7,8,9四位数字的不同排列,故有A44=24种.3.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是________.解析:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”.所以,“ξ>4”表示两枚骰子中第一枚为6点,第二枚为1点.答案:第一枚为6点,第二枚为1点4.一木箱中装有8个同样大小的篮球,编号为1,2,3,4,5,6,7,8,现从中随机取出3个篮球,以ξ表示取出的篮球的最大号码,则ξ=8表示的试验结果有________种.解析:ξ=8表示3个篮球中一个编号是8,另外两个从剩余7个号中选2个,有C27种方法,即21种.答案:215.手机上网安全、方便,某地移动公司推出一款上网卡,月租费10元,上网时每分钟0.04元(不足一分钟的按一分钟计算).小张在一个月内上网的时间(分)为随机变量ξ,求小张在一个月内上网的费用η,则ξ和η是否为离散型随机变量.解:由于上网时间不足1分钟按1分钟计算,因此变量ξ的取值为1,2,3,….∴ξ是一个离散型随机变量.又η=0.04ξ+10,ξ∈N*,故η也是离散型随机变量.6.写出下面随机变量可能的取值,并说明随机变量所表示的随机试验的结果.在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x,y,记ξ=|x-2|+|y-x|.解:因为x,y可能取的值为1,2,3,所以0≤|x-2|≤1,0≤|x-y|≤2,所以0≤ξ≤3,所以ξ可能的取值为0,1,2,3,用(x,y)表示第一次抽到卡片号码为x,第二次抽得号码为y,则随机变量ξ取各值的意义为:ξ=0表示两次抽到卡片编号都是2,即(2,2).ξ=1表示(1,1),(2,1),(2,3),(3,3).ξ=2表示(1,2),(3,2).ξ=3表示(1,3),(3,1).。