纯滞后控制技术教学文案
- 格式:ppt
- 大小:877.00 KB
- 文档页数:29
一、实验目的1. 理解纯滞后控制系统的概念及其在工业控制系统中的应用。
2. 掌握大林算法在纯滞后控制系统中的应用原理。
3. 通过实验验证大林算法在纯滞后控制系统中的控制效果。
二、实验原理1. 纯滞后控制系统:纯滞后控制系统是指被控对象具有纯滞后特性,即输入信号到输出信号的传递过程中存在一定的时间延迟。
这种时间延迟会使得控制作用不及时,从而影响系统的稳定性和动态性能。
2. 大林算法:大林算法是一种针对纯滞后控制系统的控制策略,其基本思想是在设计闭环控制系统时,采用一阶惯性环节代替最少拍多项式,并在闭环控制系统中引入与被控对象相同的纯滞后环节,以补偿系统的滞后特性。
三、实验设备1. MATLAB 6.5软件一套2. 个人PC机一台四、实验步骤1. 设计实验模型:根据实验要求,设计一个具有纯滞后特性的被控对象模型,并确定其参数。
2. 构建大林算法控制器:根据大林算法的原理,设计一个大林算法控制器,并确定其参数。
3. 进行仿真实验:在MATLAB软件中搭建实验平台,将设计的被控对象模型和大林算法控制器进行联接,进行仿真实验。
4. 分析实验结果:观察实验过程中系统的动态性能,分析大林算法在纯滞后控制系统中的应用效果。
五、实验结果与分析1. 实验结果(1)无控制策略:在无控制策略的情况下,被控对象的输出信号存在较大的超调和振荡,系统稳定性较差。
(2)大林算法控制:在采用大林算法控制的情况下,被控对象的输出信号超调量明显减小,振荡幅度减小,系统稳定性得到提高。
2. 分析(1)无控制策略:由于被控对象具有纯滞后特性,系统动态性能较差,导致输出信号存在较大超调和振荡。
(2)大林算法控制:大林算法通过引入与被控对象相同的纯滞后环节,有效补偿了系统的滞后特性,使得控制作用更加及时,从而提高了系统的动态性能和稳定性。
六、实验结论1. 纯滞后控制系统在实际工业生产中普遍存在,对系统的稳定性、动态性能和抗干扰能力具有较大影响。
过程控制实验报告实验名称:纯滞后控制系统班级:姓名:学号:实验五 纯滞后系统一、实验目的1) 通过本实验,掌握纯滞后系统的基本概念和对系统性能的影响。
2) 了解纯滞后系统的常规控制方法和史密斯补偿控制方法。
二、 实验原理在工业生产中,被控对象除了容积延迟外,通常具有不同程度的纯延迟。
这类控制过程的特点是:当控制作用产生后,在滞后时间范围内,被控参数完全没有响应,使得系统不能及时随被控制量进行调整以克服系统所受的扰动。
因此,这样的过程必然会产生较明显的超调量和需要较长的调节时间。
所以,含有纯延迟的过程被公认为是较难控制的过程,其难控制程度随着纯滞后时间与整个过程动态时间参数的比例增加而增加。
一般认为,纯滞后时间与过程的时间常数之比大于0.3时,该过程是大滞后过程。
随此比值增加时,过程的相位滞后增加而使超调增大,在实际的生产过程中甚至会因为严重超调而出现聚爆、结焦等事故。
此外,大滞后会降低整个控制系统的稳定性。
因此大滞后过程的控制一直备受关注。
前馈控制系统主要特点如下:1) 在纯滞后系统控制中,为了充分发挥PID 的作用,改善滞后问题,主要采用常规PID 的变形形式:微分先行控制和中间微分控制。
微分先行控制和中间微分控制都是为了充分发挥微分作用提出的。
微分的作用是导前,根据变化规律提前求出其变化率,相当于提取信息的变化趋势,所以对滞后系统,充分利用微分作用,可以提前预知变化情况,进行有效的“提前控制”。
微分先行和中间微分反馈方法都能有效地克服超调现象,缩短调节时间,而且不需特殊设备。
因此,这两种控制形式都具有一定的实际应用价值。
但是这两种控制方式都仍有较大超调且响应速度很慢,不适于应用在控制精度要求很高的场合。
2) 史密斯补偿控制的基本思路是:在控制系统中某处采取措施(如增加环节,或增加控制支路等),使改变后系统的控制通道以及系统传递函数的分母不含有纯滞后环节,从而改善控制系统的控制性能及稳定性等。
《计算机控制技术》课程设计具有纯滞后一阶惯性系统的计算机控制系统设计班级:姓名:学号:指导老师:日期:目录一、设计任务 (1)1.1 题目 (1)1.2内容与要求 (1)二、设计思想与方案 (2)2.1控制策略的选择 (2)2.2 硬件设计思路与方案 (2)2.3 软件设计思路与方案 (3)三、硬件电路设计 (3)3.1温度传感器输出端与ADC的连接 (3)3.2 ADC与单片机8051的连接 (4)3.3 单片机8051与DAC的连接 (4)3.4 整机电路 (5)四、系统框图 (7)五、程序流程图 (8)5.1 主程序流程图 (8)5.2 子程序流程图 (9)六、数字调节器的求解 (11)6.1 基本参数的计算 (11)七、系统的仿真与分析 (13)7.1 θ=0时系统的仿真与分析 (13)7.2 θ=0时系统的可靠性与抗干扰性分析 (14)7.2 θ=0.4461时系统的仿真与分析 (16)7.3 θ=0.4461时系统的可靠性与抗干扰性分析 (17)八、设计总结与心得体会 (20)参考资料 (21)一、 设计任务一、题目设计1. 针对一个具有纯滞后的一阶惯性环节()1sKe G s Ts τ-=+的温度控制系统和给定的系统性能指标:✧ 工程要求相角裕度为30°~60°,幅值裕度>6dB✧ 要求测量范围-50℃~200℃,测量精度0.5%,分辨率0.2℃2. 书面设计一个计算机控制系统的硬件布线连接图,并转化为系统结构图 具体要求:✧ 温度传感器、执行机构的选型✧ 微型计算机的选型(MCS51、A VR 等等)✧ 温度传感器和单片机的接口电路✧ 其它扩展接口电路(主要是输入输出通道)✧ 利用Protel 绘制原理图,制作PCB 电路板(给出PCB 图)3. 软件部分:✧ 选择一种控制算法(最少拍无波纹或Dalin 算法)设计出控制器(被控对象由第4步中的参数确定),给出控制量的迭代算法,并借助软件工程知识编写程序流程图✧ 写出主要的单片机程序4. 用MATLAB 和SIMULINK 进行仿真分析和验证对象确定:K=10*log(C*C-sqrt(C)),rand(‘state ’,C), T=rand(1)考虑θ=0或T/2两种情况,即有延时和延时半个采样周期的情况。
纯滞后控制实验实验三纯滞后控制实验1. 实验⽬的与要求(1) 掌握应⽤达林算法进⾏纯滞后系统D(z)的设计;(2) 掌握纯滞后系统消除振铃的⽅法。
2. 实验设备(1) 硬件环境微型计算机⼀台,P4以上各类微机(2) 软件平台操作系统:Windows 2000以上;仿真软件⼯具:MATLIB5.3以上。
3. 实验原理在⼀些⼯业过程(如热⼯、化⼯)控制中,由于物料或能量的传输延迟,许多被控制对象具有纯滞后性质。
例如,⼀个⽤蒸汽控制⽔温的系统,蒸汽量的变化要经过长度为L 的路程才能反映出来。
这样,就造成⽔温的变化要滞后⼀段时间τ(v v L ,=τ是蒸汽的速度)。
对象的这种纯滞后性质常会引起系统产⽣超调和振荡。
因此,对于这⼀系统,采⽤⼀般的随动系统设计⽅法是不⾏的,⽽⽤PID 控制往往效果也⽋佳。
本实验采⽤达林算法进⾏被控制对象具有纯滞后系统设计。
设被控对象为带有纯滞后的⼀阶惯性环节或⼆阶惯性环节,达林算法的设计⽬标是使整个闭环系统所期望的传递函数Φ(s),相当于⼀个延时环节和⼀个惯性环节相串联,即1)(+=Φ-s e s sτθ,NT =θ该算法控制将调整时间的要求放在次要,⽽超调量⼩甚⾄没有放在⾸位。
控制原理如图1,其中:采样周期T=0.9秒,期望传递函数τ=0.5秒,被控对象123)(8.1+=-s e s G s;输⼊信号为单位阶跃信号。
图1 纯滞后系统控制原理图应⽤达林算法进⾏纯滞后系统设计)D控制器。
(z4.实验内容与步骤(1)按照纯滞后控制系统要求设计)D;(z(2)按照系统原理图,在simulink下构造系统结构图模型,观察输⼊输出波形,标明参数,打印结果;(3)尝试⽤M⽂件实现dalin算法控制。
5.实验结果simulink框图(⽤simulink实现dalin算法): Array图2 纯滞后控制设计图3:纯滞后控制器输出结果图4 纯滞后控制系统输出结果6.思考与分析(1)纯滞后控制系统对阶跃信号有⽆超调?为什么?答:纯滞后控制系统对阶跃信号有超调,因为由纯滞后系统输出特性可知,图形在y(t)=1(t)上、下摆动,最后趋于稳定,⽽超调量是描述系统相对稳定性的⼀个动态指标,所以对阶跃信号有超调。
纯滞后单容课程设计一、课程目标知识目标:1. 让学生掌握纯滞后单容系统的基本概念和特性,理解其数学模型及在控制系统中的应用。
2. 使学生了解纯滞后单容系统的时间响应特性,包括阶跃响应、冲击响应等,并学会分析其稳定性。
3. 帮助学生掌握纯滞后单容系统的PID控制策略,了解参数整定方法及其对系统性能的影响。
技能目标:1. 培养学生运用数学工具分析纯滞后单容系统动态特性的能力。
2. 提高学生设计纯滞后单容系统PID控制器的能力,能够针对具体问题进行参数整定。
3. 培养学生通过仿真软件对纯滞后单容系统进行建模、仿真和分析的能力。
情感态度价值观目标:1. 激发学生对自动控制原理的学习兴趣,培养其探索精神。
2. 培养学生具备团队协作意识,能够与同学共同分析问题、解决问题。
3. 增强学生的工程意识,使其认识到自动控制在实际工程中的应用价值。
本课程针对高年级本科生,在学生已具备一定控制系统基础知识和数学基础的前提下,以提高学生对纯滞后单容系统分析、设计和应用能力为目标。
课程内容紧密联系实际,注重培养学生的实际操作能力,通过理论与实践相结合的教学方法,使学生能够更好地理解和掌握纯滞后单容系统的相关知识。
在教学过程中,关注学生的个体差异,充分调动学生的学习积极性,引导他们主动参与课堂讨论,提高教学效果。
二、教学内容本章节教学内容主要包括以下三个方面:1. 纯滞后单容系统基本概念- 系统定义及特性- 数学模型及其表达- 系统稳定性分析2. 纯滞后单容系统时间响应特性- 阶跃响应分析- 冲击响应分析- 系统性能指标3. 纯滞后单容系统PID控制策略- PID控制器设计原理- 参数整定方法- 控制效果分析教学内容按照以下进度安排:1. 第1周:纯滞后单容系统基本概念及数学模型2. 第2周:系统稳定性分析及时间响应特性3. 第3周:PID控制策略及其参数整定方法4. 第4周:控制效果分析及仿真实验教材章节关联:1. 第1周内容对应教材第3章第1节2. 第2周内容对应教材第3章第2节3. 第3周内容对应教材第4章第3节4. 第4周内容对应教材第4章第4节本教学内容旨在使学生系统掌握纯滞后单容系统的相关知识,通过理论与实践相结合,提高学生对自动控制原理的理解和应用能力。