新人教A版高中数学必修2第三章直线与方程3.3.3点到直线的距离3.3.4两条平行直线间的距离限时规范训练
- 格式:docx
- 大小:113.58 KB
- 文档页数:4
第27课时 点到直线的距离、两条平行直线间的距离对应学生用书P73知识点一点到直线的距离 1.若点(1,a)到直线x -y +1=0的距离是32,则实数a 为( )A .-1B .5C .-1或5D .-3或3 答案 C解析 由点到直线的距离公式得|1-a +1|2=322,∴a=-1或5.2.已知两点A(1,1)和B(-1,4)到直线x +my +3=0的距离相等,则m 为( ) A .0或-23 B .23或-65C .-23或23D .0或23答案 B解析 由题意知直线x +my +3=0与AB 平行或过AB 的中点,则有-1m =4-1-1-1或1-12+m×1+42+3=0,∴m=23或m =-65.知识点二两平行线间的距离A .1110B .85C .157D .45答案 A解析 由两直线平行,得m =6,所以mx -8y +5=0可化成3x -4y +52=0,因此两条平行线间的距离d =⎪⎪⎪⎪⎪⎪-3-5232+42=1110,故选A .4.已知直线l 与两直线l 1:2x -y +3=0和l 2:2x -y -1=0平行且距离相等,则l 的方程为________.答案 2x -y +1=0解析 设所求的直线方程为2x -y +c =0(c≠3,c≠-1),分别在l 1:2x -y +3=0和l 2:2x -y -1=0上取点A(0,3)和B(0,-1),则此两点到2x -y +c =0的距离相等,即|-3+c|22+-12=|1+c|22+-12,解得c =1,故直线l 的方程为2x -y +1=0.知识点三距离公式的应用5.已知点P(m ,n)是直线2x +y +5=0上任意一点,则m 2+n 2的最小值为________. 答案5解析 因为m 2+n 2是点P(m ,n)与原点O 间的距离,所以根据直线的性质,原点O 到直线2x +y +5=0的距离就是m 2+n 2的最小值.根据点到直线的距离公式可得d =522+12=5.故答案为5.6.已知直线l 1:x +y -1=0,现将直线l 1向上平移到l 2的位置,若l 1,l 2和两坐标轴围成的梯形的面积为4,求直线l 2的方程(如图).解 ∵l 1∥l 2,可设l 2的方程为x +y -m =0. l 2与x 轴,y 轴分别交于B ,C , l 1与x 轴,y 轴分别交于A ,D ,得A(1,0),D(0,1),B(m ,0),C(0,m). ∵l 2在l 1的上方,∴m>1.∵S 梯形ABCD =S △OBC -S △AOD ,∴4=12m 2-12,解得m =3或m =-3(舍去). 故所求直线的方程为x +y -3=0.对应学生用书P73一、选择题1.已知两点A(3,2)和B(-1,4)到直线mx +y +3=0的距离相等,则m 的值为( ) A .0或-12 B .12或-6C .-12或12D .0或12答案 B 解析 依题意得|3m +5|m 2+1=|-m +7|m 2+1,即|3m +5|=|m -7|,∴(3m+5)2=(m -7)2,展开合并同类项得8m 2+44m -24=0,即2m 2+11m -6=0,解得m =12或m =-6.2.点P(x ,y)在直线x +y -4=0上,则x 2+y 2的最小值是( ) A .8 B .2 2 C . 2 D .16 答案 A解析 由题知所求即为原点到直线x +y -4=0的距离的平方,即0+0-4212+12=162=8.故选A .3.若动点A(x 1,y 1),B(x 2,y 2)分别在直线l 1:x +y -11=0和l 2:x +y -1=0上移动,则AB 中点M 所在直线的方程为( )A .x -y -6=0B .x +y +6=0C .x -y +6=0D .x +y -6=0 答案 D解析 由题意,得点M 所在的直线与直线l 1,l 2平行,所以设为x +y +n =0,此直线到直线l 1和l 2的距离相等,所以|n +11|2=|n +1|2,解得n =-6,所以所求直线的方程为x +y-6=0.故选D .4.直线2x +3y -4=0关于点(2,1)对称的直线方程是( ) A .3x -2y -4=0 B .2x +3y +6=0 C .3x -2y -10=0 D .2x +3y -10=0 答案 D解析 设所求直线的方程为2x +3y +C =0,由题意可知|4+3-4|22+32=|4+3+C|22+32. ∴C=-4(舍)或C =-10,故所求直线的方程为2x +3y -10=0.5.若动点A(x 1,y 1),B(x 2,y 2)分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点距离的最小值为( )A .3 2B .2C . 2D .4 答案 A解析 由题意,知点M 在直线l 1与l 2之间且与两直线距离相等的直线上,设该直线方程为x +y +c =0,则|c +7|2=|c +5|2,即c =-6,∴点M 在直线x +y -6=0上,∴点M 到原点的距离的最小值就是原点到直线x +y -6=0的距离,即|-6|2=32.二、填空题6.如果已知两点O(0,0),A(4,-1)到直线mx +m 2y +6=0的距离相等,那么m 可取不同实数值的个数为________.答案 3解析解方程6m2+m4=|4m-m2+6|m2+m4(m≠0),得m=6或m=-2或m=4.7.直线l在x轴上的截距为1,又点A(-2,-1),B(4,5)到l的距离相等,则l的方程为________.答案x-y-1=0或x=1解析显然l⊥x轴时符合要求,此时l的方程为x=1.设l的斜率为k,则l的方程为y=k(x-1),即kx-y-k=0.∵点A,B到l的距离相等,∴|-2k+1-k|k2+1=|4k-5-k|k2+1,∴|1-3k|=|3k-5|,∴k=1,∴l的方程为x-y-1=0.8.已知平面上一点M(5,0),若直线上存在点P使|PM|=4,则称该直线为“切割型直线”.下列直线是“切割型直线”的有________.①y=x+1 ②y=2 ③y=43x ④y=2x+1答案②③解析可通过求各直线上的点到点M的最小距离,即点M到直线的距离d来分析.①d=5+12=32>4,故直线上不存在点到点M的距离等于4,不是“切割型直线”;②d=2<4,所以在直线上可以找到两个不同的点,使之到点M的距离等于4,是“切割型直线”;③d=20 32+42=4,直线上存在一点,使之到点M的距离等于4,是“切割型直线”;④d=115=1155>4,故直线上不存在点到点M的距离等于4,不是“切割型直线”.故填②③.三、解答题9.已知直线l1:ax+by+1=0(a,b不同时为0),l2:(a-2)x+y+a=0.(1)若b=0且l1⊥l2,某某数a的值;(2)当b=3且l1∥l2时,求直线l1与l2间的距离.解(1)当b=0时,l1:ax+1=0,由l1⊥l2知a-2=0,解得a=2.(2)当b=3时,l1:ax+3y+1=0,当l 1∥l 2时,联立⎩⎪⎨⎪⎧a -3a -2=0,3a -1≠0,解得a =3,此时,l 1的方程为3x +3y +1=0,l 2的方程为x +y +3=0,即3x +3y +9=0,则 它们之间的距离为d =|9-1|32+32=423. 10.过点M(2,4)作两条互相垂直的直线,分别交x ,y 轴的正半轴于点A ,B ,若四边形OAMB 的面积被直线AB 平分,求直线AB 的方程.解 设直线AB 的方程为x a +yb =1(a >0,b >0),∴A(a,0),B(0,b). ∵MA⊥MB,∴(a-2)×(-2)+(-4)×(b-4)=0, 即a =10-2b .∵a>0,b >0,∴0<b <5,0<a <10. ∵直线AB 的一般式方程为bx +ay -ab =0, ∴点M 到直线AB 的距离d =|2b +4a -ab|a 2+b2. ∴△MAB 的面积S 1=12d|AB|=12|2b +4a -ab|=|b 2-8b +20|=b 2-8b +20,△OAB 的面积S 2=12ab =5b -b 2.∵直线AB 平分四边形OAMB 的面积, ∴S 1=S 2,可得2b 2-13b +20=0,解得⎩⎪⎨⎪⎧b =4,a =2或⎩⎪⎨⎪⎧b =52,a =5.∴所求直线AB 的方程为x +2y -5=0或2x +y -4=0.。
第三章直线与方程3.3.4 两条平行直线间的距离一、教材分析《两条平行直线间的距离》是人教A版数学必修二第三章最后一节的内容,求两条平行直线间的距离,可转化为求点到直线的距离。
点到直线的距离是“直线与方程”这一节的重点内容,它是解决点线、线线间的距离的基础,也是研究直线与圆的位置关系的主要工具。
点到直线的距离公式的推导方法很多,可探究的题材非常丰富。
除了本节课可能探究到的方法外,还有应用三角函数、应用向量等方法,因此“课程标准”对本节教学内容的要求是:“探索并掌握点到直线的距离公式,会求两条平行线间的距离。
”二、学情分析8班的学生基础较好,但对于一些基础的计算容易忽视,希望通过本节课的教学,能让学生在公式的探索过程中深刻地领悟到蕴涵其中的重要的数学思想和方法,学会利用数形结合思想,化归思想和分类方法,由浅入深,由特殊到一般地研究数学问题,提升学生的计算能力,培养学生的发散思维。
三、教学目标与核心素养1.教学目标:①推导点到直线的距离、两条平行线间的距离公式;②会用距离公式解决实际问题。
③培养学生观察、分析、转化、探索问题的能力,鼓励创新。
培养学生勇于探索、善于研究的精神。
2.学科素养:①数学抽象:点到直线的距离、两条平行线间距离公式的推导方案;②逻辑推理:推导点到直线的距离、两条平行线间的距离公式;③数学运算:点到直线的距离、求两条平行线间的距离;④直观想象:将两平行线间的距离转化为点到直线的距离;四、教学重难点教学重点:点到直线的距离、两平行直线间的距离公式的推导、应用;线线距与点线距的转化;教学难点:点到直线的距离、两平行直线间的距离的求法及灵活应用。
五、教学方法多媒体教学,根据本节课的内容特点,学习方法为接受学习与发现学习相结合。
六、教学过程㈠、复习回顾两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离:|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2㈡、导入新课1、点到直线的距离公式在平面直角坐标系中,如果已知某点P 的坐标为(x 0,y 0),直线l 的方程是Ax+By+C=0,怎样由点的坐标和直线的方程直接求点P 到直线l 的距离呢? ()00:0P x y l Ax By C ++=第一探:你能推出,到直线的距离吗? 其中0AB ≠。