推理与证明(综合法、分析法与反证法)
- 格式:doc
- 大小:285.00 KB
- 文档页数:18
推理与证明(三)教学目标:了解分析法、综合法、反证法的思考过程和特点;2010年考试说明要求A. 基础训练:1.设k 为奇数,求证:方程0222=++k x x 没有有理根。
2.证明:xx x x cos 1sin 22sin sin 23-=+。
3.已知三角形ABC 的3个顶点的坐标分别为A(5,-2),B(1,2),C(10,3),求证:三角形ABC 为直角三角形。
4.求证:当 a>1时,a a a 211<-++5.设a ,b 是两个相异的正数,求证:关于x 的一元二次方程024)(222=+++ab abx x b a 没有实数根。
6.求证:定义在实数集上的单调函数y=f(x)的图像与x 轴之多只有1个交点。
典型例题:已知a ,b ,m 均为正实数,b<a ,求证:m a m b a b ++<设a ,b ,c ,为不全相等的正数,求证3>-++-++-+c c b a b b a c a a c b课堂检测:1.设a ,b 是两个相异的正数,且a+b=1,分别用分析法、综合法证明:411>+b a2.试比较)()1(*1N n n n n n ∈++与的大小,分别取n=1、2、3、4、5加以试验,根据试验结果猜测一个一般性结论______________________________3.观察:112166<+;1125.145.7<+; 11251953<-++;….对于任意正实数,a b ≤成立的一个条件可以是 ____.4.设()2x x e e f x -+=,()2x xe e g x --=,计算(1)(3)(1)(3)(4)fg g f g +-=_______,(3)(2)(3)(2)(5)f g g f g +-=________,并由此概括出关于函数()f x 和()g x 的一个等式,使上面的两个等式是你写出的等式的特例,这个等式是___________________________5.过抛物线)0(22>=p px y 焦点F 作倾斜角为4π的直线,交抛物线于A 、B 两点,求证AB=p 4。
推理与证明推理合情推理归纳推理类比推理演绎推理三段论证明直接证明分析法综合法间接证明反证法归纳推理要涉及两个类型:数的归纳和形的归纳,其求解思路如下:(1)通过观察个别对象发现某些相同性质; (2)由相同性质猜想得出一般性结论.需特别注意一点,由归纳猜想得出的结论未必正确,常需要严格的推理证明.(2013·南昌高二检测)在平面上,我们如果用一条直线去截正方形的一个角,那么截下的是一个直角三角形,若将该直角三角形按图标出边长a ,b ,c ,则由勾股定理有:a 2+b 2=c 2.设想把正方形换成正方体,把截线换成如图2-1的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,如果用S 1,S 2,S 3表示三个侧面面积,S 4表示截面面积,那么你类比得到的结论是________.图2-1【思路点拨】 由三角形三边的平方关系,猜想四个面的关系也可能是平方关系,即S 21+S 22+S 23=S 24,然后按照这个思路推证.【规范解答】 由图象可得S 1=12OM ·ON , S 2=12OL ·ON ,S 3=12OM ·OL ,S 4=12ML ·NL ·sin ∠MLN =12ML ·NL ·1-cos 2∠MLN =12ML ·NL ·1-(ML 2+NL 2-MN 22ML ·NL)2=14·4ML 2·NL 2-(ML 2+NL 2-MN 2)2.∵OM 2+ON 2=MN 2,OM 2+OL 2=ML 2,OL 2+ON 2=LN 2, ∴S 4=12OM 2·ON 2+OL 2·ON 2+OM 2·OL 2,∴S 21+S 22+S 23=S 24.【答案】 S 21+S 22+S 23=S 24在如下数表中,已知每行、每列中的数都成等差数列,第1列 第2列 第3列 … 第1行 1 2 3 … 第2行 2 4 6 … 第3行 3 6 9 … ……………【解析】 由题中数表知:第n 行中的项分别为n,2n,3n ,…,组成一等差数列,所以第n 行第n +1列的数是:n 2+n .【答案】 n 2+n类比推理出另一类对象也具有这些特征的推理.显然其特征是由特殊到特殊的推理,常见的类比情形有:平面与空间类比,向量与数的类比,不等与相等类比,等差数列同等比数列的类比等等.需注意一点,由类比推理得出的结论也未必正确,也需要严格证明.已知:由图①有面积关系:S△PA′B′S△PAB=PA′·PB′PA·PB.图2-2(1)试用类比的思想写出由图②所得的体积关系V P-A′B′C′V P-ABC=______________________.(2)证明你的结论是正确的.【思路点拨】由面积关系,类比推测V P-A′B′C′V P-ABC=PA′·PB′·PC′PA·PB·PC,然后由体积公式证明.【规范解答】(1)V P-A′B′C′V P-ABC=PA′·PB′·PC′PA·PB·PC.(2)过A作AO⊥平面PBC于O,连接PO,则A′在平面PBC内的射影O′落在PO上,从而V P-A′B′C′V P-ABC=V A′-PB′C′V A-PBC=13S△PB′C′·A′O′13S△PBC·AO=PB′·PC′·A′O′PB·PC·AO,∵A′O′AO=PA′PA,∴V P-A′B′C′V P-ABC=PA′·PB′·PC′PA·PB·PC.如图2-3(1),在三角形ABC中,AB⊥AC,若AD⊥BC,则AB2=BD·BC;若类比该命题,如图2-3(2),三棱锥A-BCD中,AD⊥平面ABC,若A点在三角形BCD所在平面内的射影为M,则可以得到什么命题?命题是否为真命题并加以证明.(1)(2)图2-3【解】命题是:三棱锥A-BCD中,AD⊥平面ABC,若A点在三角形BCD 所在平面内的射影为M,则有S2△ABC=S△BCM·S△BCD,是一个真命题.证明如下:在图(2)中,连接DM,并延长交BC于E,连接AE,则有DE⊥BC.因为AD⊥平面ABC,所以AD⊥AE.又AM⊥DE,所以AE2=EM·ED.于是S2△ABC=(12BC·AE)2=(12BC·EM)·(12BC·ED)=S△BCM·S△BCD.演绎推理均正确的前提下,得到的结论一定正确,演绎推理的内容一般是通过合情推理获取.演绎推理的形式一般为“三段论”的形式,即大前提、小前提和结论.图2-4如图2-4所示,D,E,F分别是BC,CA,AB上的点,∠BFD=∠A,DE∥FA,求证:ED=AF.【思路点拨】分别确定大前提、小前提,利用演绎推理的方法推出结论.【规范解答】同位角相等,两条直线平行,大前提∠BFD与∠A是同位角,且∠BFD=∠A,小前提所以DF∥EA.结论两组对边分别平行的四边形是平行四边形,大前提DE∥FA,且DF∥EA,小前提所以四边形AFDE为平行四边形.结论平行四边形的对边相等,大前提ED和AF为平行四边形的一组对边,小前提所以ED=AF.结论图2-5已知:在空间四边形ABCD中,点E,F分别是AB,AD的中点,如图2-5所示,求证:EF∥平面BCD.【证明】三角形的中位线平行于底边,大前提点E、F分别是AB、AD的中点,小前提所以EF∥BD.结论若平面外一条直线平行于平面内一条直线,则直线与此平面平行,大前提EF⊄平面BCD,BD⊂平面BCD,EF∥BD,小前提EF∥平面BCD.结论直接证明与间接证明1.方式是执果索因法,在解题时常用分析法来探寻思路,用综合法来书写求解过程.2.间接证明,常用的是反证法,其思维过程:否定结论⇒推理过程中引出矛盾⇒否定假设肯定结论,即否定——推理——否定(经过正确的推理导致逻辑矛盾,从而达到新的“否定”(即肯定原命题)).(2013·杭州高二检测)已知α∈(0,π),试用多种方法求证:2sin2α≤sin α1-cos α.【思路点拨】本题可分别用分析法、综合法及反证法进行证明.【规范解答】法一(分析法)要证明2sin 2α≤sin α1-cos α成立,只要证明4sin αcos α≤sin α1-cos α.∵α∈(0,π),∴sin α>0,∴只要证明4cos α≤11-cos α.上式可变形为4≤11-cos α+4(1-cos α).∵α∈(0,π),∴1-cos α>0.∴11-cos α+4(1-cos α)≥211-cos α·4(1-cos α)=4,当且仅当11-cos α=4(1-cos α),即cos α=12,即α=π3时取等号.∴4≤11-cos α+4(1-cos α)成立.∴不等式2sin 2α≤sin α1-cos α成立.法二(综合法)∵α∈(0,π),∴1-cos α>0. ∴11-cos α+4(1-cos α)≥211-cos α·4(1-cos α)=4.当且仅当11-cos α=4(1-cos α),即cos α=12,即α=π3时取等号.∴4cos α≤11-cos α.∵α∈(0,π),∴sin α>0.∴4sin αcos α≤sin α1-cos α.∴2sin 2α≤sin α1-cos α.法三(反证法)假设2sin 2α>sin α1-cos α,则4sin αcos α>sin α1-cos α.∵α∈(0,π),∴sin α>0,∴4cos α(1-cos α)>1,即4cos2α-4cos α+1<0(2cos α-1)2<0,不成立.故假设错误,原不等式成立.已知a ,b 为正数,求证a 2+b 2≥22(a +b ).【证明】 法一 (综合法) a 2+b 2=a 22+b 22+12(a 2+b 2) ≥a 22+b 22+ab =12(a +b )2=22(a +b ).法二 (分析法) 要证a 2+b 2≥22(a +b ), 只要证a 2+b 2≥12(a +b )2(a >0,b >0), 即证a 2+b 2≥12(a 2+b 2+2ab ), 即证a 2+b 2≥2ab ,∵a 2+b 2≥2ab 成立,∴原结论成立. 法三 (反证法) 假设a 2+b 2<22(a +b ),则a 2+b 2<12(a +b )2⇒a 2+b 2<12(a 2+2ab +b 2) ⇒a 2+b 2<2ab⇒(a -b )2<0,不成立. ∴假设不成立,故原结论正确.数形结合思想在合情推理中的应用作出猜想.如图2-6所示是树形图,第一层是一条与水平线垂直的线段,长度为1;第二层在第一层线段的前端作两条与该线段均成135°角的线段,长度为其一半;第三层按第二层的方法在每一条线段的前端生成两条线段;重复前面的作法作图至第n层.设树形图的第n层的最高点到水平线的距离为第n层树形图的高度.图2-6(1)求第三层及第四层树形图的高度H3、H4;(2)求第n层树形图的高度H n.【思路点拨】求出前4层的竖直高度,找出规律,进行猜想.【规范解答】(1)设题中树形图中新生出的各层高度所构成的数列为{a n},则a1=1,a2=12×22,a3=122,a4=123×22,所以第三层树形图的高度为H3=a1+a2+a3=5+24,第四层树形图的高度为H4=a1+a2+a3+a4=20+5216.(2)易知a n+2a n=14(n∈N*),所以树形图中新生出的第n层高度a n=⎩⎨⎧12n-1(n为奇数),12n-1×22(n为偶数).所以当n为奇数时,第n层树形图的高度为H n=43[1-(14)n+12]+23[1-(14)n-12];当n为偶数时,第n层树形图的高度为H n=43[1-(14)n2]+23[1-(14)n2].如图(1)所示,是一个水平摆放的小正方体木块,图(2),图(3)均是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第七个叠放的图形中,小正方体木块总数是()图2-7A.25B.66C.91D.120【解析】小正方体木块叠放的规律是下一个图形比上一个图形多放4(n-1)+1块,则有a1=1,a2-a1=5,a3-a2=9,a4-a3=13,…,a7-a6=25,可得a7=91.【答案】 C。