不定积分-教案
- 格式:docx
- 大小:459.08 KB
- 文档页数:12
微积分不定积分教案第一章:不定积分的概念与性质教学目标:1. 理解不定积分的概念;2. 掌握不定积分的性质;3. 学会计算基本的不定积分。
教学内容:1. 不定积分的定义;2. 不定积分的符号表示;3. 不定积分的性质;4. 基本不等式的积分;5. 基本三角函数的积分。
教学活动:1. 引入不定积分的概念,引导学生理解不定积分表示的是一个函数的积累效果;2. 讲解不定积分的符号表示,让学生熟悉积分符号;3. 通过示例演示不定积分的性质,如线性函数的积分是线性函数的常数倍,指数函数的积分是指数函数的倒数等;4. 引导学生掌握基本不等式的积分公式,如\( \int x^n dx = \frac{x^{n+1}}{n+1} + C \);(n ≠-1);5. 教授基本三角函数的积分公式,如\( \int \sin x dx = -\cos x + C \),\( \int \cos x dx = \sin x + C \) 等;6. 进行课堂练习,巩固所学内容。
作业布置:1. 练习计算基本不等式的积分;2. 练习计算基本三角函数的积分;3. 完成课后习题。
第二章:换元积分法教学目标:1. 理解换元积分法的概念;2. 掌握换元积分法的步骤;3. 学会运用换元积分法计算不定积分。
教学内容:1. 换元积分法的定义;2. 换元积分法的步骤;3. 常用换元积分法;4. 换元积分法的应用。
教学活动:1. 引入换元积分法,让学生理解通过变量替换简化积分过程;2. 讲解换元积分法的步骤,如选择合适的换元变量,构造新的函数等;3. 介绍常用的换元积分法,如代数换元法、三角换元法等;4. 通过示例演示换元积分法的应用,如计算\( \int \sqrt{1+x^2} dx \) 等;5. 进行课堂练习,巩固所学内容。
作业布置:1. 练习运用换元积分法计算不定积分;2. 完成课后习题。
第三章:分部积分法教学目标:1. 理解分部积分法的概念;2. 掌握分部积分法的步骤;3. 学会运用分部积分法计算不定积分。
不定积分整章教案1 NO.设是定义在区间上的函数,如果存在函数,对于,f(x)F(x),x,II都有 , 或 , F(x),f(x)dF(x),f(x)dx则称函数为函数在区间上的一个. F(x)f(x)I2,,例如,cosx是的原函数,因为 .又因为, sinx(sinx),cosx(x),2x222,x ,所以x和x,1都是2的原函数. (x,1),2x一个函数若有原函数,原函数是否唯一?(不唯一,无数多个)同一函数的无数多个原函数之间是什么关系?如果,为函数在区间上的任意两个原函数, F(x)G(x)f(x)I,, , , (F(x)),f(x)(G(x)),f(x),于是有 ,,. (G(x),F(x)),G(x),F(x),f(x),f(x),0所以 ,或 .G(x),F(x),CG(x),F(x),C:任意两个原函数相差一个常数。
函数的所有原函数称为的,记作:. f(x)f(x)f(x)dx,其中“x”称为积分号,称为被积函数,称为被积表达式,称f(x)f(x)dx,为积分变量.由前面的讨论可知:如果是的一个原函数,那么 . F(x)f(x)f(x)dx,F(x),C,dx 求. 2,1,x11,解由于,所以是的一个原函数,因此 (arctanx),arctanx221,x1,x2 NO.dx . ,arctanx,C2,1,x, 求. dxx,1,,1,,,1,,解当,(x),(,,1)x时,我们知道,,亦有 ,,,,1(x),x,,1 11,,,1,,,1即是的一个原函数,因此 ; xxxdx,x,C,,,1,1,11,当时,我们所要求的不定积分为 .因为,因此 ,,,1dx(lnx),,xx1 . dx,lnx,C,xd1)或 ; ,,f(x)dx,f(x),,df(x)dx,f(x)dx,,dx2), 或. F(x)dx,F(x),CdF(x),F(x),C,,如果函数在某一区间上连续,则在这区间上函数可积 f(x)f(x),,1x, (1) xdx,,C(,,,1),(是常数); (2) ; kkdx,kx,C,,,,111 (3) ; (4) ; dx,lnx,Cdx,arctanx,C2,,x1,xdx (5) ,arcsinx,C; (6) ; cosxdx,sinx,C,,21,x(7) ; (8) sinxdx,,cosx,C,dx2; ,secxdx,tanx,C2,,cosxdx2 (9) ,cscxdx,,cotx,C; (10) ; secxtanxdx,secx,C,,2,sinxxx (11); (12); cscx,cotxdx,,cscx,Cedx,e,C,,3 NO.xaxadx,,C (13); (14); (a,1)shxdx,chx,C,,lna(15). chxdx,shx,C,(1) [f(x),g(x)]dx,f(x)dx,g(x)dx,,,,事实上,,,[f(x)dx,g(x)dx],[f(x)dx],[g(x)dx],f(x),g(x). ,,,, :有限个函数的和的情况也有这一性质.(为常数,). kk,0kf(x)dx,kf(x)dx,,1 求. [3,2x,,5sinx]dx2,x1dx 解 [3,2x,,5sinx]dx,3dx,2xdx,,5sinxdx22,,,,,xx221,,xx ,3(x,C),2(,C),(,C),5(,cosx,C) 12342,2,112 ,. 3x,x,,5cosx,Cx2xx1,, . dx2,xx(1,)21111xx1,,解 ,(,)dx,dx,dxdx22,,,2,xx1,x1,xxx(1,),. ,Carctanx,lnx4x 求dx. 2,x1,4224,1,1(,1)(,1),1xxxx 解 dxdxdx== 222,,,x1,1,1,xx4 NO.1122, (x,1,)dx,xdx,dx,dx22,,,,,1,1xx3x ,,x,arctanx,C. 3x2 求 sindx,2x112 解 sindx,(1,cosx)dx,(1,cosx)dx,,,22211 ,. [dx,cosxdx],(x,sinx),C,,221 已知曲线在其上点的切线斜率,且曲线经过点P(x,y)k,x45y, ,求此曲线方程. (2)2 1 解设曲线方程为,,由假设, y,f(x)f(x),x4x112故 ,= ,,,,fx,fxdx,xdxx,C ,,84图5.1-1 2x5即 y,,C,为常数,曲线经过点(2,),以此点坐标代入方程,得 C82254x y,,2 ,解得 .因此所求方程为. ,,CC,28282 已知某产品的边际收入函数为,xR(x),60,2x,2x(为销售量),求总收入函数. R(x)2解 , R(x),R(x)dx,(60,2x,2x)dx,,223 . ,60x,x,x,C3当时,,从而,于是 x,0R,0C,0223 R(x),60x,x,x35 NO.求. cos2xdx,1解 x,u ,令2,得 cos2xdx,cos2xd(2x),,2111 , cos2xd(2x),cosudu,sinu,C,2221代回原变量,得 . cos2xdx,sin2x,C,2一般的我们有如下结论:设u是的连续函数,且, f(u)f(u)du,F(u),C,设,,有连续的导数,则=. u,,(x),(x)F[,(x)],Cf[,(x)],(x)dx,dF[,(x)]证明只需证明 ,即可. ,f[,(x)],(x)dxdF[,(x)]dF[,(x)],,,,,又由,故 ,F[,(x)],(x)F(u),f(u),f[,(x)],(x)dxdx1 求. dx,3,2x解令,则,故 u,3,2xdu,,2dxdx1d(3,2x)1du11. ,,,,,,lnu,C,,ln3,2x,C,,,3,2x23,2x2u22求,tanxdx.sinx解 = 因为, dx,sinxdx,dcosxtanxdx,,cosx设 u,cosx,则,因此, du,,sinxdxsinxdu ,tanxdx,=. dx,,,lnu,C,,lncosx,C,,cosxu练习:. ,cotxdx,lnsinx,C熟练以后,可直接写出结果:1 求. dx22,,ax6 NO.1111x1x1,dx,d(),arctan,C 解 =. dx,2,22,xxaaaaa,ax221,()1,()aadx 求(a>). 0,22ax,xd()dx1dxxa 解 ,,,arcsin,C. ,,,22aaxxa,x221,()1,()aa1求. dx22,,xa 1111解由于,所以 ,(,)22ax,ax,a2x,adx111111 ,(,)dx,(dx,dx)22,,,,,,,,2axaxa2axaxa,xa111 ,[d(x,a),d(x,a)],,2ax,ax,a1x,a1 ,, ln,C. [lnx,a,lnx,a],C2ax,a2a3求. sinxdx,322 解 sinxdx,sinxsinxdx,,(1,cosx)d(cosx),,,132 ,=. ,cosx,cosx,C,d(cosx),cosxd(cosx),,322求与 . cosxdxsinxdx,,1,cos2x11x12 解 =. dx,dx,cos2xdx,,sin2x,Ccosxdx,,,,22224 1,cos2xx12 . sinxdx,dx,,sin2x,C,,224求. cscxdx,7 NO.xxx2d()secd()dxdx222解 ,,,cscxdx,,,,,,xxxxxsinx22sincostancostan22222xd(tan)x2 ,. ,,Clntan,x2tan2xx22sinsin1,cosxx22又 =. ,,cscx,cotxtan,xsinxsinx2cos2所以上述不定积分又可表示为. cscxdx,lncscx,cotx,C,练习: secxdx,lnsecx,tanx,C,求sin2xcos3xdx. ,解利用积化和差公式1 , sin,cos,,,,sin(,,,),sin(,,,)21得 , sin2xcos3x,,,sin5x,sinx2111所以 sin2xcos3xdx, (sin5x,sinx)dx,sin5xdx,sinxdx,,,,22211 ,. ,cos5x,cosx,C102设函数,,严格单调、可导且,设具有原函x,,(t),(t),0f[,(t)],(t),1数.则,,(x)f[,(t)],(t)dt],其中是的反函数. x,,(t)f(x)dx,[,1,,t,,(x) ,1 证设 ,,[F(,(x)),C],f(x),只需证 f[,(t)],(t)dt,F(t),C,1ddFtdt(),1而 ,,f[,(t)],(t),,f[,(t)],f(x). F,x,,(()),,(t)dxdtdx8 NO.dx求. ,1,x2 解作变量代换 x,t( 以消去根式),于是,,从而x,tdx,2tdtdxt1 ,2dt,2(1,)dt ,,,1,t1,t1,x,2t,2ln(1,t),C,2x,2ln(1,x),C.22求aa,xdx (>). 0,解积分难点在于被积函数中的根号,为去掉根号,令,,22 , , 则 ,, x,asint,,t,dx,acostdta,x,acost222222 a,xdx,acost,acostdt,acostdt ,,,21,cos2ta12,, ,adt,t,sin2t,C, ,,,222,,22xx,ax回代变量,由cos,,得 ,, sint,t,arcsintaaa222axxa,x22 故有 a,xdx,(arcsin,),C 2,2aa2axx22 ,arcsin,a,x,C. 22adx 求> (a0),22x,a22解利用三角公式 1,tant,sect来化去根式,,,2 设 dx,asectdt << ,则 , (,)x,atantt22222222 ,于是 x,a,a,atant,a1,tant,asect9 NO.2asectdx,,dt,,sectdt . ,lnsect,tant,C,22asectx,a22x,xa由 sec,,得 , 因此, tant,taa22xx,adx ,ln(,),C ,22aax,a22 C,C,lna, 其中 . ,ln(x,x,a),C11dx 求(a> 0),22xa,解设x>,令, 0x,acht22 利用公式cht,sht,1 有222222 , dx,ashtdtx,a,a(cht,1),asht,ashtdxasht于是有 ,dt,t,C, ,,22ashtx,a22,xaxt注意:,,,,两边取导数得 eshtchtaa22 t,ln(x,x,a),lnadx22所以 ,ln(x,x,a),CC,C,lna,其中 . 11,22x,adx求 ,x1,e2dtx2 解为化去根式,令x,lnt,2lnt,则,, dx,e,tt21,,ttdx ,dt,2dt ,,,x(1,)(1,)tttt1,e10 NO.11,, ,2,dt,2[lnt,ln1,t],C ,,,t1,t,,2t,, . ,ln,C,,1,t,,2x,,edxx将回代得 . ,,Ct,eln,,,xx1,e,e1,,,,dx求 . 2,2x,4x,3dx1dx1dx 解 ,,2,,,31222x,4x,322x,2x,(x,1),22111x,1 ,d(x,1),,2arctan,C,112222(x,1),()222,arctan2(x,1),C . 2dx 求 . ,24x,9dx1d(2x)dx 解 ,,,,,2222224x,9(2x),3(2x),312 . ,ln(2x,4x,9),C211 NO.,,,,,, ,移项得, . (uv),uv,uvuv,(uv),uv对这个等式两边求不定积分,得,,. (1) uvdx,uv,uvdx,,简便起见,公式(1)常写成下面的形式:. (2) udv,uv,vdu,,求. xcosxdx,解这个积分用换元积分法不易求得结果。
不定积分的概念教案Lesson Plan on the Concept of Indefinite Integral教学目标:1.了解不定积分的基本概念及意义。
2.掌握不定积分的符号表示和性质。
3.学会计算基本的不定积分。
教学内容:Introduction:In this lesson, we will introduce the concept of indefinite integral and understand its significance.We will also explore the notation and properties of indefinite integrals.引入:本节课我们将介绍不定积分的基本概念及其意义。
我们将探讨不定积分的符号表示和性质。
Section 1: Definition and Significance of Indefinite Integral1.1 Definition:An indefinite integral of a function f(x) is a function whose derivative is f(x), and it is denoted by ∫f(x)dx.The process of finding an indefinite integral is called antiderivative.1.2 Significance:Indefinite integrals play a crucial role in calculus.They are used tosolve problems involving area, volume, and accumulation.They also provide the foundation for calculating definite integrals, which are used to find exact values of functions.1.1 定义:函数f(x)的不定积分是一个导数为f(x)的函数,用符号∫f(x)dx表示。
不定积分教案范文一、教学目标:1.熟练掌握不定积分的概念和性质。
2.能够运用基本积分公式求不定积分。
3.能够运用换元法、分部积分法、有理函数积分法等方法求解不定积分。
4.能够运用不定积分的性质解决实际问题。
二、教学内容:1.不定积分的基本概念和性质。
2.基本积分公式及其运用。
3.换元法求不定积分。
4.分部积分法求不定积分。
5.有理函数积分法求不定积分。
6.不定积分的应用。
三、教学过程:1.不定积分的基本概念和性质:不定积分是微积分中的重要内容,是函数的一个全体定义域上的原函数集合。
具体来说,设函数 f(x) 在区间 [a, b] 上连续,则函数 F(x)在区间 [a, b] 上的不定积分是 f(x) 的一个原函数,记作∫f(x)dx=F(x)+C,其中 F(x) 称为 f(x) 的一个原函数,C 为任意常数。
不定积分具有以下性质:(1)积分的线性性质:∫[af(x)+bg(x)]dx=a∫f(x)dx+b∫g(x)dx;(2)积分和求导的逆关系:如果F(x)是f(x)的一个原函数,则F'(x)=f(x);(3)换元积分法:设 F(x) 是 f(x) 的一个原函数,g(x) 是可导函数,则∫f[g(x)]g'(x)dx=F[g(x)]+C;(4)分部积分法:设 F(x) 和 G(x) 分别是 f(x) 和 g(x) 的原函数,则∫f(x)g'(x)dx=F(x)g(x)-∫F'(x)g(x)dx。
2.基本积分公式及其运用:(1)常数函数积分:∫kdx=kx+C,其中 k 为常数。
(2)幂函数积分:∫x^n dx=(n+1)x^(n+1)/(n+1)+C,其中 n 为任意实数,n ≠ -1(3)指数函数积分:∫e^xdx=e^x+C。
(4)三角函数积分:a. ∫sinxdx=-cosx+C;b. ∫cosxdx=sinx+C。
(5)倒数函数积分:∫1/xdx=ln,x,+C。
第五章不定积分教学安排说明章节题目:5.1 不定积分的概念5.2 不定积分的性质5.3 换元积分法5.4 分部积分法学时分配:共6学时。
5.1 不定积分的概念1学时5.2 不定积分的性质1学时5.3 换元积分法2学时5.4 分部积分法2学时本章教学目的与要求:理解并掌握原函数与不定积分的概念;熟练掌握不定积分的基本公式和基本积分方法,熟练地利用换元积分法与分部积分法求不定积分。
课堂教学方案(一)课程名称:5.1 不定积分的概念;5.2 不定积分的性质授课时数:2学时授课类型:理论课教学方法与手段:讲授法教学目的与要求:理解并掌握原函数与不定积分的概念;熟练掌握不定积分的基本公式,了解不定积分的基本运算法则,能够用不定积分的基本公式和性质求不定积分教学重点、难点:教学重点:原函数和不定积分的概念,不定积分的性质及几何意义,不定积分的基本公式;教学难点:不定积分的概念及几何意义和用不定积分的性质求不定积分。
教学内容5.1 不定积分的概念1.原函数与不定积分在微分学中,我们讨论了求已知函数的导数与微分的问题。
但是,在科学、技术和经济的许多问题中,常常还需要解决相反的问题,也就是要由一个函数的已知导数(或微分),求出这个函数。
这种由函数的已知导数(或微分)去求原来的函数的运算,称为不定积分,这是积分学的基本问题之一。
定义1 如果函数)(x f 与)(x F 为定义在某同一区间内的函数,并且处处都有 )()('x f x F =或d ()()d F x f x x =,则称)(x F 是)(x f 的一个..原函数. 根据导数公式或微分公式,我们很容易得出一些简单函数的原函数.如x x cos )(sin =', 故x sin 是x cos 的一个原函数;x x cos )1(sin ='+, 故1sin +x 也是x cos 的一个原函数;x x 2)(2=', 故2x 是x 2的一个原函数;x x 2)2(2='+, 故2x 也是x 2的一个原函数.......由此可见,一个函数的原函数并不是唯一的.对此有以下两点需要说明:第一,若在某区间内)(x F 为)(x f 的一个原函数,即)()(x f x F =',则对任意常数C , 由于)())((x f C x F ='+,所以函数C x F +)(都是)(x f 的原函数.这说明如果函数)(x f 有原函数,那么它就有无限多个原函数.第二,若在某区间内)(x F 为)(x f 的一个原函数,那么,)(x f 的其它原函数和)(x F 有什么关系?设()x Φ是)(x f 在同一区间上的另一个原函数,即()()x f x 'Φ=,于是有[()()]()()0,x F x x F x '''Φ-=Φ-=由于导数恒为零的函数必为常数,因此11()()()x F x C C Φ-=为某个常数,即1()().x F x C Φ=+这说明)(x f 的任意两个原函数之间只差一个常数.因此,如果)(x F 是)(x f 的一个原函数,则)(x f 的全体原函数可以表示为C x F +)( (其中C 为任意常数).为了更方便地表述一个函数的全体原函数,我们引入下面不定积分的概念.2.不定积分的概念定义2 函数)(x f 在某区间内的全体原函数称为)(x f 在该区间内的不定积分,记为()d f x x ,其中记号⎰称为积分号,)(x f 称为被积函数,()d f x x 称为被积表达式,x 称为积分变量.即 ()d ()f x x F x C =+⎰.这说明,要计算函数的不定积分,只需求出它的一个原函数,再加上任意常数C 就可以了.例1 求x x f 2)(=的不定积分.解:因为x x 2)(2=',所以2()d 2d .f x x x x x C ==+⎰⎰例2 求x e x f =)(的不定积分.解:因为x x e e =')(,所以()d d .x x f x x e x e C ==+⎰⎰3.不定积分学的几何意义不定积分的几何意义:若)(x F 是)(x f 的一个原函数,则称)(x F y =的图象为)(x f 的一条积分曲线.于是,)(x f 的不定积分在几何上表示)(x f 的某一条积分曲线沿纵轴方向任意平移所得一组积分曲线组成的曲线族.若在每一条积分曲线上横坐标相同的点处作切线,则这些切线互相平行(如图4-1),任意两条曲线的纵坐标之间相差一个常数.给定一个初始条件,就可以确定一个常数C 的值,因而就确定了一个原函数,于是就确定了一条积分曲线.例3设曲线通过点)2,1(,且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线的方程.解:设所求的曲线方程为)(x f y =,按题设,曲线上任一点),(y x 处的切线斜率为,2d d x xy = 说明)(x f y =是x 2的一个原函数.因为x 2的全体原函数为C x x x +=⎰2d 2, 所以曲线方程为C x x f y +==2)(,又由于曲线过点)2,1(,故2)1(=f , ,21=+C 解得1=C ,于是所求曲线为 2()1y f x x ==+.例4 一物体作直线运动,速度为时,物体所经过的当s t s m t t v 1,/12)(2=+=路程为3m ,求物体的运动方程。
微积分不定积分教案一、教学目标1. 理解不定积分的概念和物理意义。
2. 掌握基本积分公式和积分方法。
3. 能够运用不定积分解决实际问题。
二、教学内容1. 不定积分的定义和性质。
2. 基本积分公式:幂函数、指数函数、对数函数、三角函数的积分。
3. 换元积分法:代数换元、三角换元。
4. 分部积分法。
5. 积分在物理、经济学等领域的应用。
三、教学重点与难点1. 重点:不定积分的概念、性质和基本积分公式。
2. 难点:换元积分法、分部积分法的运用。
四、教学方法与手段1. 采用讲授法,讲解不定积分的概念、性质和积分方法。
2. 利用多媒体课件,展示积分过程和应用实例。
3. 引导学生通过讨论、练习,巩固所学知识。
五、教学安排1. 第一课时:介绍不定积分的定义、性质和基本积分公式。
2. 第二课时:讲解换元积分法。
3. 第三课时:讲解分部积分法。
4. 第四课时:举例分析不定积分在实际问题中的应用。
5. 第五课时:课堂练习和总结。
六、教学评估1. 课堂练习:布置相关的不定积分题目,检查学生对基本积分公式和积分方法的掌握程度。
2. 课后作业:布置综合性的不定积分题目,要求学生在课后完成,以检验学生对课堂内容的理解和应用能力。
3. 课堂讨论:鼓励学生积极参与课堂讨论,提问和解答问题,评估学生对不定积分概念的理解和分析问题的能力。
七、教学资源1. 教材:选用权威的微积分教材,提供系统的理论知识。
2. 多媒体课件:制作精美的多媒体课件,通过图像、动画等形式展示积分过程,增强学生的直观理解。
3. 练习题库:整理一套丰富的练习题库,包括不同难度层次的题目,以满足不同学生的学习需求。
4. 应用案例:收集一些实际问题,用于讲解不定积分在实际中的应用。
八、教学建议1. 强化基础知识:在学习不定积分之前,确保学生掌握了函数、极限、导数等基本概念,以便能够顺利理解不定积分的性质和计算方法。
2. 逐步引导:从简单的积分公式开始,逐步引导学生掌握更复杂的积分方法,避免一开始就给出复杂的公式和方法,让学生能够逐步建立信心。
第四章 不定积分知识结构图: ⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧分部积分法第二换元积分法第一换元积分法直接积分法求不定积分基本公式性质几何意义定义不定积分原函数教学目的要求:1.理解原函数与不定积分的概念,理解两者的关系,理解不定积分与导数的关系;掌握不定积分的几何意义与基本性质。
2.理解与掌握积分的基本公式,掌握不定积分的基本运算,会熟练地用直接积分法、第一类换元积分法、第二换元积分法(代数换元)、分部积分法求不定积分。
3.了解不定积分在经济问题中的应用。
教学重点:1.原函数与不定积分的概念2.不定积分的性质与基本积分公式 3.直接积分法 4.换元积分法 5.分部积分法 教学难点:1.不定积分的几何意义2.凑微分法、分部积分法求不定积分第一节 不定积分的概念与基本公式【教学内容】原函数与不定积分的概念、不定积分的几何意义、不定积分的基本性质、不定积分的基本公式。
直接积分法求函数的不定积分。
【教学目的】理解原函数与不定积分的概念,理解不定积分的几何意义;理解并掌握不定积分的基本性质;熟练掌握用直接积分法计算一些简单函数的不定积分。
【教学重点】1.;;4.不定积分的基本性质;5.不定积分的基本公式;6.直接积分法计算不定积分。
【教学难点】1.理解不定积分的几何意义;2.记忆不定积分公式。
【教学时数】2学时 【教学进程】一、原函数与不定积分的概念(一)原函数的概念前面我们所学的知识是:已知一个函数,求这个函数的导数;在现实生活中往往有:已知一个函数的导数,求原来这个函数的问题,如:①已知曲线上任意一点p(x,y)处的切线斜率为x k 2=,求此曲线的方程。
②已知某产品的边际成本MC ,要求该产品总成本的变化规律()C C q =. 1.原函数定义定义4.1 设)(x f 是定义在区间I 内的已知函数.如果存在可导函数)(x F ,使对于任意的I x ∈,都有)()(x f x F ='或dx x f x dF )()(=则称函数)(x F 是函数)(x f 的一个原函数。
第四章 不定积分教学目的: 1、 理解原函数概念、不定积分的概念。
2、 掌握不定积分的基本公式,掌握不定积分的性质,掌握换元积分法(第一,第二)与分部积分法。
3、 会求有理函数、三角函数有理式和简单无理函数的积分。
教学重点:1、 不定积分的概念;2、 不定积分的性质及基本公式;3、 换元积分法与分部积分法。
教学难点:1、换元积分法;2、分部积分法;3、三角函数有理式的积分。
§4. 1 不定积分的概念与性质一、原函数与不定积分的概念定义1 如果在区间I 上, 可导函数F (x )的导函数为f (x ), 即对任一x ∈I , 都有F '(x )=f (x )或dF (x )=f (x )dx ,那么函数F (x )就称为f (x )(或f (x )dx )在区间I 上的原函数.例如 因为(sin x )'=cos x , 所以sin x 是cos x 的原函数.又如当x ∈(1, +∞)时,因为xx 21)(=', 所以x 是x 21的原函数. 提问:cos x 和x21还有其它原函数吗? 原函数存在定理 如果函数f (x )在区间I 上连续, 那么在区间I 上存在可导函数F (x ), 使对任一x ∈I 都有F '(x )=f (x ).简单地说就是: 连续函数一定有原函数.两点说明:第一, 如果函数f (x )在区间I 上有原函数F (x ), 那么f (x )就有无限多个原函数, F (x )+C 都是f (x )的原函数, 其中C 是任意常数.第二, f (x )的任意两个原函数之间只差一个常数, 即如果Φ(x )和F (x )都是f (x )的原函数, 则 Φ(x )-F (x )=C (C 为某个常数).定义2 在区间I 上, 函数f (x )的带有任意常数项的原函数称为f (x )(或f (x )dx )在区间I 上的不定积分, 记作⎰dx x f )(.其中记号⎰称为积分号, f (x )称为被积函数, f (x )dx 称为被积表达式, x 称为积分变量.根据定义, 如果F (x )是f (x )在区间I 上的一个原函数, 那么F (x )+C 就是f (x )的不定积分, 即⎰+=C x F dx x f )()(.因而不定积分dx x f )(⎰可以表示f (x )的任意一个原函数.例1. 因为sin x 是cos x 的原函数, 所以C x xdx +=⎰sin cos .因为x 是x21的原函数, 所以C x dx x+=⎰21.例2. 求函数xx f 1)(=的不定积分. 解:当x >0时, (ln x )'x1=, C x dx x+=⎰ln 1(x >0); 当x <0时, [ln(-x )]'xx 1)1(1=-⋅-=, C x dx x+-=⎰)ln( 1(x <0). 合并上面两式, 得到C x dx x+=⎰||ln 1(x ≠0). 例3 设曲线通过点(1, 2), 且其上任一点处的切线斜率等于这点横坐标的两倍, 求此曲线的方程.解 设所求的曲线方程为y =f (x ), 按题设, 曲线上任一点(x , y )处的切线斜率为y '=f '(x )=2x ,,即f (x )是2x 的一个原函数.因为 ⎰+=C x xdx 22,故必有某个常数C 使f (x )=x 2+C , 即曲线方程为y =x 2+C .因所求曲线通过点(1, 2), 故2=1+C , C =1.于是所求曲线方程为y =x 2+1.积分曲线: 函数f (x )的原函数的图形称为f (x )的积分曲线.从不定积分的定义, 即可知下述关系: ⎰=)(])([x f dx x f dxd , 或 ⎰=dx x f dx x f d )(])([;又由于F (x )是F '(x )的原函数, 所以⎰+='C x F dx x F )()(,或记作 ⎰+=C x F x dF )()(.由此可见, 微分运算(以记号d 表示)与求不定积分的运算(简称积分运算, 以记号⎰表示)是互逆的. 当记号⎰与d 连在一起时, 或者抵消, 或者抵消后差一个常数.二、基本积分表(1)C kx kdx +=⎰(k 是常数), (2)C x dx x ++=+⎰111μμμ, (3)C x dx x+=⎰||ln 1, (4)C e dx e x x +=⎰, (5)C aa dx a x x +=⎰ln , (6)C x xdx +=⎰sin cos ,(7)C x xdx +-=⎰cos sin , (8)C x xdx dx x +==⎰⎰tan sec cos 122, (9)C x xdx dx x+-==⎰⎰cot csc sin 122,(10)C x dx x+=+⎰arctan 112, (11)C x dx x +=-⎰arcsin 112, (12)C x xdx x +=⎰sec tan sec ,(13)C x dx x +-=⎰csc cot csc ,(14)C x dx x +=⎰ch sh ,(15)C x dx x +=⎰sh ch .例4⎰⎰-=dx x dx x 331C x C x +-=++-=+-21321131. 例5 ⎰⎰=dxx dx x x 252C x ++=+1251251C x +=2772C x x +=372. 例6 ⎰⎰-=dx x x x dx 343C x ++-=+-134134C x +-=-313C x+-=33. 三、不定积分的性质性质1 函数的和的不定积分等各个函数的不定积分的和, 即⎰⎰⎰+=+dx x g dx x f dx x g x f )()()]()([.这是因为, ])([])([])()(['+'='+⎰⎰⎰⎰dx x g dx x f dx x g dx x f =f (x )+g (x ).性质2 求不定积分时, 被积函数中不为零的常数因子可以提到积分号外面来, 即 ⎰⎰=dx x f k dx x kf )()((k 是常数, k ≠0).例7. ⎰⎰-=-dx x x dx x x )5()5(21252 ⎰⎰-=dx x dx x 21255⎰⎰-=dx x dx x 21255 C x x +⋅-=232732572. 例8 dx x x x dx xx x x dx x x )133(133)1(222323-+-=-+-=-⎰⎰⎰ C x x x x dx xdx x dx dx x +++-=-+-=⎰⎰⎰⎰1||ln 3321113322.例9 ⎰⎰⎰-=-xdx dx e dx x e x x cos 3)cos 3(C x e x +-=sin 3.例10 C e C e e dx e dx e x x x x x x ++=+==⎰⎰2ln 12)2ln()2()2(2. 例11 dx xx dx x x x x dx x x x x )111()1()1()1(122222++=+++=+++⎰⎰⎰ C x x dx x dx x++=++=⎰⎰||ln arctan 1112. 例12 dx x x x dx x x dx x x ⎰⎰⎰++-+=++-=+222242411)1)(1(1111 ⎰⎰⎰⎰++-=++-=dx xdx dx x dx x x 222211)111( C x x x ++-=arctan 313. 例13 ⎰⎰⎰⎰-=-=dx xdx dx x dx x 222sec )1(sec tan= tan x - x + C .例14 ⎰⎰⎰-=-=dx x dx x dx x )cos 1(212cos 1 2sin 2 C x x +-=)sin (21. 例15 C x dx x dx xx +-==⎰⎰cot 4sin 142cos 2sin 1222.§4. 2 换元积分法一、第一类换元法设f (u )有原函数F (u ), u =ϕ(x ), 且ϕ(x )可微, 那么, 根据复合函数微分法, 有d F [ϕ(x ) ]=d F (u )=F '(u )d u = F ' [ϕ(x ) ] d ϕ(x )= F '[ϕ(x ) ]ϕ'(x )d x ,所以 F '[ϕ(x )]ϕ'(x )dx = F '[ϕ(x )] d ϕ(x )= F '(u )d u = d F (u )=d F [ϕ(x ) ],因此 ⎰⎰'='')()]([)()]([x d x F dx x x F ϕϕϕϕ⎰⎰='=)()(u dF du u F C x F x dF +==⎰)]([)]([ϕϕ.即 )(])([)()]([)()]([x u du u f x d x f dx x x f ϕϕϕϕϕ=⎰⎰⎰=='=[F (u ) +C ] u = ϕ(x ) = F [ϕ(x )]+C .定理1 设f (u )具有原函数, u =ϕ(x )可导, 则有换元公式⎰⎰⎰+=+==='C x F C u F du u f x d x f dx x x f )]([)()()()]([)()]([ϕϕϕϕϕ .被积表达式中的dx 可当作变量x 的微分来对待, 从而微分等式ϕ'(x )dx =du 可以应用到被积表达式中.在求积分⎰dx x g )(时, 如果函数g (x )可以化为g (x )= f [ϕ(x )]ϕ'(x )的形式, 那么⎰dx x g )()(])([)()]([x u du u f dx x x f ϕϕϕ=⎰⎰='=.例1. ⎰⎰'⋅=dx x x xdx )2(2cos 2cos 2⎰=)2(2cos x xdC u udu +==⎰sin cos =sin 2x +C .例2. dx x x dx x ⎰⎰'++=+)23(23121231⎰++=)23(23121x d x C u dx u +==⎰||ln 21121C x ++=|23|ln 21. 例3. ⎰⎰⎰⎰=='=du e x d e dx x e dx xe u x x x )()(222222C e C e x u +=+=2.例4. 22222121)(1211dx x dx x x dx x x ⎰⎰⎰-='-=- C u du u x d x +-=-=---=⎰⎰2321223121)1(121 C x +--=232)1(31.C u du u+-=-=⎰||ln 1 =-ln|cos x |+C .即 C x xdx +-=⎰|cos |ln tan .类似地可得C x xdx +=⎰|sin |ln cot .熟练之后, 变量代换就不必再写出了.例6. dx ax a dx x a ⎰⎰+=+2222)(1111C ax a a x d ax a +=+=⎰arctan 1)(1112. 即 dx x a ⎰+221C a xa +=arctan 1. 例7. C ax a a x d a x a dx a x +==⎰⎰sh ch ch . 例8. 当a >0时,⎰⎰-=-dx a x a dx x a 222)(1111C a x a x d a x +=-=⎰arcsin )(112. 即 dx x a ⎰-221C a x +=arcsin . 例9. ⎰⎰+--=-dx a x a x a dx a x )11(21122]11[21⎰⎰+--=dx a x dx a x a ])(1)(1[21⎰⎰++---=a x d ax a x d a x a C a x a x a ++--=|]|ln ||[ln 21C ax a x a ++-=||ln 21. 即 dx a x ⎰-221C a x ax a ++-=||ln 21. 例10. ⎰⎰⎰++=+=+xx d x x d x x dx ln 21)ln 21(21ln 21ln )ln 21( C x ++=|ln 21|ln 21.xC e x +=332. 含三角函数的积分:例12. ⎰⎰⋅=xdx x xdx sin sin sin 23⎰--=x d x cos )cos 1(2⎰⎰+-=x xd x d cos cos cos 2C x x ++-=3cos 31cos . 例13. ⎰⎰=x xd x xdx x sin cos sin cos sin 4252⎰-=x d x x sin )sin 1(sin 222⎰+-=x d x x x sin )sin sin 2(sin 642C x x x ++-=753sin 71sin 52sin 31. 例14. dx x xdx ⎰⎰+=22cos 1cos 2)2cos (21⎰⎰+=xdx dx ⎰⎰+=x xd dx 22cos 4121C x x ++=2sin 4121. 例15. dx x xdx 224)(cos cos ⎰⎰=⎰+=dx x 2)]2cos 1(21[ ⎰++=dx x x )2cos 2cos 21(412 ⎰++=dx x x )4cos 212cos 223(41 C x x x +++=)4sin 812sin 23(41 C x x x +++=4sin 3212sin 4183. 例16. ⎰⎰+=dx x x xdx x )5cos (cos 212cos 3cos C x x ++=5sin 101sin 21. 例17. ⎰⎰=dx x xdx sin 1csc ⎰=dx x x 2cos 2sin 21C x xxd x x x d +===⎰⎰|2tan |ln 2tan 2tan 2cos 2tan 22=ln |csc x -cot x |+C . 即 ⎰xdx csc =ln |csc x -cot x |+C .例18. ⎰⎰+=dx x xdx )2csc(sec πC x x ++-+=|)2cot()2 csc(|ln ππ =ln |sec x + tan x | + C .即 ⎰xdx sec =ln |sec x + tan x | + C .二、第二类换元法定理2 设x =ϕ(t )是单调的、可导的函数, 并且ϕ'(t )≠0. 又设f [ϕ(t )]ϕ'(t )具有原函数F (t ), 则有换元公式C x F t F dt t t f dx x f +=='=-⎰⎰)]([)()()]([)(1ϕϕϕ.其中t =ϕ-1(x )是x =ϕ(t )的反函数.这是因为)()]([1)()]([)(})]([{1x f t f dtdx t t f dx dt t F x F =='='='-ϕϕϕϕ. 例19. 求dx x a ⎰-22(a >0).解: 设x =a sin t , 22 ππ<<-t , 那么22x a -t a t a a cos sin 222=-=, dx =a cos t d t , 于是⎰⎰⋅=-tdt a t a dx x a cos cos 22C t t a tdt a ++==⎰)2sin 4121(cos 222. 因为ax t arcsin =, a x a a x t t t 222cos sin 22sin -⋅==, 所以 dx x a ⎰-22C t t a ++=)2sin 4121(2C x a x a x a +-+=22221arcsin 2.解: 设x =a sin t , 22 ππ<<-t , 那么⎰⎰⋅=-tdt a t a dx x a cos cos 22C t t a tdt a ++==⎰)2sin 4121(cos 222C x a x a x a +-+=22221arcsin 2. 提示:22x a -t a t a a cos sin 222=-=, dx =a cos tdt .提示: a x t arcsin =, ax a a x t t t 222cos sin 22sin -⋅==.例20. 求⎰+22a x dx (a >0). 解法一: 设x =a tan t , 22 ππ<<-t , 那么 22a x +t a a 222tan +=t a 2tan 1+==a sec t , dx =a sec 2t d t , 于是⎰+22a x dx ⎰⎰==tdt dt t a t a sec sec sec 2= ln |sec t + tan t |+C . 因为aa x t 22sec +=, a x t =tan , 所以 ⎰+22a x dx = ln |sec t + tan t |+C C a a x a x +++=)ln(22122)ln(C a x x +++=, 其中C 1=C -ln a .解法一: 设x =a tan t , 22 ππ<<-t , 那么 ⎰⎰⎰==+tdt dt t a t a a x dx sec sec sec 222=ln|sec t +tan t |+C C aa x a x +++=)ln(22122)ln(C a x x +++=, 其中C 1=C -ln a .提示:22a x +t a a 222tan +==a sec t , dx =a sec 2t dt ,提示:aa x t 22sec +=, a x t =tan .解法二: 设x =a sh t , 那么⎰+22a x dx C a x C t dt dt t a t a +=+===⎰⎰arsh ch ch C a x a x +⎪⎭⎫ ⎝⎛++=1)(ln 2122)ln(C a x x +++=, 其中C 1=C -ln a .提示: 22a x +222a t sh a +==a ch t , dx =a ch t d t .例23. 求⎰-22a x dx (a >0). 解: 当x >a 时, 设x =a sec t (20π<<t ), 那么 22a x -222sec a t a -=1sec 2-=t a =a tan t ,于是⎰-22a x dx ⎰⎰==tdt dt t a t t a sec tan tan sec = ln |sec t + tan t |+C . 因为aa x t 22tan -=, a x t =sec , 所以 ⎰-22a x dx = ln |sec t + tan t |+C C a a x a x +-+=||ln 22122)ln(C a x x +-+=, 其中C 1=C -ln a .当x <a 时, 令x =-u , 则u >a , 于是⎰-22a x dx C a u u a u du +-+-=--=⎰)ln(2222 C a x x +-+--=)ln(22122)ln(C a x x +---=,122222)ln(ln C a x x C aa x x +---=+---=, 其中C 1=C -2ln a .综合起来有⎰-22a x dx C a x x +-+=||ln 22. 解: 当x >a 时, 设x =a sec t (20π<<t ), 那么⎰-22a x dx ⎰⎰==tdt dt t a t t a sec tan tan sec C aa x a x C t t +-+=++=)ln(|tan sec |ln 22 C a x x +-+=)ln(22,其中C 1=C -ln a .当x <-a 时, 令x =-u , 则u >a , 于是⎰-22a x dx C a u u a u du +-+-=--=⎰)ln(2222 C a a x x C a x x +---=+-+--=22222ln )ln( 122)ln(C a x x +---=,其中C 1=C -2ln a .提示:22a x -222sec a t a -=1sec 2-=t a =a tan t .提示:aa x t 22tan -=, a x t =sec . 综合起来有C a x x a x dx +-+=-⎰||ln 2222. 补充公式: (16)C x xdx +-=⎰|cos |ln tan ,(17)C x xdx +=⎰|sin |ln cot ,(18)C x x xdx ++=⎰|tan sec |ln sec ,(19)C x x xdx +-=⎰|cot csc |ln csc , (20)C a x a dx x a +=+⎰arctan 1122, (21)C a x a x a dx a x ++-=-⎰||ln 21122, (22)C a x dx x a +=-⎰arcsin 122, (23)C a x x a x dx +++=+⎰)ln(2222,(24)C a x x a x dx +-+=-⎰||ln 2222.§4. 3 分部积分法设函数u =u (x )及v =v (x )具有连续导数. 那么, 两个函数乘积的导数公式为(uv )'=u 'v +uv ',移项得 uv '=(uv )'-u 'v .对这个等式两边求不定积分, 得⎰⎰'-='vdx u uv dx v u , 或⎰⎰-=vdu uv udv ,这个公式称为分部积分公式.分部积分过程:⋅⋅⋅='-=-=='⎰⎰⎰⎰ vdx u uv vdu uv udv dx v u .例1 ⎰⎰⎰-==xdx x x x xd xdx x sin sin sin cos =x sin x -cos x +C .例2 C e xe dx e xe xde dx xe x x x x x x +-=-==⎰⎰⎰.例3 ⎰⎰⎰-==2222dx e e x de x dx e x x x x x⎰⎰-=-=x x x x xde e x dx xe e x 2222⎰+-=dx e xe e x x x x 222=x 2e x -2xe x +2e x +C =e x (x 2-2x +2 )+C .例4 ⎰⎰⎰⋅-==dx xx x x xdx xdx x 121ln 21ln 21ln 222 C x x x xdx x x +-=-=⎰22241ln 2121ln 21. 例5 ⎰⎰-=x xd x x xdx arccos arccos arccosdx x x x x ⎰-+=211arccos )1()1(21arccos 2212x d x x x ---=⎰-C x x x +--=21arccos . 例6 ⎰⎰=2arctan 21arctan xdx xdx x ⎰+⋅-=dx x x x x 2221121arctan 21 ⎰+--=dx x x x )111(21arctan 2122C x x x x ++-=arctan 2121arctan 212. 例7 求xdx e x sin ⎰.解 因为⎰⎰⎰-==x d e x e xde xdx e x x x x sin sin sin sin⎰⎰-=-=x x x x xde x e xdx e x e cos sin cos sin⎰+-=x d e x e x e x x x cos cos sin⎰+-=x d e x e x e x x x cos cos sin⎰--=xdx e x e x e x x x sin cos sin ,所以 C x x e xdx e x x +-=⎰)cos (sin 21sin .例8 求⎰xdx 3sec .解 因为⎰⎰⎰=⋅=x xd xdx x xdx tan sec sec sec sec 23⎰-=xdx x x x 2tan sec tan sec⎰--=dx x x x x )1(sec sec tan sec 2⎰⎰+-=xdx xdx x x sec sec tan sec 3⎰-++=xdx x x x x 3sec |tan sec |ln tan sec ,所以 ⎰xdx 3sec C x x x x +++=|)tan sec |ln tan (sec 21. 例9 求⎰+=nn a x dx I )(22, 其中n 为正整数. 解 C a x aa x dx I +=+=⎰arctan 1221; 当n >1时,用分部积分法, 有dx a x x n a x x a x dx n n n ⎰⎰+-++=+--)()1(2)()(222122122dx a x a a x n a x x n n n ⎰+-+-++=--])()(1[)1(2)(222122122, 即 ))(1(2)(211221n n n n I a I n a x x I --++=---, 于是 ])32()([)1(2111222---++-=n n n I n a x x n a I . 以此作为递推公式, 并由C ax a I +=arctan 11即可得n I . 例10 求dx e x ⎰. 解 令x =t 2 , 则 , dx =2tdt . 于dx e x ⎰C x e C t e dt te x t t +-=+-==⎰)1(2)1(22.x d e x x d e dx e x x x ⎰⎰⎰==2)(2x d e e x de x x x x ⎰⎰-==222C x e C e e x x x x +-=+-=)1(222.第一换元法与分部积分法的比较:共同点是第一步都是凑微分⎰⎰=')()]([)()]([x d x f dx x x f ϕϕϕϕu x =)(ϕ令⎰du u f )(,⎰⎰=')()()()(x dv x u dx x v x u ⎰-=)()()()( x du x v x v x u .哪些积分可以用分部积分法?⎰xdx x cos , ⎰dx xe x , dx e x x ⎰2;⎰xdx x ln , ⎰xdx arccos , ⎰xdx x arctan ;xdx e x sin ⎰, ⎰xdx 3sec .2222⋅⋅⋅===⎰⎰⎰du e dx e dx xe u x x ,2222⋅⋅⋅=-==⎰⎰⎰dx e e x de x dx e x x x x x .§4. 4 几种特殊类型函数的积分一、有理函数的积分有理函数的形式:有理函数是指由两个多项式的商所表示的函数, 即具有如下形式的函数:mm m m n n n n b x b x b x b a x a x a x a x Q x P ++⋅⋅⋅++++⋅⋅⋅++=----11101110)()(, 其中m 和n 都是非负整数; a 0, a 1, a 2, ⋅ ⋅ ⋅ , a n 及b 0, b 1, b 2, ⋅ ⋅ ⋅ , b m 都是实数, 并且a 0≠0, b 0≠0. 当n <m 时, 称这有理函数是真分式; 而当n ≥m 时, 称这有理函数是假分式.假分式总可以化成一个多项式与一个真分式之和的形式. 例如1111)1(1122223++=+++=+++x x x x x x x x . 真分式的不定积分:求真分式的不定积分时, 如果分母可因式分解, 则先因式分解, 然后化成部分分式再积分. 例1 求⎰+-+dx x x x 6532. 解 ⎰+-+dx x x x 6532⎰--+=dx x x x )3)(2(3⎰---=dx x x )2536( ⎰⎰---=dx x dx x 2536=6ln|x -3|-5ln|x -2|+C . 提示: )3)(2()32()(23)3)(2(3----++=-+-=--+x x B A x B A x B x A x x x , A +B =1, -3A -2B =3, A =6, B =-5.分母是二次质因式的真分式的不定积分:例2 求⎰++-dx x x x 3222. 解 ⎰++-dx x x x 3222dx x x x x x )3213322221(22++-+++=⎰ dx x x dx x x x ⎰⎰++-+++=321332222122 ⎰⎰+++-++++=2222)2()1()1(332)32(21x x d x x x x d C x x x ++-++=21arctan 23)32ln(212. 提示: 321332221323)22(213222222++⋅-++-⋅=++-+=++-x x x x x x x x x x x . 例3 求⎰-dx x x 2)1(1.解 ⎰⎰-+--=-dx x x x dx x x ])1(1111[)1(122 ⎰⎰⎰-+--=dx x dx x dx x 2)1(1111C x x x +----=11|1|ln ||ln .提示: 222)1(1)1(1)1(1)1(1-+--=-+-=-x x x x x x x x x 22)1(1111)1(1)1(1-+--=-+-+--=x x x x x x x x . 二、三角函数有理式的积分三角函数有理式是指由三角函数和常数经过有限次四则运算所构成的函数, 其特点是分子分母都包含三角函数的和差和乘积运算. 由于各种三角函数都可以用sin x 及cos x 的有理式表示, 故三角函数有理式也就是sin x 、cos x 的有理式.用于三角函数有理式积分的变换:把sin x 、cos x 表成2tan x 的函数, 然后作变换2tan x u =: 222122tan 12tan 22sec 2tan 22cos 2sin 2sin u u x xx x x x x +=+===, 222222112sec 2tan 12sin 2cos cos u u x xx x x +-=-=-=. 变换后原积分变成了有理函数的积分.例4 求⎰++dx x x x )cos 1(sin sin 1. 解 令2tan x u =, 则212sin u u x +=, 2211cos u u x +-=, x =2arctan u , du u dx 212+=. 于是 ⎰++dx x x x )cos 1(sin sin 1⎰+-++++=)111(12)121(2222u u u u u udu u 212+⎰++=du u u )12(21 C u u u +++=|)|ln 22(212C x x x +++=|2tan |ln 212tan 2tan 412. 解 令2tan x u =, 则du uu u u u u udx x x x 2222212)111(12)121()cos 1(sin sin 1+⋅+-++++=++⎰⎰ ⎰++=+++=du uu C u u u )12(21|)|ln 22(212 C x x x +++=|2tan |ln 212tan 2tan 412. 说明: 并非所有的三角函数有理式的积分都要通过变换化为有理函数的积分. 例如,⎰⎰++=++=+C x x d x dx x x )sin 1ln()sin 1(sin 11sin 1cos .三、简单无理函数的积分无理函数的积分一般要采用第二换元法把根号消去.例5 求⎰-dx xx 1. 解 设u x =-1, 即12+=u x , 则du u u udu u u dx xx ⎰⎰⎰+=⋅+=-12211222 C u u du u+-=+-=⎰)arctan (2)111(22 C x x +---=)1arctan 1(2.例6 求⎰++321x dx . 解 设u x =+32. 即23-=u x , 则du uu du u u x dx ⎰⎰⎰++-=⋅+=++111331121223 C u u u du u u +++-=++-=⎰|)1|ln 2(3)111(32 C x x x +++++-+=|21|ln 23)2(233332. 例7 求⎰+x x dx )1(3. 解 设x =t 6, 于是dx =6t 5d t , 从而dt t t dt t t t x x dx ⎰⎰⎰+=+=+22325316)1(6)1(C t t dt t +-=+-=⎰)arctan (6)111(62 C x x +-=)arctan (666.例8 求⎰+dx xx x 11. 解 设t xx =+1, 即112-=t x , 于是 dt t t t t dx x x x ⎰⎰--⋅-=+222)1(2)1(11 dt t dt t t )111(212222-+-=--=⎰⎰ C t t t ++---=|11|ln 2 C xx x x x x +++-+-+-=11ln 12.练习1. 求⎰+xdx cos 2. 解: 作变换2tan x t =, 则有dt t dx 212+=, 2211cos t t x +-=, ⎰+x dx cos 2⎰+-++=22211212t t t dt⎰+=dt t 2312⎰+=3)3(11322t d t C t+=3arctan 32C x +=)2tan 31arctan(32. 2. 求⎰dx xx 45cos sin . 解: ⎰dx x x 45cos sin ⎰-=x d x x cos cos sin 44⎰--=x d xx cos cos )cos 1(422 ⎰+--=x d xx cos )cos 1cos 21(42 C x x x ++--=3cos 31cos 2cos . 3. 求⎰+-+dx x x x 23132.解: ⎰+-+dx x x x 23132⎰--+=dx x x x )1)(2(13⎰---=dx x x )1427(⎰-=dx x 217⎰--dx x 114 =7ln|x -2|-4ln|x -1|+C .§4.5积分表的使用积分的计算要比导数的计算来得灵活、复杂. 为了实用的方便, 往往把常用的积分公式汇集成表, 这种表叫做积分表. 求积分时, 可根据被积函数的类型直接地或经过简单变形后, 在表内查得所需的结果.积分表一、含有ax +b 的积分 1.⎰++=+C b ax ab ax dx ||ln 1 2.)1()()1(1)(1-≠+++=++⎰μμμμC b ax a dx b ax 3.C b ax b b ax a dx b ax x ++-+=+⎰|)|ln (124.[]C b ax b b ax b b ax a dx b ax x ++++-+=+⎰||ln )(2)(2112232 5.C x b ax b b ax x dx ++-=+⎰ln 1)( 6.C x b ax b a bx b ax x dx +++-=+⎰ln 1)(22 7.()C b ax b b ax a dx b ax x ++++=+⎰||ln 1)(22 8.()C b ax b b ax b b ax a dx b ax x ++-+-+=+⎰2322||ln 21)( 9.C xb ax b b ax b b ax x dx ++-+=+⎰ln 1)(1)(22 例1求⎰+dx x x 2)43(. 解: 这是含有3x +4的积分, 在积分表中查得公式()C b ax b b ax a dx b ax x ++++=+⎰||ln 1)(22.现在a =3、b =4, 于是 ()C x x dx x x ++++=+⎰434|43|ln 91)43(2. 二、含有b ax +的积分1.C b ax adx b ax ++=+⎰3)(32 2.C b ax b ax a dx b ax x ++-=+⎰32)()23(152 3.C b ax b abx x a a dx b ax x +++-=+⎰322232)()81215(1052 4.C b ax b ax a dx b ax x ++-=+⎰)2(322 5.C b ax b abx x a a dx bax x +++-=+⎰)843(15222232 6.⎰⎪⎩⎪⎨⎧<+-+->+++-+=+)0( arctan 2)0( ln 1b C b b ax bb C b b ax b b ax b b ax x dx 7.⎰⎰+-+-=+b ax x dx b a bx b ax bax x dx 22 8.⎰⎰+++=+bax x dx b b ax dx x b ax 2 9.⎰⎰+++-=+bax x dx a x b ax dx x b ax22 三、含x 2±a 2的积分1.⎰+=+C a x a a x dx arctan 122 2.⎰⎰--+--++-=+1222122222)()1(232)()1(2)(n n n a x dx a n n a x a n x a x dx 3.C ax a x a a x dx ++-=-⎰ln 2122 四、含有ax 2+b (a >0)的积分1.⎪⎩⎪⎨⎧<+-+--->+=+⎰)0( ln 21)0( arctan 12b C bx a b x a ab b C x b a ab b ax dx 2.C b ax adx b ax x ++=+⎰||ln 21223.⎰⎰+-=+b ax dx a b a x dx b ax x 222 4.C b ax x b b ax x dx ++=+⎰||ln 21)(222 5.⎰⎰+--=+dx b ax b a bx b ax x dx 22211)( 6.C bx x b ax b a b ax x dx +-+=+⎰22222321||ln 2)( 7.⎰⎰+++=+dx bax b b ax b x b ax dx 2222121)(2)( 五、含有ax 2+bx +c (a >0)的积分 六、含有22a x + (a >0)的积分1.C a x x C a x a x dx +++=+=+⎰)ln(arsh 22122 2.C a x a x a x dx +++⎰222322)( 3.C a x dx a x x ++=+⎰2222 4.C a x dx a x x ++-=+⎰223221)( 5.C a x x a a x x dx a x x +++-+=+⎰)ln(2222222222 6.C a x x a x x dx a x x +++++-=+⎰)ln()(22223222 7.C x a a x a a x x dx +-+=+⎰||ln 12222 8.C x a a x a x x dx ++-=+⎰222222 9.C a x x a a x x dx a x +++++=+⎰)ln(222222222 例3求⎰+942x x dx . 解: 因为⎰⎰+=+222)23(2194x x dx x x dx , 所以这是含有22a x +的积分, 这里23=a . 在积分表中查得公式C x a a x a a x x dx +-+=+⎰||ln 12222. 于是 C x x C x x x x dx +-+=+-+⋅=+⎰||2394ln 31||23)23(ln 3221942222. 七、含有22a x -(a >0)的积分1.⎰+-+=+=-C a x x C a x x x a x dx ||ln ||arch ||22122 2.⎰+--=-C a x a x a x dx 222322)( 3.C a x dx a x x +-=-⎰2222 4.⎰+--=-C a x dx a x x 223221)( 5.C a x x a a x x dx a x x +-++-=-⎰||ln 2222222222 6.⎰+-++--=-C a x x a x x dx a x x ||ln )(22223222 7.⎰+=-C x a a a x x dx ||arccos 122 8.⎰+-=-C x a a x ax x dx 222222 9.C a x x a a x x dx a x +-+--=-⎰||ln 222222222 八、含有22x a -(a >0)的积分1.⎰+=-C a x x a dx arcsin 22 2.⎰+--=-C x a a x x a dx 222322)( 3.C x a dx x a x +--=-⎰2222 4.⎰+-=-C x a dx x a x 223221)( 5.C a x a x a x dx x a x ++--=-⎰arcsin 22222222 6.⎰+--=-C a x x a x dx x a x arcsin )(2232227.⎰+--=-C x x a a a x a x dx ||ln 12222 8.⎰+--=-C x a x a x a x dx 222222 9.C ax a x a x dx x a +--=-⎰arcsin 2222222 九、含有)0(2>++±a c bx ax 的积分 十、含有bx a x --±或))((b x a x --的积分 十一、含有三角函数的积分1.C x x xdx ++=⎰|tan sec |ln sec2.C x x xdx +-=⎰|cot csc |ln csc3.C x xdx x +=⎰sec tan sec4.C x xdx x +-=⎰csc cot csc5.C x x xdx +-=⎰2sin 412sin 2 6.C x x xdx ++=⎰2sin 412cos 2 7.⎰⎰---+-=xdx nn x x n xdx n n n 21sin 1cos sin 1sin 8.⎰⎰---+=xdx nn x x n xdx n n n 21cos 1sin cos 1cos 9.C x b a b a x b a b a bxdx ax +---++-=⎰)cos()(21)cos()(21cos sin 10.C x b a b a x b a b a bxdx ax +--+++-=⎰)sin()(21)sin()(21sin sin 11.C x b a b a x b a b a bxdx ax +--+++=⎰)sin()(21)sin()(21cos cos 12.)( 2tan arctan 2sin 222222b a C b a b x a b a x b a dx >+-+-=+⎰13.)( 2tan 2tan ln 2sin 22222222b a C a b b x a a b b x a a b x b a dx <+-++--+-=+⎰ 14.())( 2tan arctan 2cos 22b a C x b a b a b a b a b a x b a dx >++--++=+⎰ 14.)( 2tan 2tan ln 2cos 22b a C a b ba x ab ba x ab b a b a x b a dx <+-+--++-++=+⎰ 例2求⎰-xdx cos 45. 解: 这是含三角函数的积分. 在积分表中查得公式())( 2tan arctan 2cos 22b a C x b a b a b a b a ba xb a dx >++--++=+⎰. 这里a =5、b =-4, a 2>b 2, 于是 () 2tan )4(5)4(5arctan )4(5)4(5)4(52cos 45C x x dx +-+-----+-+=-⎰ ()C x +=2tan 3arctan 32. 例4 求⎰xdx 4sin .解: 这是含三角函数的积分. 在积分表中查得公式⎰⎰---+-=xdx n n x x n xdx n n n 21sin 1cos sin 1sin , C x x xdx +-=⎰2sin 412sin 2. 这里n =4, 于是C x x x x xdx x x xdx +-+-=+-=⎰⎰)2sin 412(43cos sin 41sin 43cos sin 41sin 3234.。