八年级反证法知识点
- 格式:docx
- 大小:37.39 KB
- 文档页数:4
初中数学竞赛辅导资料(初二18)反证法甲内容提要1. 反证法是一种间接的证明方法。
它的根据是原命题和逆否命题是等价命题,当一个命题不易直接证明时,釆取证明它的逆否命题。
2. 一个命题和它的逆否命题是等价命题,可表示为:A →B A B →⇔ 例如 原命题:对顶角相等 (真命题)逆否命题:不相等的角不可能是对顶角 (真命题)又如 原命题:同位角相等,两直线平行 (真命题)逆否命题:两直线不平行,它们的同位角必不相等 (真命题)3. 用反证法证明命题,一般有三个步骤:① 反设 假设命题的结论不成立(即假设命题结论的反面成立)② 归谬 推出矛盾(和已知或学过的定义、定理、公理相矛盾)③ 结论 从而得出命题结论正确例如: 求证两直线平行。
用反证法证明时① 假设这两直线不平行;② 从这个假设出发,经过推理论证,得出矛盾;③从而肯定,非平行不可。
乙例题例1两直线被第三条直线所截,如果同位角相等,那么这两直线平行已知:如图∠1=∠2 A 1 B 求证:AB ∥CD 证明:设AB 与CD 不平行 C 2 D 那么它们必相交,设交点为M D这时,∠1是△GHM 的外角 A 1 M B ∴∠1>∠2 G这与已知条件相矛盾 2 ∴AB 与CD 不平行的假设不能成立 H∴AB ∥CD C例2.求证两条直线相交只有一个交点证明:假设两条直线相交有两个交点,那么这两条直线都经过相同的两个点,这与“经过两点有且只有一条直线”的直线公理相矛盾,所以假设不能成立,因此两条直线相交只有一个交点。
(从以上两例看出,证明中的三个步骤,最关键的是第二步——推出矛盾。
但有的题目,第一步“反设”也要认真对待)。
例3.已知:m 2是3的倍数,求证:m 也是3的倍数证明:设m 不是3的倍数,那么有两种情况:m=3k+1或m= 3k+2 (k 是整数)当 m=3k+1时, m 2=(3k+1)2=9k 2+6k+1=3(3k 2+2k)+1当 m=3k+2时, m 2=(3k+2)2=9k 2+12k+4=3(3k 2+4k+1)+1即不论哪一种,都推出m 2不是3的倍数,这和已知条件相矛盾,所以假设不能成立。
反证法
1.反证法
【知识点的认识】
反证法:假设结论的反面成立,在已知条件和“否定结论”这个新条件下,通过逻辑推理,得出与公理、定理、题设、临时假设相矛盾的结论或自相矛盾,从而断定结论的反面不能成立,即证明了命题的结论一定正确,这种证明方法就叫反证法.
【解题思路点拨】
用反证法证题时,首先要搞清反证法证题的方法,其次注意反证法是在条件较少,不易入手时常用的方法,尤其有否定词或含“至多”“至少”等词的问题中常用.使用反证法进行证明的关键是在正确的推理下得出矛盾,这个矛盾可以是与已知矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等.
1.证明思路:肯定条件,否定结论→推出矛盾→推翻假设,肯定结论
2.反证法的一般步骤:
(1)分清命题的条件和结论;
(2)作出与命题结论相矛盾的假设;
(3)由假设出发,应用正确的推理方法,推出矛盾的结果;
(4)断定产生矛盾的原因,在于开始所作的假设不真,于是原结论成立,从而间接地证明命题为真.
1/ 1。
初中数学反证法简单例子初中数学中的反证法是一种常用的证明方法,通过假设所要证明的命题不成立,然后推导出与已知事实相矛盾的结论,从而证明原命题一定成立。
下面我们来列举一些初中数学中常用的反证法的简单例子。
1. 命题:不存在任意两个不相等的正整数,使得它们的和等于它们的积。
假设存在两个不相等的正整数a和b,满足a + b = ab。
由于a和b不相等,不妨设a > b,那么有a > a/2 > b。
根据不等式性质,我们可以得到2a > a + b = ab,即2 > b。
但是正整数b不可能小于2,与假设矛盾。
因此,不存在任意两个不相等的正整数满足该条件。
2. 命题:存在一个无理数x,使得x的平方等于2。
假设不存在这样的无理数x,即对于任意实数x,x的平方不等于2。
那么我们可以考虑一个特殊的实数y,即y = √2。
根据无理数定义,√2不是有理数,因此是一个无理数。
而根据假设,y的平方不等于2,即y^2 ≠ 2。
然而,这与y = √2相矛盾。
因此,存在一个无理数x,使得x的平方等于2。
3. 命题:对于任意正整数n,2n不等于n的平方。
反证法证明:假设存在一个正整数n,使得2n = n^2。
可以将等式两边同时除以n,得到2 = n。
然而,这与n是一个正整数相矛盾。
因此,对于任意正整数n,2n不等于n的平方。
4. 命题:对于任意正整数n,n^2 + 3n + 2不是一个完全平方数。
反证法证明:假设存在一个正整数n,使得n^2 + 3n + 2 = m^2,其中m是一个正整数。
可以将等式变形为n^2 + 3n + 2 - m^2 = 0。
这是一个关于n的二次方程,可以使用求根公式解得n = (-3 ± √(9 - 8(2 - m^2))) / 2。
由于n是一个正整数,因此根号内的值必须为正整数。
然而,当m取不同的正整数值时,根号内的值不可能为正整数,因此假设不成立。
因此,对于任意正整数n,n^2 + 3n + 2不是一个完全平方数。
反证法[学习目标] 1.了解反证法是间接证明的一种方法.2.理解反证法的思考过程,会用反证法证明数学问题.知识点一间接证明不是直接从原命题的条件逐步推得命题成立,像这种不是直接证明的方法通常称为间接证明.常见的间接证明的方法是反证法.知识点二反证法1.反证法定义假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这种证明方法叫做反证法.2.反证法常见的矛盾类型反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等.3.反证法中常用的“结论词”与“反设词”如下:思考(1)有人说反证法就是通过证明逆否命题来证明原命题,这种说法对吗?为什么?(2)反证法主要适用于什么情形?答案(1)这种说法是错误的,反证法是先否定命题,然后再证明命题的否定是错误的,从而肯定原命题正确,不是通过逆否命题证题.命题的否定与原命题是对立的,原命题正确,其命题的否定一定不对.(2)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.题型一用反证法证明结论否定的问题例1如图所示,AB,CD为圆的两条相交弦,且不全为直径,求证:AB,CD不能互相平分.证明连接AC,CB,BD,DA,假设AB,CD互相平分,则四边形ACBD为平行四边形,∴∠ACB=∠ADB,∠CAD=∠CBD.∵四边形ACBD为圆的内接四边形,∴∠ACB+∠ADB=180°,∠CAD+∠CBD=180°,∴∠ACB=90°,∠CAD=90°,∴对角线AB,CD均为圆的直径,与已知条件矛盾,∴AB,CD不能互相平分.反思与感悟对于结论否定型命题,正面证明需要考虑的情况很多,过程烦琐且容易遗漏,故可以考虑采用反证法.一般当题目中含有“不可能”“都不”“没有”等否定性词语时,宜采用反证法证明. 跟踪训练1已知正整数a,b,c满足a2+b2=c2.求证a,b,c不可能都是奇数.证明假设a,b,c都是奇数,则a2,b2,c2都是奇数.左边=奇数+奇数=偶数,右边=奇数,得偶数=奇数,矛盾.∴假设不成立,∴a,b,c不可能都是奇数.题型二用反证法证明唯一性问题例2用反证法证明:过已知直线a外一点A只有一条直线b与已知直线a平行.证明假设过点A还有一条直线b′与已知直线a平行,即b∩b′=A,b′∥a,又b∥a,由平行公理知b′∥b.这与b∩b′=A矛盾,故假设错误,所以过已知直线a外一点A只有一条直线b与已知直线a平行.反思与感悟证明“唯一性”问题的方法:“唯一性”包含“有一个”和“除了这个没有另外一个”两层意思.证明后一层意思时,采用直接证法往往会相当困难,因此一般情况下都采用间接证法,即用反证法(假设“有另外一个”,推出矛盾)或同一法(假设“有另外一个”,推出它就是“已知那一个”)证明,而用反证法比用同一法更方便.跟踪训练2求证:过一点只有一条直线与已知平面垂直.已知:平面α和一点P.求证:过点P与α垂直的直线只有一条.证明如图所示,不论点P在α内还是在α外,设P A⊥α,垂足为A(或P).假设过点P不止有一条直线与α垂直,如还有另一条直线PB⊥α,设P A,PB确定的平面为β,且α∩β=a,于是在平面β内过点P有两条直线P A,PB垂直于a,这与过一点有且只有一条直线与已知直线垂直相矛盾,∴假设不成立,原命题成立.题型三用反证法证明结论中含有“至多”“至少”“都”等词语的问题例3 用反证法证明:如果函数f (x )在区间[a ,b ]上是增函数,那么方程f (x )=0在区间[a ,b ]上至多有一个实数根.(不考虑重根)证明 假设方程f (x )=0在区间[a ,b ]上至少有两个实数根,设α,β为它的两个实数根,则f (α)=f (β)=0.因为α≠β,不妨设α<β,又因为函数f (x )在[a ,b ]上是增函数,所以f (α)<f (β),这与f (α)=f (β)=0矛盾,所以方程f (x )=0在区间[a ,b ]上至多有一个实数根.反思与感悟 用反证法证明“至少”“至多”型命题,否定结论时,需弄清楚结论的否定是什么,以免出现错误.还应仔细体会“至少有一个”“至多有一个”等表达的意义.跟踪训练3 若x ,y 都是正实数,且x +y >2,求证:1+x y <2与1+y x<2中至少有一个成立.证明 假设1+x y <2和1+y x <2都不成立,则有1+x y ≥2和1+y x ≥2同时成立.∵x >0且y >0,∴1+x ≥2y ,且1+y ≥2x ,两式相加,得2+x +y ≥2x +2y ,∴x +y ≤2,这与已知条件x +y >2相矛盾,∴1+x y <2与1+y x <2中至少有一个成立.因反证法中的反设不当致误例4 用反证法证明:若a >b >0,则a >b .错解 假设a >b 不成立,则a <b . 若a <b ,则a <b ,与已知a >b 矛盾. 故假设不成立,结论a >b 成立.错因分析 a >b 的否定应为a ≤b ,即“大于”的否定是“小于或等于”.同理,“小于”的否定是“大于或等于”,不能漏掉“等于”.因此在用反证法证题时,一定要正确地找出结论的否定,不能犯否定不全的错误.正解 假设a >b 不成立,则a ≤b . 若a <b ,则a <b ,与已知a >b 矛盾; 若a =b ,则a =b ,与已知a >b 矛盾.故假设不成立. 所以a >b 成立.防范措施 在利用反证法证明问题时,往往要假设命题结论的反面成立,而问题结论的反面一定要全面,漏掉任何一种情况,证明都是不正确的.1.证明“在△ABC中至多有一个直角或钝角”,第一步应假设()A.三角形中至少有一个直角或钝角B.三角形中至少有两个直角或钝角C.三角形中没有直角或钝角D.三角形中三个角都是直角或钝角答案 B2.用反证法证明“三角形中至少有一个内角不小于60°”,应先假设这个三角形中()A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°答案 B3.“a<b”的反面应是()A.a≠bB.a>bC.a=bD.a=b或a>b答案 D4.用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”时,应假设()A.a不垂直于cB.a,b都不垂直于cC.a⊥bD.a与b相交答案 D5.已知a是整数,a2是偶数,求证a也是偶数.证明(反证法)假设a不是偶数,即a是奇数.设a=2n+1(n∈Z),则a2=4n2+4n+1.∵4(n2+n)是偶数,∴4n2+4n+1是奇数,这与已知a2是偶数矛盾.由上述矛盾可知,a一定是偶数.1.反证法的证题步骤:①反设;②推理归谬;③存真,即假设不成立,原命题成立.2.用反证法证明问题时要注意以下三点:(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必须罗列出各种可能性结论,缺少任何一种可能,反证都是不完全的.(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.(3) 推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与事实矛盾等,推导出的矛盾必须是明显的.一、选择题1.实数a,b,c满足a+b+c=0,则正确的说法是()A.a,b,c都是0B.a,b,c都不为0C.a,b,c中至少有一个为0D.a,b,c不可能均为正数答案 D2.反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是()①与已知条件矛盾;②与假设矛盾;③与定义、公理、定理矛盾;④与事实矛盾.A.①②B.①③C.①③④D.①②③④答案 D3.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线答案 C解析假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c 与b不可能是平行直线.故应选C.4.有下列叙述:①“a>b”的反面是“a<b”;②“x=y”的反面是“x>y或x<y”;③“三角形的外心在三角形外”的反面是“三角形的外心在三角形内”;④“三角形最多有一个钝角”的反面是“三角形没有钝角”.其中正确的叙述有()A.0个B.1个C.2个D.3个答案 B解析①错:应为a≤b;②对;③错:应为三角形的外心在三角形内或在三角形的边上;④错:应为三角形可以有2个或2个以上的钝角.5.命题“三角形中最多只有一个内角是直角”的结论的否定是( )A.有两个内角是直角B.有三个内角是直角C.至少有两个内角是直角D.没有一个内角是直角答案 C6.若方程x 2+(a -1)x +a 2=0,x 2+2ax -2a =0中至少有一个方程有实根,则实数a 的取值范围是( )A.(-∞,-2]∪[-1,+∞)B.[-2,1]C.(-∞,1]∪[2,+∞)D.[-2,-1] 答案 A解析 若方程x 2+(a -1)x +a 2=0有实根,则(a -1)2-4a 2≥0,∴-1≤a ≤13.若方程x 2+2ax -2a =0有实根,则4a 2+8a ≥0,∴a ≤-2或a ≥0.∴当两个方程至少有一个有实根时,-1≤a ≤13或a ≤-2或a ≥0,即a ≤-2或a ≥-1.二、填空题7.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°矛盾,故假设错误.②所以一个三角形不能有两个直角.③假设△ABC 中有两个直角,不妨设∠A =90°,∠B =90°. 上述步骤的正确顺序为__________.(填序号)答案 ③①②。
八年级反证法知识点
反证法是一种论证方法,在数学、逻辑学、哲学以及其他领域
中都得到广泛应用。
其基本思想是通过否定一个命题的逆否命题
来证明原命题的正确性。
在八年级数学中,学生要学习如何应用
反证法解决一些问题。
本文将介绍八年级反证法知识点,帮助学
生更好地掌握这一方法。
初步了解反证法
反证法的思路是假设所要证明的命题P不成立,然后推出一个
矛盾的结论,进而证明命题P成立。
或者说,反证法是采用反面
求证的方法,即证明“不是P”来间接证明“是P”。
例如,在证明
“若a是偶数,则a²也是偶数”的时候,可以采用反证法:假设a是偶数但a²不是偶数,则a²为奇数。
但是,偶数的平方一定是偶数,与假设矛盾,因此可证明原命题成立。
如何运用反证法?
反证法需要具备以下几个步骤:
1. 先假设所要证明的命题P不成立,并推出一些合法的结论。
2. 分析这些结论是否有矛盾之处。
3. 如果这些结论存在矛盾,则说明所假设命题不成立,原命题P成立。
4. 如果这些结论不存在矛盾,则说明所假设的命题成立,而原命题P不成立。
举个例子,如果要用反证法证明“n²为偶数,则n也是偶数”,那么可以首先假设n是奇数。
因为奇数的平方还是奇数,所以n²也是奇数,而偶数的定义是2的倍数,不可能是奇数,因此推出结论矛盾,得证原命题成立。
需要注意的是,在运用反证法的时候,如果所得出的结论不够严密或存在漏洞,那么不能得出最终结论。
为了提高证明的严密性,可以结合其他证明方法进行运用。
例题
1. 证明:不存在无理数x和y,使得x² - 2y² = 3。
解答:假设存在无理数x和y,满足x² - 2y² = 3。
考虑对这个方程两侧同时取立方根,得:
x³ - 6xy² - 3y³ = 0。
注意到x和y都是无理数,而立方根是唯一的,因此x³也是无理数。
同理,3y³也是无理数。
但是,6xy²是有理数。
因此,方程左边为无理数,而右边为有理数,与假设矛盾,原命题成立。
2. 已知a,b,c是正整数,满足a² + b² = c²和a + b = c + 1,证明a,b,c中至少有一个是偶数。
解答:假设a,b,c中都不是偶数,即为奇数。
根据奇数的性质,可以将他们表示为2m+1, 2n+1, 2p+1的形式,其中m,n,p都是自然数。
那么,根据已知条件,有:
(2m+1)² + (2n+1)² = (2p+1)²。
化简得到:
m² + n² = 2p² + 2p - m - n。
这时,左边是偶数,而右边是奇数,显然矛盾。
因此,假设不
成立,得证原命题成立。
总结
反证法是一种常用的证明方法,其基本思想是通过否定命题的
逆否命题来证明其正确性。
在应用反证法时,需要假设命题不成立,推出一个矛盾结论,从而证明原命题成立。
然而,需要注意
的是,反证法需要结合其他证明方法使用,以提高证明的严谨性。