2015年浙江温州瑞安八年级下学期浙教版数学期末考试试卷
- 格式:docx
- 大小:345.80 KB
- 文档页数:8
浙教版八年级下册数学期末考试试卷一、单选题1.若2m y x=+是反比例函数,则m 必须满足( ) A .m ≠0 B .m =-2 C .m =2 D .m ≠-2 2.下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D . 3.已知一个多边形的内角和是它的外角和的5倍,那么这个多边形的边数是( ) A .9 B .10 C .11 D .124.用反证法证明命题“四边形四个内角中至少有一个角大于等于90︒”,我们应该假设( ) A .四个角都小于90︒ B .最多有一个角大于或等于90︒C .有两个角小于90︒D .四个角都大于或等于90︒5.对于反比例函数3y x=,下列说法错误的是( ) A .其图象经过第一、三象限 B .过点(1,3)C .当0x <时,y 随x 增大而增大D .当0x >时,y 随x 增大而减小 6.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A .①,②B .①,④C .③,④D .②,③ 7.如图,在边长为6的菱形ABCD 中,60DAB ∠=︒,E 为AB 的中点,F 是AC 上的一动点,则EF BF +的最小值为( )A .B .6C .3D .8.已知点A (﹣2,y 1),B (a 、y 2),C (3,y 3)在反比例函数y =﹣4x的图象上,且﹣2<a <0,则y 1,y 2,y 3的大小关系是( )A .y 2<y 1<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 1<y 2<y 3 9.如图,在直角坐标系中,正ABC ∆的顶点在反比例函数()0k y k x=>的图象上,BC 与x 轴平行,点,A B 的横坐标分别为1,4,则k 的值是( )A .B .C .D .610.如图,一个长方形ABCD 是由四块小长方形拼成(四块小长方形放置时既不重叠,也没有空隙),其中②和③两块长方形的形状大小完全相同,如果要求出①和④两块长方形的周长之差,则只要知道哪条线段的长( )A .EFB .FGC .GHD .FH二、填空题11.在平面直角坐标系中,点P (3,﹣5)关于原点对称的点的坐标是_____.12.菱形ABCD 的边长为5,对角线6AC =,则菱形ABCD 的面积是___________. 13.如图,A 是反比例函数图象上一点,过点A 作AB y ⊥轴于点B ,点P 在x 轴上,ABP △面积为2,则这个反比例函数的解析式为_______.14.如图,在Rt ABC 中,90,3,4B AB BC ∠=︒==,点D 为BC 上一动点(不与点C 重合),以AD ,CD 为一组邻边作平行四边形ADCE ,当DE 的值最小时,平行四边形ADCE 的周长..为_____.15.已知四边形ABCD 是矩形,点E 是矩形ABCD 的边上的点,且EA EC =.若6AB =,AC =DE 的长是___.16.如图,菱形ABCD 的形状和大小保持不变,将菱形ABCD 绕点B 旋转适当角度得到菱形A 'BC 'D ',边A 'D 与AD ,DC 交于E ,F (D ,E ,F 不重合),连接EB ,FB .在旋转过程中:①EB 平分∠AED ';②FB 平分∠A 'FC ;③△DEF 的周长是一个定值;④S △DEF +2S △BEF =12S 菱形ABCD ,判断正确的是 .三、解答题17.如图分别是4×5的网格,点A ,B 均在格点上,请按要求画出下列图形,所画的图形的各个顶点均在格点上.(1)请在图中画一个四边形ABCD ,使得四边形ABCD 为轴对称图形;(2)请在图中画一个四边形ABEF ,使得四边形ABEF 为中心对称图形且不是轴对称图形.18.如图,双曲线m y x=与直线y kx b =+相交于点M ,N ,且点M 的坐标为(1,3),点N 的纵坐标为(,1)t -.(1)求反比例函数与一次函数解析式.(2)根据图象信息可得关于x 的不等式m kx b x<+的解为_______.19.将矩形纸片ABCD 沿对角线BD 对折,使点A 落在点F 处,DF 交CB 于点E .已知30ADB ∠=︒.(1)求CBF ∠的度数.(2)求证:EF EC =.20.已知常数a (a 是整数)满足下面两个要求:①关于x 的一元二次方程ax 2+3x ﹣1=0有两个不相等的实数根;②反比例函数y=22a x+的图象在二,四象限. (1)求a 的值;(2)在所给直角坐标系中用描点法画出y=22a x+的图象,并根据图象写出: 当x >4时,y 的取值范围 ;当y <1时,x 的取值范围是.21.如图,在平行四边形ABCD 中,过点D 作DE AB ⊥于点E ,点F 在边CD 上,且FC AE =,连结AF ,BF .(1)试判断四边形DEBF 的形状,并说明理由;(2)若6,8,10CF BF DF ===,求证:AF 平分DAB ∠.22.如图所示,OAB 的顶点A 在反比例函数(0)k y k x=>的图像上,直线AB 交y 轴于点C ,且点C 的纵坐标为5,过点A 、B 分别作y 轴的垂线AE 、BF ,垂足分别为点E 、F ,且1AE =.(1)若点E 为线段OC 的中点,求k 的值;(2)若OAB 为等腰直角三角形,90AOB ∠=︒,其面积小于3.①求证:OAE BOF ≌△△;②把1212x x y y -+-称为()11,M x y ,()22,N x y 两点间的“ZJ 距离”,记为,()d M N ,求(,)(,)d A C d A B +的值.23.定义:有一组邻边垂直且对角线相等的四边形称为垂等四边形.(1)写出一个已学的特殊平行四边形中是垂等四边形的是_________;(2)如图1,在33⨯方格纸中,A ,B ,C 在格点上,请画出两个符合条件的不全等的垂等四边形,使AC ,BD 是对角线,点D 在格点上.(3)如图2,在正方形ABCD 中,点E ,F ,G 分别在AD ,AB ,BC 上,四边形DEFG 是垂等四边形,且90,EFG AF CG ∠=︒=.①求证:EG DG =;②若BC n BG =⋅,求n 的值;24.(实践发现)对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;再一次折叠纸片,使点A 落在EF 上的点N 处,并使折痕经过点B ,得到折痕BM ,把纸片展平,连结AN ,如图①.(1)折痕BM ______(填“是”或“不是”)线段AN 的垂直平分线;请判断图中ABN 是什么特殊三角形?答:_______;进一步计算出MNE ∠=______︒;(2)继续折叠纸片,使点A 落在BC 边上的点H 处,并使折痕经过点B ,得到折痕BG ,把纸片展平,如图②,则GBN ∠=______︒;(拓展延伸)(3)如图,折叠矩形纸片ABCD ,使点A 落在BC 边上的点A '处,并且折痕交BC 边于点T ,交AD 边于点S ,把纸片展平,连结AA '交ST 于点O ,连结AT .求证:四边形SATA '是菱形;(解决问题)(4)如图④,矩形纸片ABCD 中,10,26AB AD ==,折叠纸片,使点A 落在BC 边上的点A '处,并且折痕交AB 边于点T ,交AD 边于点S ,把纸片展平.同学们小组讨论后,得出线段BA '的长度有1,4,7,11.请写出以上4个数值中你认为正确的数值为______.参考答案1.D【详解】根据反比例函数的定义.即y=kx(k≠0),只需令m+2≠0,所以m≠-2.故选D.2.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是中心对称图形,也是轴对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是中心对称图形但不是轴对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意;故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.D【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】解:设这个多边形是n边形,根据题意得,(n-2)•180°=5×360°,解得n=12.故选:D.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.4.A【详解】解:应该假设四个角都小于90 .故选A.5.C【分析】首先确定当k>0,然后根据反比例函数的性质即可得到答案.【详解】解:∵k=3>0,∴图像经过第一、第三象限,A正确;当x=1时,y=3,因此函数过点(1,3),B正确;当x<0时,y随x增大而减小,C错误;当x>0时,y随x增大而减小,D正确.故选:C.【点睛】本题考查反比例函数的性质,掌握好反比例函数的性质是解决本题的关键.6.D【分析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【详解】只有②③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带②③两块碎玻璃,就可以确定平行四边形的大小.故选D.【点睛】本题考查平行四边形的定义以及性质,解题的关键是理解如何确定平行四边形的四个顶点,四个顶点的位置确定了,平行四边形的大小就确定了,属于中考常考题型.7.A【分析】根据菱形的对角线互相垂直平分,点B关于AC的对称点是点D,连接ED,EF+BF最小值等于ED的长,然后解直角三角形即可求解.【详解】解:如图,连接BD,∵菱形ABCD中,∠DAB=60°,∴△ABD是等边三角形,∵在菱形ABCD中,AC与BD互相垂直平分,∴点B、D关于AC对称,如图,连接ED,则ED的长就是所求的EF+BF的最小值,∵E为AB的中点,∠DAB=60°,∴DE⊥AB,∴ED=∴EF+BF的最小值为故选:A.【点睛】本题主要考查了菱形的性质和解直角三角形,关键是判断出ED的长就是所求的EF+BF的最小值.8.C【分析】根据0k<,双曲线在第二四象限,在图象的每一支上,随x的增大而增大,逐一分析即可.【详解】解:∵反比例函数y=﹣4x中的k=﹣4<0,∴双曲线在第二四象限,在图象的每一支上,随x的增大而增大,∵﹣2<a<0,∴y2>y1>0,∵C(3,y3)在第四象限,∴y3<0,∴y3<y1<y2,故选:C.【点睛】本题考查了反比例函数的性质,熟练地应用反比例函数的性质是解题的关键.9.B如图,作AH BC ⊥于H .由点,A B 的横坐标分别为1,4,可得3BH =;在Rt △AHB 中,可得AH =()4,B n ,则(1,A n +,根据反比例函数图象上点的特征可得 (4n n 1⨯+=,由此即可求得k= 【详解】作AH BC ⊥于H .∵点,A B 的横坐标分别为1,4,∴3BH =;在Rt △AHB 中,可得AH =设()4,B n ,则(1,A n +,∴(4n n 1⨯+=,解得∴k=故选B .【点睛】本题考查了反比函数图象上点的特征,正确做出辅助线,熟练运用反比函数图象上点的特征是解决问题的关键.10.B【分析】设标号为②和③的两块长方形的长为x 、宽为y ,根据题意表示出标号为①和④的周长,并作差即可求解.设标号为②和③的两块长方形的长为x 、宽为y ,根据题意,标号为①的长方形的周长为2()AD y x -+,标号为④的长方形周长为2()AD x y -+,所以标号为①和④两块长方形的周长之差为:2()2()4()4AD y x AD x y x y FG -+--+=-=, 故只要知道线段FG 的长度.故选:B .【点睛】本题主要考查整式加减的应用,能够表示出标号为①和④的周长是关键.11.(﹣3,5)【分析】根据两个点关于原点对称时,它们的坐标符号相反,即可得答案.【详解】点P (3,﹣5)关于原点对称的点的坐标是(﹣3,5),故答案为:(﹣3,5).【点睛】本题主要考查平面直角坐标系中,关于原点的两个点的坐标变化规律,掌握两个点关于原点对称时,它们的坐标符号相反,是解题的关键.12.24【分析】根据菱形的对角线互相垂直,再利用勾股定理求出另一条对角线的长度,根据菱形的面积计算方法求解即可;【详解】如图所示,∵菱形ABCD 的边长为5,∴5AD AB DC BC ====,AC BD ⊥,又∵6AC =,∴3AO =,∴4DO ==,∴8BD =,∴菱形ABCD 的面积11682422AC BD ==⨯⨯=;故答案是24.【点睛】 本题主要考查了菱形的性质,结合勾股定理计算是解题的关键.13.4y x = 【分析】设反比例函数的解析式是:k y x=,设A 的点的坐标是(,)m n ,则AB m =,OB n =,mn k =.根据三角形的面积公式即可求得mn 的值,则k 的值即可求得,进而可以求得函数的解析式.【详解】解:设反比例函数的解析式是:k y x=,设A 的点的坐标是(,)m n . 则AB m =,OB n =,mn k =.ABP ∆的面积为2, ∴122AB OB =,即122mn = 4mn ∴=,则4k mn ==.则反比例函数的解析式是:4yx =.故答案是:4yx =.【点睛】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别一条坐标轴作垂线,连接点与原点,与坐标轴围成三角形的面积是1||2k.本知识点是中考的重要考点,同学们应高度关注.14.4+【分析】根据题意,可知当DE⊥AE时,DE取得最小值,然后根据题目中的数据,即可得到A D、CD的长,从而可以得到当DE的值最小时,平行四边形ADCE周长.【详解】解:当DE⊥AE时,DE取得最小值,设此时CD=x,∵四边形ADCE是平行四边形,∴CD=AE,AD=CE,BC∥AE,∵∠B=90°,DE⊥AE,∴四边形BAED是矩形,∴BD=AE,∴BD=CD=x,∵BC=BD+CD,BC=4,∴BD=CD=2,∵AB=3,∠B=90°,∴AD∴当DE的值最小时,平行四边形ADCE周长为:故答案为:4+【点睛】本题考查平行四边形的性质、矩形的判定与性质、垂线段最短,解答本题的关键是明确题意,利用数形结合的思想解答.15.83 【分析】根据EA EC =,则E 在AC 的中垂线上,作AC 的中垂线交,DC AB 于12,,E E 交AC 于O ,所以:如图的12,E E 都符合题意,先证明四边形12AE CE 是菱形,再利用菱形的性质与勾股定理可得答案.【详解】解: EA=EC ,E ∴在AC 的中垂线上,作AC 的中垂线交,DC AB 于12,,E E 交AC 于O ,所以:如图的12,E E 都符合题意,矩形,ABCD//,AB DC ∴12,CE O AE O ∴∠=∠21,,OA OC AOE COE =∠=∠21,AOE COE ∴≌21,OE OE ∴=12,,OA OC AC E E =⊥∴ 四边形12AE CE 是菱形,1122,AE E C CE AE ∴===6AB =,AC =90ABC ∠=︒ ,2,BC ∴==2,AD ∴=设1,DE x = 则116,CE AE x ==-()22262,x x ∴-=+8,3x ∴= 18,3DE ∴= 218106,33AE AE ∴==-=2DE ∴=DE ∴的长为:83故答案为:83 【点睛】 本题考查的是矩形的性质,菱形的判定与性质,勾股定理的应用,线段的垂直平分线的性质,掌握以上知识是解题的关键.16.①②③.【分析】过点B 作BH A D ''⊥于H ,BM AD ⊥于M ,BN CD ⊥于N ,利用角平分线的判定定理证明选项①、②是否正确,再利用全等三角形的性质证明DEF 的周长2DM =为定值,即可判断③ ;根据Rt △BEM ≌Rt △BEH ,Rt △BMA ≌Rt △BNC ,Rt △BFN ≌Rt △BFH , 得到S △BEM =S △BEH ,S △BMA =S △BNC ,S △BFN =S △BFH ,S △DEF +2S △BEF =S 四边形DMBN ,但是∠A 不一定为60°,即AM 不一定等于12AB ,由此判断④.【详解】如图,过点B 作BH ⊥A ′D ′于H ,BM ⊥AD 于M ,BN ⊥CD 于N .∵菱形BA′D′C′是由菱形ABCD旋转得到,菱形的每条边上的高相等,∴BM=BH=BN,∵BH⊥A′D′于H,BM⊥AD于M,BN⊥CD于N,∴BE平分∠AED′,BF平分∠A′FC,故选项①②正确,∵∠BME=∠NHE=90°,BE=BE,BM=BH,∴Rt△BEM≌Rt△BEH(HL),∴EH=EM,同法可证,FH=FN,∴△DEF的周长=DE+EF+DF=DE+EM+DF+FN=DM+DN,∵∠BMA=∠BNC=90°,BM=BN,BA=BC,∴Rt△BMA≌Rt△BNC(HL),∴AM=CN,∵DA=DC,∴DM=DN,∴△DEF的周长=2DM=定值,故③正确,∵Rt△BEM≌Rt△BEH,Rt△BMA≌Rt△BNC,Rt△BFN≌Rt△BFH,∴S△BEM=S△BEH,S△BMA=S△BNC,S△BFN=S△BFH,∴S△DEF+2S△BEF=S四边形DMBN,∵∠A不一定为60°,∴AM不一定等于12 AB,∴S△DEF+2S△BEF≠12S菱形ABCD,故④错误;故答案为:①②③.【点睛】旋转的性质、菱形的性质、全等三角形的判定与性质、三角形面积等知识,是重要考点,难度较易,掌握相关知识是解题关键.17.(1)见解析;(2)见解析.【分析】(1)作点A、B关于某直线的对称点得到等腰梯形ABCD;(2)把AB平移得到平行四边形ABEF.【详解】(1)如图①,如图,四边形ABCD为所作;(2)如图②,四边形ABEF为所作.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.18.(1)3yx=,y=x+2;(2)-3<x<0或x>1【分析】(1)先把M点坐标代入myx=求出m的值,从而得到反比例函数解析式,再把B(1,n)代入反比例函数解析式求出n的值,然后把A和B点坐标分别代入y=kx+b得到a、b的方程组,再解方程组求出a和b的值,于是可得到一次函数解析式;(2)根据函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.【详解】解:(1)把点M(1,3)代入myx=得m=1×3=3,所以反比例函数解析式为3yx =,把N(t,-1)代入3yx=得t=-3,把M(1,3)、N(-3,-1)分别代入y=kx+b得331 k bk b+=⎧⎨-+=-⎩,解得12kb=⎧⎨=⎩,所以一次函数解析式为y=x+2;(2)∵当-3<x<0或x>1时,一次函数的值大于反比例函数的值,∴关于x的不等式mkx bx<+的解为-3<x<0或x>1.故答案为-3<x<0或x>1.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.19.(1)30°,(2)见解析【分析】(1)由矩形纸片ABCD沿对角线BD对折可得:∠ADB=∠BDF=30°,从而∠DEC=60°即可求出答案;(2)由矩形纸片ABCD沿对角线BD对折可得:AB=BF,从而得CD=BF,然后根据AAS 可证Rt△BFE和Rt△DCE全等,即可证EF=E C.【详解】解:(1)由矩形纸片ABCD沿对角线BD对折可得:∠ADB=∠BDF=30°,∴∠ADF=60°,∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠ADF=∠DEC=60°,∴∠BEF=∠DEC=60°,∴∠CBF=180°-∠BEF-∠BFE=180°-60°-90°=30°,(2)证明:在矩形ABCD中,AD=BC,AB=DC,由矩形纸片ABCD沿对角线BD对折可得:AB=BF,∠F=∠A=90°,∴CD=BF,在△BFE 和△DCE 中,BFE DCE BEF DEC BF CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BFE ≌△DCE (AAS ),∴EF =E C .【点睛】本题主要考查了矩形的性质,翻折的性质,全等三角形的判定与性质,明确翻折前后对应角相等、对应边相等是解题的关键.20.(1) a=﹣2;(2) ﹣12<y <0,x <﹣2或x >0. 【分析】(1)先根据关于x 的一元二次方程ax 2+3x-1=0有两个不相等的实数根求出a 的取值范围,再由反比例函数y =2a 2x+的图象在二,四象限得出a 的取值范围,由a 为整数即可得出a 的值;(2)根据a 的值得出反比例函数解析式,画出函数图象,由函数图象即可得出结论.【详解】(1)∵方程有两个不相等的实数根,∴△=9+4a >0,得a >﹣94且a≠0; ∵反比例函数图象在二,四象限,∴2a+2<0,得a <﹣1,∴﹣94<a <﹣1, ∵a 是整数,∴a=﹣2;(2)∵a=﹣2,∴反比例函数的解析式为y=﹣2x, 其函数图象如图所示:当x>4时,y的取值范围﹣12<y<0;当y<1时,x的取值范围是x<﹣2或x>0.故答案为﹣12<y<0,x<﹣2或x>0.【点睛】本题考查的是反比例函数的性质,根据题意画出函数图象,利用函数图象求出不等式的解集是解答此题的关键.21.(1)见解析;(2)见解析【分析】(1)先证四边形DEBF是平行四边形,再由DE⊥AB,可得结论;(2)根据矩形的性质求出∠BFC=90°,根据勾股定理求出BC,求出AD=DF,推出∠DAF=∠DF A,求出∠DAF=∠BAF,即可得出答案.【详解】解:证明:(1)∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∵CF=AE,∴CD-CF=AB-AE,∴DF=BE且DC∥AB,∴四边形DEBF是平行四边形,又∵DE⊥AB,∴∠DEB=90°,∴平行四边形DEBF是矩形;(2)∵四边形DEBF为矩形,∴∠BFC =90°,∵CF =6,BF =8,∴BC ,∴AD =BC =10,∴AD =DF =10,∴∠DAF =∠DF A ,∵AB ∥CD ,∴∠F AB =∠DF A ,∴∠F AB =∠DF A ,∴AF 平分∠DA B .【点睛】本题考查了平行四边形的性质和判定,矩形的性质和判定,勾股定理,平行线的性质,角平分线定义的应用,能综合运用性质进行推理是解此题的关键.22.(1)52;(2)①见解析;②8. 【分析】(1)由点E 为线段OC 的中点,可得E 点坐标为50,2⎛⎫ ⎪⎝⎭,进而可知A 点坐标为:51,2A ⎛⎫ ⎪⎝⎭,代入解析式即可求出k ;(2)①由OAB 为等腰直角三角形,可得AO OB =,再根据同角的余角相等可证AOE FBO ∠=∠,由AAS 即可证明OAE BOF ≌△△;②由“ZJ 距离”的定义可知,()d M N 为MN 两点的水平距离与垂直距离之和,故(,)(,)d A C d A B BF CF +=+,即只需求出B 点坐标即可,设点(1,)A m ,由OAE BOF ≌△△可得(,1)B m -,进而代入直线AB 解析式求出k 值即可解答.【详解】解:(1)∵点E 为线段OC 的中点,OC=5, ∴1522OE OC ==,即:E 点坐标为50,2⎛⎫ ⎪⎝⎭, 又∵AE ⊥y 轴,AE=1, ∴51,2A ⎛⎫ ⎪⎝⎭,∴55122k =⨯=.(2)①在OAB 为等腰直角三角形中,AO OB =,90AOB ∠=︒,∴90AOE FOB ∠+∠=︒,又∵BF ⊥y 轴,∴90FBO FOB ∠+∠=︒,∴AOE FBO ∠=∠在OAE △和BOF 中90AEO OFB AOE FBO AO OB∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()OAE BOF AAS ≌△△,②解:设点A 坐标为(1,)m ,∵OAE BOF ≌△△∴BF OE m ==,1OF AE ==,∴(,1)B m -,设直线AB 解析式为::5AB l y kx =+,将AB 两点代入得:则551k mkm +=⎧⎨+=-⎩.解得1132k m =-⎧⎨=⎩,2223k m =-⎧⎨=⎩.当2m =时,2OE =,OA 532AOB S =<△,符合;∴(,)(,)()()d A C d A B AE CE BF AE OE OF +=++-++111CE OE OE =++-++12CE OE =++1CO OE =++152=++8=,当3m =时,3OE =,OA =53AOB S =>△,不符,舍去;综上所述:(,)(,)8d A C d A B +=.【点睛】此题属于代几综合题,涉及的知识有:反比例函数、一次函数的性质及求法、三角形全等的判定及性质、等腰直角三角形性质等,熟练掌握三角形全等的性质和判定和数形结合的思想是解本题的关键.23.(1)矩形(答案不唯一);(2)见解析;(3)①见解析;②3 2【分析】(1)矩形的邻边垂直且对角线相等,则矩形是垂等四边形;(2)根据垂等四边形的定义画出两个符合条件的不全等的垂等四边形即可;(3)①由SAS证得△ADF≌△CDG(SAS),得出DF=DG,再由垂等四边形定义得出EG=DF,即可得出结论;②过点G作GH⊥AD于H,则四边形CDHG为矩形,得出CG=DH,由①得EG=DG,由等腰三角形的性质得DH=EH,推出CG=DH=EH,证明△BFG为等腰直角三角形,得出∠GFB=45°,再证明△AEF为等腰直角三角形,得出AE=AF=CG,则AE=EH=DH,推出BC=3AE,BG=2AE,即可得出结果.【详解】解:(1)∵矩形的邻边垂直且对角线相等,∴矩形是垂等四边形,故答案为:矩形;(2)由垂等四边形的定义画出两个符合条件的不全等的垂等四边形,如图1所示:∵∠ABC=90°,BD=AC∴四边形ABCD是垂等四边形;(3)①证明:∵四边形ABCD是正方形,∴AD=CD,∠A=∠C=90°,在△ADF和△CDG中,AD CDA C AF CG=⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△CDG (SAS ),∴DF =DG ,∵四边形DEFG 是垂等四边形,∴EG =DF ,∴EG =DG ;②过点G 作GH ⊥AD 于H ,如图2所示:则四边形CDHG 为矩形,∴CG =DH ,由①得:EG =DG ,∵GH ⊥DE ,∴DH =EH ,∴CG =DH =EH ,∵四边形ABCD 是正方形,∴∠A =∠B =90°,AB =BC =CD =AD ,∵AF =CG ,∴AB -AF =BC -CG ,即BF =BG ,∴△BFG 为等腰直角三角形,∴∠GFB =45°,∵∠EFG =90°,∴∠EF A =180°-90°-45°=45°,∴△AEF 为等腰直角三角形,∴AE=AF=CG,∴AE=EH=DH,∴BC=3AE,BG=2AE,∵BC=nBG,∴n=3322 BC AEBG AE==.【点睛】本题是四边形综合题,考查了垂等四边形的定义、正方形的性质、矩形的判定与性质、等腰三角形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质等知识;正确理解垂等四边形的定义、证明△BFG和△AEF都为等腰直角三角形是解题的关键.24.(1)是,等边三角形,60;(2)15;(3)见解析;(3)7,9【分析】(1)由折叠的性质可得AN=BN,AE=BE,∠NEA=90°,BM垂直平分AN,∠BAM=∠BNM=90°,可证△ABN是等边三角形,由等边三角形的性质和直角三角形的性质可求解;(2)由折叠的性质可得∠ABG=∠HBG=45°,可求解;(3)由折叠的性质可得AO=A'O,AA'⊥ST,由“AAS”可证△ASO≌△A'TO,可得SO=TO,由菱形的判定可证四边形SATA'是菱形;(4)先求出AT的范围,即可求解.【详解】解:(1)如图①∵对折矩形纸片ABCD,使AD与BC重合,∴EF垂直平分AB,∴AN=BN,AE=BE,∠NEA=90°,∵再一次折叠纸片,使点A落在EF上的点N处,∴BM垂直平分AN,∠BAM=∠BNM=90°,∴AB=BN,∴AB=AN=BN,∴△ABN是等边三角形,∴∠EBN=60°,∴∠ENB=30°,∴∠MNE=60°,故答案为:是,等边三角形,60;(2)∵折叠纸片,使点A落在BC边上的点H处,∴∠ABG=∠HBG=45°,∴∠GBN=∠ABN-∠ABG=15°,故答案为:15;(3)∵折叠矩形纸片ABCD,使点A落在BC边上的点A'处,∴ST垂直平分AA',∴AO=A'O,AA'⊥ST,∵AD∥BC,∴∠SAO=∠TA'O,∠ASO=∠A'TO,∴△ASO≌△A'TO(AAS)∴SO=TO,∴四边形ASA'T是平行四边形,又∵AA'⊥ST,∴四边形SATA'是菱形;(4)∵折叠纸片,使点A落在BC边上的点A'处,∴AT=A'T,在Rt△A'TB中,A'T>BT,∴AT>10-AT,∴AT>5,∵点T在AB上,∴当点T与点B重合时,AT有最大值为10,∴5<AT≤10,∴正确的数值为7,9,故答案为:7,9.【点睛】本题是几何变换综合题,考查了矩形的性质,菱形的判定,全等三角形的判定和性质,折叠的性质,等边三角形的判定和性质等知识,灵活运用这些性质进行推理是本题的关键.。
浙教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、某班抽取6名同学进行体育达标测试,成绩如下:80,90,75,80,75,80. 下列关于对这组数据的描述错误的是()A.众数是80B.平均数是80C.中位数是75D.极差是152、已知反比例函数y= ,下列结论中不正确的是()A.图象经过点(﹣1,﹣1)B.图象在第一、三象限C.两个分支关于原点成中心对称 D.当x<0时,y随着x的增大而增大3、若关于x的一元二次方程x2-2mx+m2-1=0的一个根为2,则m的值为()A. 或3B. 或C.1或D.1或34、下列方程中,关于x的一元二次方程是()A. B. C. =0 D.5、二次根式中,x的取值范围是()A.x≤3B.x=3C.x≠3D.x<36、在边长为5的正方形ABCD中,以A为一个顶点,另外两个顶点在正方形ABCD的边上作等腰三角形,且含边长为4的所有大小不同的等腰三角形的个数为()A.6B.5C.4D.37、如图,已知一次函数y=ax+b与反比例函数y=图象交于M、N两点,则不等式ax+b>解集为()A.x>2或﹣1<x<0B.﹣1<x<0C.﹣1<x<0或0<x<2 D.x>28、甲、乙、丙、丁4支仪仗队队员身高的平均数及方差如下表所示:甲乙丙丁平均数(cm)177 178 178 179方差0.9 1.6 1.1 0.6哪支仪仗队的身高更为整齐?()A.甲B.乙C.丙D.丁9、下列说法:①伸缩门的制作运用了四边形的不稳定性;②夹在两条平行线间的垂线段相等;③成中心对称的两个图形不一定是全等形;④一组对角相等的四边形是平行四边形;⑤用反证法证明“四边形中至少有一个角是钝角或直角”时,必先假设“四边形中至多有一个角是钝角或直角”,其中正确的是()A.①②B.③④C.①②④D.①②⑤10、在下列图形中,是中心对称图形而不是轴对称图形的是()A.圆B.等边三角形C.梯形D.平行四边形11、设m、n是方程x2+x-2012=0的两个实数根,则m2+2m+n的值为()A.2008B.2009C.2010D.201112、函数y=ax﹣a与y= (a≠0)在同一直角坐标系中的图象可能是()A. B. C. D.13、已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥AB交BC于点E,AD=6cm,则OE的长为()A.6cmB.4cmC.3cmD.2cm14、已知关于x的一元二次方程x2+2x+a﹣1=0有两根为x1和x2,且x12﹣x 1x2=0,则a的值是()A.a=1B.a=1或a=﹣2C.a=2D.a=1或a=215、下列图案中,既是轴对称图形又是中心对称图形的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,直线y1=x﹣1与双曲线y2= (x>0)交于点P(a,2),则关于x的不等式>x﹣1≥0的解集为________.17、方程的解为________.18、如图,已知ABCD,以B为位似中心,作ABCD的位似图形EBFG,位似图形与原图形的位似比为,连结AG,DG。
杭州市公益中学2014-2015学年第二学期期末考试八年级数学试题一、选择1、下列二次根式:222,2,5.0,31,5y x b a a +-中,是最简二次根式的有( ) A 、2个 B 、3个 C 、4个 D 、5个2、用配方法解方程0222=--x x ,下列变形正确的是( )A 、()212=-xB 、()222=-xC 、()312=-xD 、()322=-x 3、已知实数b a ,分别满足046,04622=+-=+-b b a a ,且b a ≠,则22b a +的值为( )A 、36B 、50C 、28D 、254、小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于AB 的长为半径画弧,两弧相交于C 、D ,则直线CD 即为所求。
根据他的作图方法可知四边形ADBC 一定是( )A 、矩形B 、菱形C 、正方形D 、平行四边形5、已知点()()2211,,,y x B y x A 是反比例函数)0(>=k xk y 图象上的两点,若210x x <<,则有( ) A 、210y y << B 、120y y << C 、021<<y y D 、012<<y y6、如图,E 是矩形ABCD 内的一个动点,连接EA 、EB 、EC 、ED ,得到△EAB 、△EBC 、△ECD 、△EDA ,设它们的面积分别是m 、n 、p 、q ,给出如下结论:上。
点一定在,则)若(的交点;与点一定是,则若BD E n m BD AC E n m q n p m p q n m ====++=+4)3(;)2(;)1(其中正确的结论的序号是( ) 第6题图A 、(1)(3)B 、(2)(4)C 、(1)(2)(3)D 、(2)(3)(4)7、如图,矩形ABCD 的边分别与两坐标轴平行,对角线AC 经过坐标原 点,点D 在反比例函数)0(1052>=-=x xk k y 的图象上。
浙教版八年级第二学期期末数学试卷及答案【考生须知】1.本卷为试题卷,请将答案做在答题卷上.2.本次检测不使用计算器.一、选择题(每小题有4个选项,其中有且只有一个正确,请把正确选项的编码填入答题卷的相应空格,每小题3分,共30分) 1.下列方程中为一元二次方程的是( ▲ ) (A )x 2+3x =(B )(x -1)2=x 2(C )x +=1(D )2+3x =x 22.下列环保标志图案既是轴对称图形,又是中心对称图形的是( ▲ )(A ) (B ) (C ) (D )3.下列计算结果正确的是( ▲ )(A)(-5)2=-5 (B )32-2=3 (C )=2(D )(-3)2=34.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:尺码(cm ) 23.5 24 24.5 25 25.5 销售量(双) 12251则这11双鞋的尺码组成的一组数据中,众数和中位数分别是( ▲ )(A )25,25(B )24.5,25(C )25,24.5(D )24.5,24.55.若函数y =的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是( ▲ ) (A )m <-2(B )m <0(C )m >-2(D )m >06.如图,在□ABCD 中,已知AD =6cm ,AB =4cm , AE 平分∠BAD 交BC 边于点E ,则CE 的长等于( ▲ ) (A )4cm (B )3cm(C )2cm(D )1cm7.已知4个正数a 1,a 2,a 3,a 4的平均数是a ,且a 1>a 2>a 3>a 4,则数据a 1,a 2,0,a 3,a 4的平均数和中位数是( ▲ ) (A )a ,a 2(B )a ,a 3(C )a ,0(D )a ,a 38.用反证法证明命题“在直角三角形中,必有一个锐角不小于45°”时,首先应假设这个直角三角形中( ▲ ) (A )两个锐角都大于45° (B )两个锐角都小于45° (C )两个锐角都不大于45°(D )两个锐角都等于45°9.如图,在正方形ABCD 中,G 是对角线BD 上的一点,GE ⊥CD , GF ⊥BC ,E ,F 分别为垂足,连结AG .若AG =8,四边形CEGFAB(第6题)的面积为18,则该正方形的边长为(▲)(A)10(B)12(C)5+27(D)12-710.小宁在研究关于x的一元二次方程x2-4x+m=0时,得到以下4个结论:①若m=4,则方程有两个相等的实数根;②若m<0,则方程必有两个异号的实数根;③若m<4,则方程的两个实数根不可能都大于2;④若m<-5,则方程的两个实数根一个小于5,另一个大于5.其中结论正确的个数有(▲)(A)1个(B)2个(C)3个(D)4个二、填空题(每小题3分,共30分)11.二次根式x+1中,字母x的取值范围是▲.12.一元二次方程x2-x=0的解是▲.13.八边形的外角和是▲.14.四边形ABCD中,已知AB∥CD,AB=CD,添加一个条件▲,即可判定该四边形是矩形.15.随机从甲、乙两块试验田中各抽取10株麦苗测量高度,计算平均数和方差的结果为:x-甲=13,x-乙=13,S2甲=7.5,S2乙=21.6,则小麦长势比较整齐的试验田是▲.16.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x,可列方程为▲.17.已知点P(x1,y1),Q(x2,y2)是反比例函数y=-(x>0)图象上两点,若y1-y2>0,则的大小x1,x2关系是▲.18.如图,在平行四边形ABCD中,E是CD的中点,F是AE的中点,CF交BE于点G,若BE=8,则GE=▲.19.如图,一次函数y=2x与反比例函数y=(k>0)的图象交于点A,B两点,点C在x轴上运动,连接AC,点Q为AC中点,若点C运动过程中,OQ的最小值为1,则点B的坐标为▲.20.如图,在矩形ABCD中,BC=4,∠BDC的平分线交BC于点P,作点P关于BD的对称点P′,若点P′落在矩形ABCD的边上,则AB的长为▲.三、解答题(第21~24题,每题6分,第25、26题,每题8分,共40分)21.(6分)(1)计算:12- 3 (2)解方程:x2-6x-7=0 22.(6分)如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且BE=DF.(1)求证:△ADE∽△CBF;(2)连结AF,CE,求证:四边形AECF是平行四边形.23.(6分)某校为提高学生的汉字书写能力,开展了“汉字听写”大赛.七、八年级学生参加比赛,为了解这两个年级参加比赛学生的成绩情况,从中各随机抽取10名学生的成绩,数据如下(单位:分):七年级88 94 90 94 84 94 99 94 99 100八年级 84 93 88 94 93 98 93 98 97 99整理数据:(2)你认为哪个年级学生“汉字听写”大赛的成绩比较好?并说明理由.(至少从两个不同的角度说明推断的合理性)24.(6分)如图,点A在反比例函数y=-的图象上,点B(1,4)在反比例函数y=的图象上,连结AB交y轴于点C,且AC=BC,连接OA,OB.(1)求k的值;(2)求△AOB的面积.25.(8分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利 给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以 上,每部返利1万元.(1)若该公司当月卖出3部汽车,求每部汽车的进价是多少万元;(2)如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)26.(8分)(1)【问题原型】如图1,在四边形ABCD 中,∠ADC =90°,AB =AC .点E ,F 分别为AC ,BC 的中点,连接EF ,DE .试说明:DE =EF .(2)【探究】如图2,在问题原型的条件下,当AC 平分∠BAD ,∠DEF =90°时,求∠BAD 的大小.(3)【应用】如图3,在问题原型的条件下,当AB =2,且四边形CDEF 是菱形时,直接写出四边形ABCD 的面积.(第26题 图1) FEDCABFEDCA B(第26题 图2) (第26题 图3)FECDB数学参考答案一、选择题(本题有10小题,每小题3分,共30分)DCDAA CBBAD二、填空题(本题有10小题,每小题3分,共30分)11.x≥-1;12.x1=0,x2=1;13.1080°;14.∠A=90°(答案不唯一);15.甲;16.120(1-x)2=100;17.x1>x2;18.2;19.(-1,2);20.3或4.三、解答题(本题有6小题,第21~24题每题6分,第25、26题每题8分,共40分)21.(1)原式=23-3=3 ······························································ 3分(2)(x-3)2=16, ·······································································1分x-3=4或x-3=-4,x1=7,x2=-1.···································································2分22.(1)∵AE⊥AD,CF⊥BC,∴∠EAD=∠FCB.·······························································1分∵AD∥BC,∴∠ADE=∠CBF.·······························································1分∵DF=BE,∴DE=BF.·········································································1分∴△ADE∽△CBF.(2)∵△ADE∽△CBF,∴AE=CF, ·········································································1分∠AEF=∠CFE, ·······························································1分∴AE∥CF, ·········································································1分∴四边形AECF是平行四边形.23.(1)a=1,b=1,m=94,n=93.5; ················································4分(2)八年级成绩比较好.因为八年级学生成绩的平均数较高,而且方差小,成绩稳定 ········································································2分24.(1)k=1×4=4; ········································································2分(2)如图,过点A,B分别作y轴的垂线,垂足分别为D,E.∴∠ADC=∠BEC=90°,∵∠ACD=∠BCE,AC=BC,∴△ACD∽△BCE, ···························· 1分∴AD=BE,∴x A=-x B=-1,∴A(-1,2) ··································· 1分∴y AB=x+3, ···································· 1分∴OC=3,∴S△AOB=S△OCA+S△OCB=3. ···················································· 1分25.(1)27-0.1×(3-1)=26.8; ························································· 2分(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:28-[27-0.1(x-1)]=(0.1x+0.9)(万元),···························· 1分当0≤x≤10,根据题意,得x(0.1x+0.9)+0.5x=12, ··················· 1分整理,得x2+14x-120=0,解这个方程,得x1=-20(不合题意,舍去),x2=6. ·················· 1分当x>10时,根据题意,得x(0.1x+0.9)+x=12,························ 1分整理,得x2+19x-120=0,解这个方程,得x1=-24(不合题意,舍去),x2=5. ·················· 1分∵5<10,∴x2=5舍去.答:要卖出6部汽车. ···························································· 1分26.(1)∵点E,F分别为AC,BC的中点∴EF∥AB,且EF=AB.························································· 2分∵点E为AC的中点,∴DE=AC∵AB=AC,∴DE=EF; ·········································· 1分(2)∵∠ADC=90°,E为AC中点,∴DE=AE,∴∠DAE=∠ADE,∴∠DEC=2∠DAE.∵AC平分∠BAD,EF∥AB,∴∠BAE=∠DAE,∠CEF=∠BAE,∴∠CEF=∠DAE.∵∠DEF=90°,∴∠CEF+∠DEC=∠BAC+2∠DAE=3∠DAE=90°,∴∠BAC=∠DAE=30°,∴∠BAD=60°. ···································································· 3分(3)3. ···················································································2分。
浙教版八年级数学(下)期末测试卷一、选择题(本题有10小题,每小题3分,共30分) 1.二次根式中,字母a 的取值范围是 ( )(A )a >-3(B )a ≥-3(C )a >3(D )a ≥32.在下列关于平行四边形的各命题中,假命题是 ( ) (A )平行四边形的对边相等 (B )平行四边形的对角相等 (C )平行四边形的对角线互相平分(D )平行四边形的对角线互相垂直3.一元二次方程x 2-4x -6=0,经过配方可变形为 ( )(A )(x -2)2=10(B )(x -2)2=6(C )(x -4)2=6(D )(x -2)2=24.在下列图形中,中心对称图形是 ( )(A )等边三角形(B )平行四边形(C )等腰梯形(D )正五边形5若92+-mx x 是一个完全平方式。
则m 的值是:----------------------------( )A 6B 6-C 6±D 以上都不对 6.下列计算正确的是 ( )(A )+=(B )-=1(C )3-=(D )3+=37.一幅平面图案,在某个顶点处由四个正多边形镶嵌而成,其中的三个分别为正三角形、正方形、正六边形,那么另外一个为 ( )(A )正三角形(B )正方形(C )正五边形(D )正六边形8.将50个数据分成五组,编成组号为①~⑤的五个组,频数颁布如下表:那么第③组的频率为 ( )(A )14(B )7(C )0.14(D )0.79.如图,已知矩形ABCD 的对角线AC 的长为10cm ,连结各边中点E 、F 、G 、H 得四边形EFGH ,则四边形EFGH 的周长为 ( )(A )20cm (B )20cm (C )20cm(D )25cm10.如图,梯形ABCD 中,AD ∥BC ,AB =CD ,AD =5,BC =8.将腰DC绕点D 逆时针方向旋转90º至DE ,连结AE ,则△ADE 的面积为 ( )(A )4(B )(C )(D )20二、填空题(本题有10小题,每小题3分,共30分) 11.数据10,5,12,7的极差为__________. 12.五边形的内角和等于__________.A BC DE FG H13.方程2x 2=6的解是__________.14.如图,四边形ABCD 是周长为20cm 的菱形,点A 的坐标是(4,0),则点B 的坐标为__________.15.在□ABCD 中,若给出四个条件:①AB =BC ,②∠BAD =90º,③AC ⊥BD ,④AC =BD .其中选择两个可推出四边形ABCD 是正方形,你认为这两个条件是__________.(填序号,只需填一组)16.写出命题“矩形的对角线互相平分且相等”的逆命题______________________________.17.数a 、b 在数轴上的位置如图:则-=__________.18.如图,□ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC边于点E ,则线段EC 的长度为__________.19.已知关于x 的一元二次方程(m +2)x 2+mx +m 2-4=0有一个根是0,则m =__________.20.设a ,b 是一个直角三角形两条直角边的长,且(a 2+b 2)(a 2+b 2+1)=12,则这个直角三角形的斜边长为__________.三、解答题(本题有6小题,共40分) 21.(6分)(1)解方程:x 2+2x -3=0; (2)计算:÷-×3.22.(8分)某地区为了增强市民的法制意识, 抽调了一部分市民进行了一次知识竞赛,竞赛 成绩(得分取整数)进行了整理后分5组, 并绘制了频数分布直方图,请结合右图提供 的信息,解答下列问题: ①抽取多少人参加竞赛?②60.5到70.5这一分数段的频数和 频率分别是多少?③这次竞赛成绩的中位数落在哪个分数段内? ④根据频数分布直方图,请你提出一个问题, 并回答你所提出的问题。
浙教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知关于x的一元二次方程x2﹣3m=4x无实数根,则m的取值范围是()A.m<﹣2B.m<﹣C.m≥﹣D.m<02、将一元二次方程化为一般形式后,其中二次项系数、一次项系数分别是()A. B. C. D.3、用配方法解方程-4x+3=0,下列配方正确的是()A. =1B. =1C. =7D. =44、为了研究特殊四边形,刘老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C,B与D两点之间分别用一根橡皮筋拉直固定,课上,刘老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2),观察所得到的四边形,下列结论正确的有()①∠BCA= 45°;②AC的长度变小;③AC= BD;④AC⊥BDA.1个B.2个C.3个D.4个5、下列化简正确的是()A. =B. =﹣5C. ﹣=D. =46、若某校九年级(1)班8名女生的体重(单位:kg)为:35,36,38,40,41,42,42,45,则这组数据的众数为( )A.38B.39C.40D.427、如图,在Rt△ABC中,∠BAC=90°,D,E分别是AB,BC的中点,F在CA延长线上,∠FDA=∠B,AC=3,AB=4,则四边形AEDF的周长为()A.8B.9C.10D.118、下列说法正确的是()A.从1,2,3,4,5中随机取出一个数,取得偶数的可能性比取得奇数的大 B.若甲组数据的方差S甲2=0.31,乙组数据的方差S乙2=0.02,则甲组数据比乙组数据稳定 C.数据﹣2,1,3,4,4,5的中位数是4 D.了解重庆市初中学生的视力情况,适宜采用抽样调查的方法9、如图,点A与点B分别在函数y= 与y= 的图象上,线段AB的中点M在y轴上.若△AOB的面积为2,则k1﹣k2的值是()A.2B.3C.4D.510、下列命题中是假命题的是().A.一组对边平行且相等的四边形是平行四边形B.一组对边相等且有一个角是直角的四边形是矩形C.一组邻边相等的平行四边形是菱形D.一组邻边相等的矩形是正方形11、某校在“中国梦.我的梦”演讲比赛中,有11名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的()A.平均数B.众数C.中位数D.方差12、下列说法正确的是()A.一元二次方程的一般形式是ax 2+bx+c=0B.方程x 2=x的解是x=1 C.一元二次方程的一般形式是ax 2+bx+c=0 的根是x=D.方程x(x+2)(x﹣3)=0的实数根有三个13、小张参加某节目的海选,共有17位选手参加决逐争取8个晋级名额,已知他们的分数互不相同,小张要判断自己是否能够晋级,只要知道17名选手成绩统计量中的()A.众数B.方差C.中位数D.平均数14、下列一元二次方程两实数根和为-4的是( )A.x 2+2x-4=0B.x 2-4x+4=0C.x 2+4x+10=0D.x 2+4x-5=015、反比例函数y=图象经过点(2,3),则n的值是().A.-2B.-1C.0D.1二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,正方形的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的正半轴上.直线分别与边相交于两点,反比例函数的图象经过点并与边相交于点N,连接.点P是直线上的动点,当时,点P的坐标是________.17、如图,已知△ABC中,∠B=50°,分别以A,C为圆心,BC,AB长为半径画弧,两弧在直线BC上方交于点D,连接AD,CD,则∠D=________.18、某多边形的内角和是,从这个多边形的一个顶点出发可以作________条对角线.19、如果、是一元二次方程的两个根,则________.20、已知反比例函数的图象具有下列特征:在所在的象限内,y随x 的增大而增大,那么m的取值范围是________.21、如图,点P在反比例函数y=(x<0)的图象上,过P作x轴,y轴的垂线,垂足分别为点A,B,已知矩形PAOB的面积为3,则k=________.22、的计算结果是 ________。
浙教版八年级(下)数学期末试卷 班级 姓名 得分一、精心选一选: (每小题3分,共30分)1、代数式12x x --在实数范围内有意义,则x 的取值范围是( )。
A 、x ≥2 B 、x ≥1 C 、x ≠2 D 、x ≥1且x ≠22.计算:32121823-+()()的值为( )(A )6 (B ) 0 (C )6 (D )-63.一个多边形的内角和等于外角和的一半,那么这个多边形是( )(A )三角形 (B )四边形 (C )五边形 (D )六边形4. 用配方法将方程x 2+6x-11=0变形为( )(A) (x-3)2=20 (B) (x+3)2=20 (C)(x+3)2=2 (D)(x-3)2=25.已知一道斜坡的坡比为1:3,坡长为24米,那么坡高为( )米。
(A )38 (B )12 (C ) 34 (D )66.平行四边形一边长为10 ,则它的两条对角线可以是( )(A )6 ,8 (B )8, 12 (C) 8, 14 (D) 6, 147.下列图形中,不是中心对称图形的是( ).8.如图,矩形ABCD 沿AE 折叠,使点D 落在BC 边上的F 点处, 如果∠BAF=60°,那么∠DAE 等于( ).(A )15° (B )30° (C )45° (D )60°9.如图,四边形ABCD 是正方形,延长BC 至点E ,使CE=CA ,连结AE 交CD•于点F ,•则∠AFC 的度数是( ).(A )150° (B )125° (C )135° (D )112.5°第8题第9题10.小许拿了一张正方形的纸片如图甲,沿虚线对折一次得图乙.•再对折一次得图丙.然后用剪刀沿图丙中的虚线(虚线与底边平行)剪去一个角.打开后的形状是(• ).二、专心填一填:(每小题3分,共30分)11.使13-4x有意义的x的值是_______________。
浙教版数学八年级下册期末考试试题一、单选题1.下列计算正确的是()A=B=C=D3=-2.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°3.下列方程中,没有实数根的是()A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1 =0 D.x2﹣2x+2=0 4.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.平行四边形C.正五边形D.矩形5.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁6.为把我市创建成全国文明城市,某社区积极响应市政府号召,准备在一块正方形的空地上划出部分区域栽种鲜花,如图中的阴影“”带,鲜花带一边宽1m,另一边宽2m,剩余空地的面积为18m2,求原正方形空地的边长xm,可列方程为()A.(x﹣1)(x﹣2)=18 B.x2﹣3x+16=0C.(x+1)(x+2)=18 D.x2+3x+16=07.如图,四边形ABCD是菱形,8AC=,DB=6,DH⊥AB于H,则DH等于( )A.245B.125C.5 D.48.如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=kx(k≠0)的图象过点C,则该反比例函数的表达式为()A.y=3xB.y=4xC.y=5xD.y=6x二、填空题9.方程230x x-=的根为.10.在二次根式√2x+1中,x的取值范围是_________.11.在实数0,−π,√2,−4中,最小的数是__________.12.如图,在▱ABCD 中,AB =3,BC =5,以点B 为圆心,以任意长为半径画弧,分别交BA 、 BC 于点P 、Q 再分别以P 、Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠ABC 内交于点M ,连接BM 并延长交AD 于点E ,则DE 的长为____________.13.在矩形ABCD 中,由9个边长均为1的正方形组成的“L 型”模板如图放置,此时量得CF=3,则BC 边的长度为_____________.14.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2…按如图所示放置,点A 1、A 2、A 3…在直线y=x+1上,点C 1、C 2、C 3…在x 轴上,则An 的坐标是________________.三、解答题 15.解方程:(1)()x 2x 2x 1-=- (2)2x 3x 20-+=16.计算:|−√3|+√2×√6+(12)−1−(√2019−√2017)017.已知关于x 的方程x 2+ax+a ﹣2=0.若该方程的一个根为1,求a 的值及该方程的另一根.18.阅读下面材料,解答问题:将4个数a 、b 、c 、d 排列成2行2列,记为:|acb d|,叫做二阶行列式.意义是|a c b d |=ad −bc .例如:|57 68|=5×8−6×7=−2. (1)请你计算|5√27 √6√8|的值; (2)若|x +13x 2x +1|=9,求x 的值.19.如图,网格每个小正方形的顶点叫格点,线段AB 的端点在格点上.按要求以线段AB 为边或对角线,分别在网格中作两个不全等四边形. 要求(1)四边形顶点在格点上;(2)四边形为轴对称图形20.在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 7325 8430 8215 7453 7446 6754 7638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表请根据以上信息解答下列问题:(1)填空:m= ______ ,n= ______ ;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在______ 组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.21.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.22.如图所示,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,已知AB=8,BC=10,(1)求BF的长;(2)求△ECF的面积.23.数学兴趣小组几名同学到商场调查发现,一种纯牛奶进价为每箱40元,厂家要求售价在40~70元之间,若以每箱70元销售平均每天销售30箱,价格每降低1元平均每天可多销售3箱.(1)现该商场要保证每天盈利900元,同时又要使顾客得到实惠,那么每箱售价为多少元?(2)若每天盈利为W元,请利用配方法直接写出每箱售价为多少元时,每天盈利最多.24.如图,矩形ABCD中,AB=5cm,BC=10cm,动点M从点D出发,按折线DCBAD方向以3cm/s的速度运动,动点N从点D出发,按折线DABCD方向以2cm/s的速度运动.点E在线段BC上,且BE=1cm,若M、N两点同时从点D 出发,到第一次相遇时停止运动.(1)求经过几秒钟M、N两点停止运动?(2)求点A、E、M、N构成平行四边形时,M、N两点运动的时间;(3)设运动时间为t(s),用含字母t的代数式表示△EMN的面积S(cm2).参考答案1.B【解析】【分析】根据二次根式的运算法则对各选项进行计算,然后判断即可.【详解】解:A. A选项错误;B. ==C. ==,所以C选项错误;=-=,所以D选项错误,33故选:B.【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题关键.2.C【解析】试题分析:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.考点:1矩形;2平行线的性质.3.D【解析】【分析】分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.【详解】A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;D 、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D 选项正确. 故选D . 4.D 【解析】 【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解. 【详解】解:A 、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误; B 、平行四边形不是轴对称图形,是中心对称图形,故本选项错误; C 、正五边形是轴对称图形,不是中心对称图形,故本选项错误. D 、矩形既是轴对称图形,又是中心对称图形,故本选项正确; 故选:D . 【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 5.D 【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵==x x x x >乙丁甲丙,∴从乙和丁中选择一人参加比赛,∵22S S >乙丁,∴选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键. 6.A 【解析】 【分析】可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式方程可列出. 【详解】设原正方形的边长为xm ,依题意有: (x ﹣1)(x ﹣2)=18. 故选A . 【点睛】本题考查了由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.另外求得剩余的空地的长和宽是解决本题的关键. 7.A 【解析】 【分析】根据菱形性质求出AO =4,OB =3,∠AOB =90°,根据勾股定理求出AB ,再根据菱形的面积公式求出即可. 【详解】解:∵四边形ABCD 是菱形,设AB,CD 交于O 点, ∴AO =OC ,BO =OD ,AC ⊥BD , ∵AC =8,DB =6,∴AO =4,OB =3,∠AOB =90°,由勾股定理得:AB 5,∵S 菱形ABCD =12×AC×BD =AB×DH ,∴12×8×6=5×DH , ∴DH =245, 故选:A .【点睛】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S 菱形ABCD =12×AC×BD =AB×DH 是解此题的关键.8.A【解析】解:如图,过点C 作CE ⊥y 轴于E .在正方形ABCD 中,∵AB =BC ,∠ABC =90°,∴∠ABO +∠CBE =90°.∵∠OAB +∠ABO =90°,∴∠OAB =∠CBE .∵点A 的坐标为(﹣4,0),∴OA =4.∵AB =5,∴OB =3.在△ABO 和△BCE 中,∵∠OAB =∠CBE ,∠AOB =∠BEC ,AB =BC ,∴△ABO ≌△BCE (AAS ),∴OA =BE =4,CE =OB =3,∴OE =BE ﹣OB =4﹣3=1,∴点C 的坐标为(3,1).∵反比例函数k y x =(k ≠0)的图象过点C ,∴k =xy =3×1=3,∴反比例函数的表达式为3y x=.故选A .点睛:本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点D 的坐标是解题的关键.9.120,?3x x ==.【解析】试题分析:x (x -3)=0 解得:1x =0,2x =3.考点:解一元二次方程.10.x ≥−12【解析】【分析】根据二次根式的性质:二次根式的被开方数是非负数,得2x+1≥0.解不等式可得答案.【详解】解:根据题意,得2x+1≥0,解得,x≥-12;故答案是:x≥-12.【点睛】本题考查了二次根式的意义和性质.概念:式子√a (a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.11.-4【解析】【分析】根据正数大于0,0大于一切负数,两个负数绝对值大的反而小判断即可.【详解】解:∵√2>0,-4<−π<0∴-4<−π<0<√2最小的数是-4.故答案为:-4.【点睛】考查实数的比较;用到的知识点为:正数大于0;0大于一切负数;两个负数绝对值大的反而小,注意应熟记常见无理数的约值.12.2【解析】根据作图过程可得得AE平分∠ABC;再根据角平分线的性质和平行四边形的性质可证明∠AEB=∠CBE,证出AE=AB=3,即可得出DE的长.,解:根据作图的方法得:AE平分∠ABC,∴∠ABE=∠CBE∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD﹣AE=5﹣3=2;故答案为2.“点睛”此题考查了平行四边形的性质、等腰三角形的判定.熟练掌握平行四边形的性质,证出AE=AB是解决问题的关键.13.7.【解析】试题分析:由图和已知,EF=5,CF=3,∴根据勾股定理可得EC=4.易证ΔABE≌ΔECF(AAS),∴BE="CF=3" .∴BC=7.考点:1.矩形的性质;2.勾股定理;3.全等三角形的判定和性质.14.(21n--1,21n-)【解析】【详解】解:∵直线y=x+1和y轴交于A1,∴A1的坐标(0,1),即OA1=1,∵四边形C1OA1B1是正方形,∴OC1=OA1=1,把x=1代入y=x+1得:y=2,∴A2的坐标为(1,2),同理A3的坐标为(3,4),…A n 的坐标为(121n --,12n -),故答案为(121n --,12n -).15.(1)12x =22x = (2)11x =,22x =【解析】【分析】(1)对方程去括号、移项合并同类项,化成一元二次方程的一般形式,把常数项移到等号的右边,再运用配方法求解;(2)先根据2x x +(p+q )x+pq=(x+p)(+q )对方程左边进行因式分解,化为两个一元一次方程求解.【详解】(1)去括号:2x -2x=2x-1,移项、合并同类项:2x -4x+1=0,配方得:2(2)3x -=解得12x =22x =(2)2320x x -+=(x-1)(x-2)=0x-1=0或x-2=0解得11x =,22x =.故答案为(1)12x =22x = (2)11x =,22x =.【点睛】本题考查了用配方法和因式分解法解一元二次方程,能根据方程的特点选择合适的方法并熟练掌握解方程的方法和步骤是关键.16.3√3+1【解析】【分析】根据负整数指数幂a n =1a n (a≠0,n 为正整数),零指数幂的意义a 0=1(a≠0),和实数的运算法则进行计算.【详解】解:|−√3|+√2×√6+(12)−1−(√2019−√2017)0=√3+2√3+2-1=3√3+1.故答案为:3√3+1.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、绝对值、整数指数幂等考点的运算.17.a=21;另一根为-23. 【解析】试题分析:将x=1代入方程x 2+ax+a-2=0得到a 的值,再根据根与系数的关系求出另一根;试题解析:将x=1代入方程x 2+ax+a-2=0得,1+a+a-2=0,解得,a=21; 方程为x 2+21x-23=0,即2x 2+x-3=0,设另一根为x 1,则1•x 1=-23,x 1=-23. 考点:1、一元二次方程的解;2、根与系数的关系.18.(1)√2;(2)x 1=2,x 2=−2.【解析】【分析】(1)根据新定义得到|5√27 √6√8|=5×√8-√6×√27,然后进行二次根式的乘法运算; (2)根据新定义得到(x+1)(2x+1)-3x=9,然后整理后利用直接开平方法解方程.【详解】(1)原式=5×√8−√6×√27=5×2√2−√6×3√3=10√2−9√2=√2;(2)由题可得:(x+1)(2x+1)﹣3x=9,2x2+3x+1−3x=9,∴2x2=8解得:x1=2,x2=−2.故答案为:(1)√2;(2)x1=2,x2=−2.【点睛】本题通过新定义运算的形式考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了直接开平方法解一元二次方程.19.见解析,本题答案不唯一.【解析】【分析】利用轴对称图形性质,以及全等四边形的定义,如矩形、正方形都是轴对称图形,根据题意画出图形即可.【详解】解:如图所示,本题答案不唯一.【点睛】本题考查作图-轴对称变换,轴对称图形是按一条直线折叠后重合的图形.解题的关键是理解题意,掌握常见图形的性质,并按要求作图.20.(1)4;1;(2)见解析;(3)B;(4)48.【解析】【分析】(1)根据题目中的数据即可直接确定m和n的值;(2)根据(1)的结果即可直接补全直方图;(3)根据中位数的定义直接求解;(4)利用总人数乘以对应的比例即可求解.【详解】解:(1)由记录的数据可知,7500≤x<8500的有8430、8215、7638、7850这4个,即m=4;9500≤x<10500的有9865这1个,即n=1.故答案为4;1;(2)如图:(3)由于一共20个数据,其中位数是第10、11个数据的平均数,而第10、11个数据的平均数均落在B组,∴这20名“健步走运动”团队成员一天行走步数的中位数落在B组;故答案为B;(4)120×43120++=48(人),答:估计其中一天行走步数不少于7500步的有48人.故答案为48.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(1)见解析;(2)见解析.【解析】【分析】(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可;(2)由∠BAC=90°,AD是边BC上的中线,得AD=BD=CD,即可证明.【详解】(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=DC,∴AE=DC,又∵AE∥BC,∴四边形ADCE是平行四边形.(2) 证明:∵∠BAC=90°,AD是边BC上的中线.∴AD=CD∵四边形ADCE是平行四边形,∴四边形ADCE是菱形.【点睛】本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.22.(1)BF=6;(2)6.【解析】【分析】(1)因为点F为点D的折后的落点,所以△AFE≌△ADE,由此可得AF=AD=10cm,在△ABF中利用勾股定理,可得BF的值,(2)先求出DE的长,进而求出CE的长,利用三角形的面积公式即可求出△ECF 的面积.【详解】(1)∵△ADE折叠后的图形是△AFE,∴△AFE≌△ADE∴AD=AF,∠D=∠AFE,DE=EF,∵AD=BC=10,∴AF=AD=10,又∵AB=8,在Rt△ABF中,根据勾股定理,得AB2+BF2=AF2,∴82+BF2=102,∴BF=6;故答案为:6.(2)则可得FC=BC-BF=10-6=4,设EC的长为x,∴DE=(8-x),∵FC=4,在Rt△EFC中,根据勾股定理,得:FC2+EC2=EF2,∴42+x2=(8-x)2,即16+x2=64-16x+x2,化简,得16x=48,∴x=3,故EC=3.∴S△ECF=12EC·FC=12×4×3=6.故答案为:6.【点睛】本题考查了图形对折的问题,在解题时一定要注意,折叠的图形与折叠后的图形全等,此题还考查了勾股定理以及三角形的面积公式的应用.23.(1)当每箱牛奶售价为50元时,平均每天的利润为900元.(2)60元. 【解析】【分析】(1)根据平均每天销售这种牛奶的利润=每箱的利润×销售量,设每箱售价为x 元,根据“每天盈利900元”列出方程(x-40)[30+3(70-x)]=900 求解即可;(2)根据平均每天销售这种牛奶的利润等于每箱的利润×销售量得到W=(x-40)[30+3(70-x)],整理后根据二次函数的性质求解.【详解】(1)解:设每箱售价为x元,根据题意得:(x-40)[30+3(70-x)]=900化简得:x2-120x+3500=0解得:x1=50或x2=70(不合题意,舍去)∴x=50答:当每箱牛奶售价为50元时,平均每天的利润为900元.(2)由题意得W=(x-40)[30+3(70-x)]=-3x2+360x-9600=−3(x−60)2+1200∴当售价为每箱牛奶60元时,每天盈利最多.【点睛】本题考查了二次函数的应用:先把二次函数关系式变形成顶点式:y=a(x-k)2+h,当a<0,x=k时,y有最大值h;当a>0,x=k时,y有最小值h.也考查了利润的含义.24.(1)经过6 s两点相遇.(2)当点A、E、M、N构成平行四边形时,M、N两点运动的时间为4或4.8s.(3)当0<t<53时,S =-3t2+372t;当53≤t<143时,S=S△EMN=12EM•CD=12×(3t-5-1)×5=35-152t;当143<t≤5时,S= t-35;当5<t<6时,S =15-52t.【解析】【分析】(1)由题意可得:M、N两点同时从点D出发,到第一次相遇时共运动了:2(5+10)=30(cm),则可得t=30÷(2+3)=6;(2)由题意知,当点N在AD边上运动,点M在BC边上运动时,点A、E、M、N才可能组成平行四边形,然后设经过t秒,四点可组成平行四边形,①当构成▱AEMN时,10-2t=14-3t,②当构成▱AMEN时,10-2t=3t-14,继而求得答案;(3)分别从当0<t<53时,当53t <143时,当143<t<5时,当5<t<6时,去分析求解即可求得答案.【详解】解:(1)∵矩形ABCD中,AB=5cm,BC=10cm,∴M、N两点同时从点D出发,到第一次相遇时共运动了:2(5+10)=30(cm),∴t=30÷(2+3)=6 (s)答:经过6 s两点相遇.故答案为6s.(2)由题意知,当点N在AD边上运动,点M在BC边上运动时,点A、E、M、N才可能组成平行四边形,设经过t秒,四点可组成平行四边形,①当构成▱AEMN时,10-2t=14-3t,解得t =4;②当构成▱AMEN时,10-2t=3t-14,解得t=4.8;答:当点A、E、M、N构成平行四边形时,M、N两点运动的时间为4s或4.8s.故答案为4s或4.8s.(3)如图(1),当0<t<53时,点M在线段CD上,S=S△EMN =S梯形CDNE-S△DMN-S△CEM=12×(2t+9)×5 -12×2t×3t -12×9×(5-3t)=-3t2+372t;如图(2),当53≤t<143时,点M在线段CE上,S=S△EMN=12EM•CD=12×(3t-5-1)×5=35-152t;如图(3),当143<t<5时,点M在线段BE上,S=S△EMN=12ME•CD =12×(3t-14)×5=152t-35;如图(4),当5<t<6时,点M、N都在线段AB上,S=S△EMN=12MN•BE=12×(30-2t-3t)×1=15-52t.故答案为当0<t<53时,S =-3t2+372t;当53≤t<143时,S= 35-152t;当143<t<5时,S= t-35;当5<t<6时,S =15-52t.【点睛】此题考查了矩形的性质.此题难度较大,属于动点题目,解题时注意分类讨论思想、方程思想与数形结合思想的应用.。
浙教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,在矩形ABCD中,对角线AC、BD交与点O,以下说法错误的是()A.∠ABC=90°B.AC=BDC.OA=OBD.OA=AD2、某班 6 个合作小组的人数分别是:4,6,4,5,7,8,现第 4 小组调出 1 人去第 2 小组,则调动后各组人数分别为:4,7,4,4,7,8,下列关于调配后的数据说法正确的是()A.平均数变小B.平均数变大C.方差不变D.方差变大3、下列说法中,正确是()A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式 C.一组数据8,8,7,10,6,8,9的众数是8 D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小4、一个多边形的内角和是360°,则这个多边形的边数为()A.6B.5C.4D.35、正方形具有而菱形不一定具有的性质是()A.对角线相等B.对角线互相垂直平分C.四条边都相等D.对角线平分一组对角6、将三角尺按如图所示放置在一张矩形纸片上,∠EGF=90°,∠FEG=30°,∠1=125°,则∠BFG的大小为()A.125°B.115°C.110°D.120°7、下列说法不正确的是()A.条形统计图能清楚地反映出各项目的具体数量B.折线统计图能清楚地反映事物的变化情况C.扇形统计图能清楚地表示出各个部分在总体中所占的百分比D.统计图只有以上三种8、某次器乐比赛共有11名选手参加,且他们的得分都互不相同.现在知道这次比赛按选手得分由高到低的顺序设置了6个获奖名额.若已知某位选手参加这次比赛的得分,要判断他能否获奖,则在下列描述选手比赛成绩的统计量中,只需知道()A.方差B.平均数C.众数D.中位数9、下列式子中无意义的是()A. B. C. D.10、一元二次方程x2+x﹣2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根11、A,B,C是平面内不在同一条直线上的三点,D是平面内任意一点,若A,B,C,D 四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有( )A.1个B.2个C.3个D.4个12、能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CDB.AB=BC,AD=CDC.AC=BD,AB=CD D.AB∥CD,AD=CB13、二次函数y=ax2+bx+c的图像如图所示,则反比例函数与一次函数y=bx+c在同一坐标系中的大致图像是()A. B. C. D.14、下列命题中,正确命题的序号是()①一组对边平行且相等的四边形是平行四边形②一组邻边相等的平行四边形是正方形③对角线相等的四边形是矩形④对角互补的四边形内接于圆A.①②B.②③C.③④D.①④15、若,0<x<1,则的值是()A. B.-2 C.±2 D.±二、填空题(共10题,共计30分)16、如图,直线x=t(t>0)与反比例函数的图象分别交于B,C 两点,A为y轴上的任意一点,则△ABC的面积为________.17、如图,菱形的周长是,,那么这个菱形的对角线的长是________.18、如图,在四边形ABCD中,对角线AC,BD交于点O,AD∥BC,请添加一个条件:________,使四边形ABCD为平行四边形.(不添加任何辅助线)19、如图,点A在反比例函数y=(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若=,△AOB的面积为6,则k的值为________.20、一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为________.21、关于x的方程ax2+bx﹣1=0的一个解是x=﹣1,则2015﹣a+b=________.22、如果x≥1,那么化简的结果是________.23、如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和6时,则阴影部分的面积为________.24、圆柱的体积为10cm3,则它的高ycm与底面积xcm2之间的函数关系式是________ .25、如图,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣3,0),C (2,0),将△ABC绕点B顺时针旋转一定角度后使A落在y轴上,与此同时顶点C恰好落在y= 的图象上,则k的值为________.三、解答题(共5题,共计25分)26、解方程:3x(2x+1)=4x+2.27、甲、乙两名战士在相同条件下各射靶6次,每次命中的环数分别是:(单位:环)甲:4,9,10,7,8,10;乙:8,9,9,8,6,8.(1)分别计算甲、乙两名战士的平均数和方差;(2)哪名战士的成绩比较稳定.28、如图,在中,,正方形的三个顶点分别在边,,上。
浙教版八年级(下)期末数学检测卷一、选择题(每小题2分,共20分)1.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.不解方程,判别方程5x2-7x+5=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根3.若化简的结果为2x-5,则x的取值范围是()A.x为任意实数B.1≤x≤4 C.x≥1 D.x≤4 4.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是() A.平均数B.中位数C.众数D.方差5.一元二次方程x2+x-1=0的两根分别为x1,x2,则+=()A.B.1C.D.6.如图,在周长为20cm的平行四边形ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm7.如图,在梯形ABCD中,AB∥CD,AD=BC,对角线AC⊥BD ,垂足为O,若CD=3,AB=5,则AC的长为()A.B.4C.D.8.(2分)把长为8cm的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm2,则打开后梯形的周长是()A.(10+2)cm B.(10+)cm C.22cm D.18cm9.(2分)正比例函数y=x与反比例函数y=的图象相交于A、C两点.AB⊥x轴于B,CD⊥y轴于D(如图),则四边形ABCD的面积为()A.1B.C.2D.10.(2分)关于x的方程k2x2+2(k-1)x+1=0有两个实数根,则k的取值范围是()A.k<B.k≤C.k<且k≠0D.k≤且k≠0二、填空题(每小题3分,共30分)11.(3分)化简:=_________.12.(3分)当x=时,代数式6x2+15x+12的值等于21.13.(3分)某公司在2012年的盈利额为200万元,预计2014年的盈利额将达到242万元.若每年比上一年盈利额增长的百分率相同,那么该公司在2013年的盈利额为万元.14.一组数据5,8,x,10,4的平均数是2x,则这组数据的方差是.15.关于x的一元二次方程(a-1)x2+x+|a|-1=0的一个根是0,则实数a的值为_________.16.(3分)如图①,将长为20cm,宽为2cm的长方形白纸条,折成如图②的图形并在其一面着色,则着色的面积为_________cm2.17.(3分)如图是由16个边长为1的正方形拼成的图案,任意连结这些小格点的三个顶点可得到一些三角形.与A,B点构成直角三角形ABC的顶点C的位置有_________个.18.(3分)已知n是正整数,P n(x n,y n)是反比例函数图象上的一列点,其中x1=1,x2=2,…,x n=n,记T1=x1y2,T2=x2y3,…,T9=x9y10;若T1=1,则T1•T2…T9的值是.19.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC边上一动点,PE⊥AB 于点E,PF⊥AC于点F,连结EF,点M为EF的中点,则AM的最小值为.20.(3分)(2009•莆田)如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5,过点A1、A2、A3、A4、A5分别作x轴的垂线与反比例函数y=(x≠0)的图象相交于点P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2、A2P3A3、A3P4A4、A4P5A5,并设其面积分别为S1、S2、S3、S4、S5,则S5的值为_________.三、解答题(共50分)21.(6分)计算:(1)-++;(2).22.(6分)解方程:(1)2x2-x-6=0;(2)y2-8y=4.23.(6分)(2006•扬州)某校九年级(1)班积极响应校团委的号召,每位同学都向“希望工程”捐献图书,全班40名同学共捐图书320册.特别值得一提的是李扬、王州两位同学在父母的支持下各捐献了50册图书.班长统计了全班捐书情况如下表(被粗心的马小虎用墨水污染了一部分):册数 4 5 6 7 8 50人数 6 8 15 2(1)分别求出该班级捐献7册图书和8册图书的人数.(2)请算出捐书册数的平均数、中位数和众数,并判断其中哪些统计量不能反映该班同学捐书册数的一般状况,说明理由.24.(6分)(2007•呼伦贝尔)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?25.(8分)如图,在△ACE中,点B是AC的中点,点D是CE的中点,点M是AE的中点,四边形BCGF和四边形CDHN都是正方形.求证:△FMH是等腰直角三角形.26.(8分)已知有两张全等的矩形纸片.(1)将两张纸片叠合成如图1,请判断四边形ABCD的形状,并说明理由;(2)设矩形的长是6,宽是3.当这两张纸片叠合成如图2时,菱形的面积最大,求此时菱形ABCD 的面积.27.(10分)(2008•镇江)如图,奥运圣火抵达某市奥林匹克广场后,沿图中直角坐标系中的一段反比例函数图象传递.动点T(m,n)表示火炬位置,火炬从离北京路10米处的M点开始传递,到离北京路1000米的N点时传递活动结束.迎圣火临时指挥部设在坐标原点O(北京路与奥运路的十字路口),OATB为少先队员鲜花方阵,方阵始终保持矩形形状且面积恒为10000平方米(路线宽度均不计).(1)求图中反比例函数的关系式(不需写出自变量的取值范围);(2)当鲜花方阵的周长为500米时,确定此时火炬的位置(用坐标表示);(3)设t=m-n,用含t的代数式表示火炬到指挥部的距离;当火炬离指挥部最近时,确定此时火炬的位置(用坐标表示).浙教版八年级(下)期末数学检测卷参考答案与试题解析一、选择题(每小题2分,共20分)1.(2分)(2010•深圳)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形;生活中的旋转现象.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,是中心对称图形,符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、是轴对称图形,也是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选A.点评:掌握中心对称图形与轴对称图形的概念.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.2.(2分)(2003•武汉)不解方程,判别方程5x2-7x+5=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根考点:根的判别式.分析:判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了.解答:解:∵a=5,b=-7,c=5∴△=b2-4ac=(-7)2-4×5×5=-51<0∴方程没有实数根故选D.点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.(2分)若化简的结果为2x-5,则x的取值范围是()A.x为任意实数B.1≤x≤4 C.x≥1 D.x≤4考点:二次根式的性质与化简.专题:计算题.分析:根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.解答:解:原式可化简为|1-x|-|x-4|,当1-x≥0,x-4≥0时,可得x无解,不符合题意;当1-x≥0,x-4≤0时,可得x≤4时,原式=1-x-4+x=-3;当1-x≤0,x-4≥0时,可得x≥4时,原式=x-1-x+4=3;当1-x≤0,x-4≤0时,可得1≤x≤4时,原式=x-1-4+x=2x-5.据以上分析可得当1≤x≤4时,多项式等于2x-5.故选B.点评:本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.4.(2分)(2007•湖州)要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是()A.平均数B.中位数C.众数D.方差考点:统计量的选择.专题:应用题.分析:根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.解答:解:由于方差反映数据的波动情况,应知道数据的方差.故选D.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.(2分)一元二次方程x2+x-1=0的两根分别为x1,x2,则+=()A.B.1C.D.考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到x1+x2=-1,x1•x2=-1,然后把+进行通分,再利用整体代入的方法进行计算.解答:解:根据题意得x1+x2=-1,x1•x2=-1,所以+===1.故选B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-,x1•x2=.6.(2分)(2007•日照)如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm考点:线段垂直平分线的性质;平行四边形的性质.专题:压轴题.分析:根据线段垂直平分线的性质可知BE=DE,再结合平行四边形的性质即可计算△ABE的周长.解答:解:根据平行四边形的性质得:OB=OD,∵EO⊥BD,∴EO为BD的垂直平分线,∴根据线段的垂直平分线上的点到两个端点的距离相等得:BE=DE,∴△ABE的周长=AB+AE+DE=AB+AD=×20=10m.故选:D.点评:运用了平行四边形的对角线互相平分,线段垂直平分线上的点到线段两个端点的距离相等,平行四边形的对边相等.7.(2分)(2010•威海)如图,在梯形ABCD中,AB∥CD,AD=BC,对角线AC⊥BD,垂足为O,若CD=3,AB=5,则AC的长为()A.B.4C.D.考点:等腰梯形的性质.分析:作辅助线,平移一腰,由等腰梯形的性质和勾股定理解得答案.解答:解:过点C作CE∥BD,交AB的延长线于点E,∵AB∥CD,∴四边形BECD是平行四边形,∴BE=CD=3,∵AC⊥BD,∴AC⊥CE,∴∠ACE=90°,∵AD=BC,∴AC=BD,∴AC=CE,由勾股定理得,2AC2=64,∴AC=4,故选A.点评:本题主要考查等腰梯形的性质的应用.8.(2分)(2010•丹东)把长为8cm的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm2,则打开后梯形的周长是()A.(10+2)cm B.(10+)cm C.22cm D.18cm考点:等腰梯形的性质.分析:根据剪去的三角形的面积可得矩形的宽,利用勾股定理即可求得等腰梯形的腰长,根据折叠可得梯形其余边长,相加即为梯形的周长.解答:解:∵剪掉部分的面积为6cm2,∴矩形的宽为2,易得梯形的下底为矩形的长,上底为(8÷2-3)×2=2,腰长为=,∴打开后梯形的周长是(10+2)cm.故选:A.点评:此题主要考查了学生对等腰梯形的性质及翻折掌握情况,解决本题的关键是根据折叠的性质得到等腰梯形的各边长.9.(2分)(2005•宁波)正比例函数y=x与反比例函数y=的图象相交于A、C两点.AB⊥x轴于B,CD⊥y轴于D(如图),则四边形ABCD的面积为()A.1B.C.2D.考点:反比例函数系数k的几何意义.专题:计算题;数形结合.分析:首先根据反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|,得出S△AOB=S△ODC=,再根据反比例函数的对称性可知:OB=OD,得出S△AOB=S△ODA,S△ODC=S△OBC,最后根据四边形ABCD的面积=S△AOB+S△ODA+S△ODC+S△OBC,得出结果.解答:解:根据反比例函数的对称性可知:OB=OD,AB=CD,∴四边形ABCD的面积=S△AOB+S△ODA+S△ODC+S△OBC=1×2=2.故选C.点评:本题主要考查了反比例函数中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.10.(2分)关于x的方程k2x2+2(k-1)x+1=0有两个实数根,则k的取值范围是()A.k<B.k≤C.k<且k≠0D.k≤且k≠0考点:根的判别式.分析:因为关于x的一元二次方程k2x2+2(k-1)x+1=0有两个实数根,所以必须满足下列条件:二次项系数不为零且判别式△=b2-4ac≥0,列出不等式求解即可确定k的取值范围.解答:解:(1)∵关于x的一元二次方程k2x2+2(k-1)x+1=0有两个实数根,∴△=[2(k-1)]2-4k2≥0且k2≠0,解得k≤且k≠0.故选D.点评:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件,二、填空题(每小题3分,共30分)11.(3分)化简:=.考点:二次根式的性质与化简.分析:根据二次根式的性质,算术平方根的值必须是正数,所以开方所得结果是|1-|,然后再去绝对值.解答:解:因为>1,所以=-1故答案为:-1.点评:本题主要考查二次根式的化简,其中必须符合二次根式的性质.12.(3分)当x=0.5或3时,代数式6x2+15x+12的值等于21.考点:解一元二次方程-因式分解法.专题:计算题.分析:根据题意列出方程,求出方程的解即可得到x的值.解答:解:根据题意得:6x2+15x+12=21,即6x2+15x-9=0,分解因式得:(6x-3)(x+3)=0,解得:x1=0.5,x2=-3,故答案为:0.5或3点评:此题考查了解一元二次方程-因式分解法,熟练掌握各自解法是解本题的关键.13.(3分)某公司在2012年的盈利额为200万元,预计2014年的盈利额将达到242万元.若每年比上一年盈利额增长的百分率相同,那么该公司在2013年的盈利额为220万元.考点:一元二次方程的应用.专题:增长率问题.分析:此题可通过设出营业额增长的百分率x,根据等量关系“2014年的营业额等于2012年的营业额乘(1+增长的百分率)乘(1+增长的百分率)”列出一元二次方程求解增长的百分率,再通过一元一次方程解得:2013年的盈利额等于2012年的营业额乘(1+增长的百分率).解答:解:设盈利额增长的百分率为x,则该公司在2013年的盈利额为200(1+x);由题意得,200(1+x)2=242,解得x=0.1或-2.1(不合题意,舍去),故x=0.1∴该公司在2013年的盈利额为:200(1+x)=220万元.故答案为:220.点评:此题考查增长率的定义,同学们应加强培养对应用题的理解能力,判断出题干信息,列出一元二次方程去求解.14.(3分)(2006•芜湖)一组数据5,8,x,10,4的平均数是2x,则这组数据的方差是 6.8.考点:方差;算术平均数.专题:压轴题.分析:本题可运用求平均数公式:解出x的值,再运用方差的公式解出方差.解答:解:依题意得:5+8+x+10+4=2x•5所以x=3,2x=6方差s2=[(5-6)2+(8-6)2+(3-6)2+(10-6)2+(4-6)2]=6.8.故填6.8.点评:本题考查的是平均数和方差的求法.计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.15.(3分)关于x的一元二次方程(a-1)x2+x+|a|-1=0的一个根是0,则实数a的值为-1.考点:一元二次方程的解;一元二次方程的定义.分析:已知了一元二次方程的一个实数根,可将其代入该方程中,即可求出a的值.解答:解:∵关于x的一元二次方程(a-1)x2+x+|a|-1=0的一个根是0,∴|a|-1=0,即a=±1,∵a-1≠0∴a=-1,故答案为:-1.点评:此题主要考查了方程解的定义,所谓方程的解,即能够使方程左右两边相等的未知数的值.16.(3分)如图①,将长为20cm,宽为2cm的长方形白纸条,折成如图②的图形并在其一面着色,则着色的面积为36cm2.考点:翻折变换(折叠问题).分析:根据折叠的性质,已知图形的折叠就是已知两个图形全等.由图知,着色部分的面积是原来的纸条面积减去两个等腰直角三角形的面积.解答:解:着色部分的面积=原来的纸条面积-两个等腰直角三角形的面积=20×2-2××2×2=36cm2.故答案为:36.点评:本题考查图形的折叠变化及等腰直角三角形的面积公式.关键是要理解折叠是一种对称变换.17.(3分)如图是由16个边长为1的正方形拼成的图案,任意连结这些小格点的三个顶点可得到一些三角形.与A,B点构成直角三角形ABC的顶点C的位置有5个.考点:勾股定理的逆定理;勾股定理.专题:网格型.分析:根据题意画出图形,根据勾股定理的逆定理进行判断即可.解答:解:如图所示:当∠C为直角顶点时,有C1,C2两点;当∠A为直角顶点时,有C3一点;当∠B为直角顶点时,有C4,C5两点,综上所述,共有5个点.故答案为:5.点评:本题考查的是勾股定理的逆定理,根据题意画出图形,利用数形结合求解是解答此题的关键.18.(3分)已知n是正整数,P n(x n,y n)是反比例函数图象上的一列点,其中x1=1,x2=2,…,x n=n,记T1=x1y2,T2=x2y3,…,T9=x9y10;若T1=1,则T1•T2…T9的值是51.2.考点:反比例函数图象上点的坐标特征.专题:压轴题.分析:根据反比例函数图象上点的坐标特征,得出原式=,进而求出即可.解答:解:T1•T2•…•T n=x1y2•x2y3…x n y n+1=x1••x2••x3•…x n•=x1•,又因为x1=1,n=9,又因为T1=1,所以x1y2=1,又因为x1=1,所以y2=1,即=1,又x2=2,k=2,所以原式=,于是T1•T2•…•T9=x1(y2•x2)(y3•x3)…(y9•x9)y10===51.2.故答案为:51.2.点评:此题主要考查了反比例函数图象上点的特征,解答此题的关键是将x1••x2••x3•…x n•的相同字母消掉,使原式化简为一个仅含k的代数式,然后解答.19.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC边上一动点,PE⊥AB于点E,PF⊥AC于点F,连结EF,点M为EF的中点,则AM的最小值为.考点:矩形的判定与性质;垂线段最短.分析:根据矩形的性质就可以得出,EF,AP互相平分,且EF=AP,垂线段最短的性质就可以得出AP⊥BC 时,AP的值最小,即AM的值最小,由勾股定理求出BC,根据面积关系建立等式求出其解即可.解答:解:∵四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点.∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即AM的值最小.∵AP.BC=AB.AC,∴AP.BC=AB.AC.在Rt△ABC中,由勾股定理,得BC=5.∵AB=3,AC=4,∴5AP=3×4∴AP=.∴AM=故答案为:.点评:本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解答时求出AP的最小值是关键.20.(3分)(2009•莆田)如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5,过点A1、A2、A3、A4、A5分别作x轴的垂线与反比例函数y=(x≠0)的图象相交于点P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2、A2P3A3、A3P4A4、A4P5A5,并设其面积分别为S1、S2、S3、S4、S5,则S5的值为.考点:反比例函数系数k的几何意义.专题:压轴题;规律型.分析:根据反比例函数中k的几何意义再结合图象即可解答.解答:解:∵过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,S=|k|.∴S1=1,S△OA2P2=1,∵OA1=A1A2,∴S△OA2P2=,同理可得,S2=S1=,S3=S1=,S4=S1=,S5=S1=.点评:主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.三、解答题(共50分)21.(6分)计算:(1)-++;(2).考点:二次根式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)先把各二次根式化为最简二次根式,然后合并即可;(2)根据零指数幂、负整数指数幂和平方差公式计算.解答:解:(1)原式=2-++-1=-1;(2)原式=2-1-1++=.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.22.(6分)解方程:(1)2x2-x-6=0;(2)y2-8y=4.考点:解一元二次方程-因式分解法;解一元二次方程-配方法.专题:计算题.分析:(1)方程左边利用十字相乘法分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;(2)方程两边加上16,利用完全平方公式变形,开方即可求出解.解答:解:(1)分解因式得:(2x+3)(x-2)=0,可得2x+3=0或x-2=0,解得:x1=1.5,x2=2;(2)配方得:y2-8y+16=20,即(y-4)2=20,开方得:y-4=±2,解得:y1=4+2,y2=4-2.点评:此题考查了解一元二次方程-因式分解法及配方法,熟练掌握各自解法是解本题的关键.23.(6分)(2006•扬州)某校九年级(1)班积极响应校团委的号召,每位同学都向“希望工程”捐献图书,全班40名同学共捐图书320册.特别值得一提的是李扬、王州两位同学在父母的支持下各捐献了50册图书.班长统计了全班捐书情况如下表(被粗心的马小虎用墨水污染了一部分):册数4567 8 50人数6815 2(1)分别求出该班级捐献7册图书和8册图书的人数.(2)请算出捐书册数的平均数、中位数和众数,并判断其中哪些统计量不能反映该班同学捐书册数的一般状况,说明理由.考点:中位数;二元一次方程组的应用;算术平均数;众数.专题:图表型.分析:(1)根据:全班40名同学和共捐图书320册这两个相等关系,设捐献7册的人数为x,捐献8册的人数为y,就可以列出方程组解决.(2)找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.平均数是指在一组数据中所有数据之和再除以数据的个数.然后根据它们的意义判断.解答:解:(1)设捐献7册的人数为x,捐献8册的人数为y,则解得答:捐献7册的人数为6人,捐献8册的人数为3人.(2)捐书册数的平均数为320÷40=8,按从小到大的顺序排列得到第20,21个数均为6,所以中位数为6.出现次数最多的是6,所以众数为6.因为平均数8受两个50的影响较大,所以平均数不能反映该班同学捐书册数的一般情况.点评:此题考查了学生对中位数、众数、平均数的掌握情况及对二元一次方程组的应用.24.(6分)(2007•呼伦贝尔)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?考点:一元二次方程的应用.专题:销售问题;压轴题.分析:设应将每千克小型西瓜的售价降低x元.那么每千克的利润为:(3-2-x),由于这种小型西瓜每降价O.1元/千克,每天可多售出40千克.所以降价x元,则每天售出数量为:200+千克.本题的等量关系为:每千克的利润×每天售出数量-固定成本=200.解答:解:设应将每千克小型西瓜的售价降低x元.根据题意,得[(3-2)-x](200+)-24=200.原式可化为:50x2-25x+3=0,解这个方程,得x1=0.2,x2=0.3.因为为了促销故x=0.2不符合题意,舍去,∴x=0.3.答:应将每千克小型西瓜的售价降低0.3元.点评:考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.25.(8分)如图,在△ACE中,点B是AC的中点,点D是CE的中点,点M是AE的中点,四边形BCGF和四边形CDHN都是正方形.求证:△FMH是等腰直角三角形.考点:全等三角形的判定与性质;三角形中位线定理;正方形的性质.专题:证明题.分析:首先要连接MB、MD,然后证明△FBM≌△MDH,从而求出两角相等,且有一角为90°.解答:证明:连接MB、MD,如图2,设FM与AC交于点P,∵B、D、M分别是AC、CE、AE的中点,∴MD∥BC,且MD=AC=BC=BF;MB∥CD,且MB=CE=CD=DH(三角形的中位线平行于第三边并且等于第三边的一半),∴四边形BCDM是平行四边形,∴∠CBM=∠CDM,又∵∠FBP=∠HDC,∴∠FBM=∠MDH,在△FBM和△MDH中,∴△FBM≌△MDH(SAS),∴FM=MH,且∠FMB=∠MHD,∠BFM=∠HMD.∴∠FMB+∠HMD=180°-∠FBM,∵BM∥CE,∴∠AMB=∠E,同理:∠DME=∠A.∴∠AMB+∠DME=∠A+∠AMB=∠CBM.由已知可得:BM=CE=AB=BF,∴∠A=∠BMA,∠BMF=∠BFM,∴∠FMH=180°-(∠FMB+∠HMD)-(∠AMB+∠DME),=180°-(180°-∠FBM)-∠CBM,=∠FBM-∠CBM=∠FBC=90°.∴△FMH是等腰直角三角形.点评:此题主要考查了全等三角形的判定和性质,三角形的中位线,平行四边形的性质和判定应用,关键是找出能使三角形全等的条件,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等,对应边相等,本题综合考查了等腰三角形的判定,偏难,学生要综合运用学过的几何知识来证明.26.(8分)已知有两张全等的矩形纸片.(1)将两张纸片叠合成如图1,请判断四边形ABCD的形状,并说明理由;(2)设矩形的长是6,宽是3.当这两张纸片叠合成如图2时,菱形的面积最大,求此时菱形ABCD的面积.考点:菱形的判定与性质;勾股定理;矩形的性质.专题:计算题.分析:(1)作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AP=AQ 得平行四边形ABCD是菱形;(2)设BC=x,则CG=6-x,CD=BC=x,在Rt△CDG中,由勾股定理得出x,再求得面积.解答:解:(1)四边形ABCD是菱形.理由:作AR⊥BC于R,AS⊥CD于S,由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形全等,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形;(2)设BC=x,则CG=6-x,CD=BC=x,在Rt△CDG中,CG2+DG2=CD2,∴(6-x)2+32=x2,解得x=,∴S=BC•DG=.点评:本题是一道综合性质的题目,考查了菱形的判定和性质、勾股定理和矩形的性质等知识点,是中考的常见题型.21 27.(10分)(2008•镇江)如图,奥运圣火抵达某市奥林匹克广场后,沿图中直角坐标系中的一段反比例函数图象传递.动点T (m ,n )表示火炬位置,火炬从离北京路10米处的M 点开始传递,到离北京路1000米的N 点时传递活动结束.迎圣火临时指挥部设在坐标原点O (北京路与奥运路的十字路口),OATB 为少先队员鲜花方阵,方阵始终保持矩形形状且面积恒为10000平方米(路线宽度均不计).(1)求图中反比例函数的关系式(不需写出自变量的取值范围);(2)当鲜花方阵的周长为500米时,确定此时火炬的位置(用坐标表示);(3)设t=m-n ,用含t 的代数式表示火炬到指挥部的距离;当火炬离指挥部最近时,确定此时火炬的位置(用坐标表示).解答: 解:(1)设反比例函数为(k >0),则k=xy=mn=S 矩形OA TB =10000,∴.(2)设鲜花方阵的长为m 米,则宽为(250-m )米,由题意得m (250-m )=10000,250m-m 2=10000,即m 2-250m+10000=0,解得m=50或m=200,满足题意.∴此时火炬的坐标为(50,200)或(200,50).(3)∵mn=10000,在Rt △TAO 中,=.∴当t=0时,TO 最小,∵t=m-n ,∴此时m=n ,又mn=10000,m >0,n >0,∴m=n=100,且10<100<1000,∴T (100,100).。
2015年浙江温州瑞安八年级下学期浙教版数学期末考试试卷
一、选择题(共10小题;共50分)
1. 下列各式中,是最简二次根式的是
A. B. C. D.
2. 五边形的内角和为
A. B. C. D.
3. 如图,在中,,分别是,边的中点,若,则的长度是
A. B. C. D.
4. 一名射击爱好者次射击的中靶环数如下:,,,,,这个数据的中位数是
A. B. C. D.
5. 用配方法解一元二次方程时,方程变形正确的是
A. B. C. D.
6. 已知点在反比例函数的图象上,则的值是
A. B. C. D.
7. 五一劳动节期间,某商店的某种服装连续两次降价处理,由每件元调至元,设平均每次
的降价百分率为,则得方程
A. B.
C. D.
8. 如图,已知正方形的边长为,若,则的长是
A. B. C. D.
9. 如图,四边形中,从①;②;③;④四项中任意选
两个作为条件,则下列选项中不能判定四边形是平行四边形的是
A. ①②
B. ②③
C. ①③
D. ③④
10. 如图,已知正比例函数的图象与反比例函数都为大于的常数的图象
相交于点,观察图象,使函数值的自变量的取值范围为
A. B. 或
C. 或
D. 或
二、填空题(共6小题;共30分)
11. 在二次根式中,的取值范围是 ______.
12. 在直角坐标系中,点关于原点成中心对称的点的坐标是______.
13. 已知一个样本,,,,,其平均数是,则的值是 ______.
14. 用反证法证明:“中,若,则”,第一步应假设:______.
15. 若一个一元二次方程的两个根分别是的两条直角边长,且,请写出一个符
合题意的一元二次方程 ______.
16. 如图,已知矩形的对角线相交于点,为坐标原点,在轴的正半轴上,双曲线
经过点,与边相交于点.若,则直线的解析式为______.
三、解答题(共8小题;共104分)
17. 计算:
(1);
(2).
18. 运用适当的方法解下列方程:
(1);
(2).
19. 我市举行八年级“生活中的数学知识”竞赛活动,甲、乙两校分别派五名同学参加竞赛,其成绩分
别是(单位:分):甲校五名同学:,,,,;乙校五名同学:,,,,.根据以上数据解答下列问题:
(1)把表格空格填完整:学校平均数分中位数分众数分
甲校五位同学
乙校五位同学
(2)根据上述数据,请你分析哪所学校同学的竞赛成绩相对较好?
20. 如图,在平行四边形中,是的中点,连接并延长,交的延长线于点,连
接,.求证:四边形是平行四边形.
21. 如图,“田字”正方形网格中有九个黑点,请按要求画图.
(1)在图甲中,经过其中五个黑点画图形,使整个图形是一个轴对称图形;
(2)在图乙中,经过其中七个黑点画图形,使整个图形是一个中心对称图形.
(注意:点与点连接用实线表示)
22. 某超市将进货价每箱为元的饮料以每箱元的价格售出,平均每月售出箱,市场调查
表明这种饮料每箱的售价每上涨元,其销量就减少箱.为了实现销售这种饮料平均每月元的销售利润,而且尽可能让利于顾客,赢得市场,超市将饮料每箱售价定为多少元?这时售出饮料多少箱?利润销售量售价进价.
23. 如图,,分别在反比例函数,图象上且在第一象限内,且轴,
轴,轴,垂足分别为点,点.
(1)若,求的值;
(2)当时,求矩形的面积.
24. 如图,在四边形中,,,,,,动
点从点出发,在线段上以每秒的速度向点运动,动点从点出发,沿射线的方向以每秒的速度运动,点,分别从点,同时出发,当点运动到点时,点随之停止运动,设运动的时间为(秒).
(1)当时,为何值时,四边形是平行四边形?
(2)当四边形为菱形时,求,的值;
(3)当时,是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由.
答案
第一部分
1. A
2. B
3. C
4. C
5. C
6. D
7. C
8. D
9. B 10. B
第二部分
11.
12.
13.
14.
15. (答案不唯一)
16.
第三部分
原式
17. (1)
原式
(2)
18. (1)或所以
(2)所以
19. (1);;
(2)因为两所学校的五位同学的成绩的平均数相同,中位数也相同,而甲校五位同学的众数比乙校五位同学的众数大,
所以甲校五位同学的竞赛成绩相对较好.
20. 四边形是平行四边形,
,
,,
是的中点,
,
在与中,
,
,
四边形是平行四边形.
21. (1)如图所示:
(2)如图所示:
22. 设每箱饮料上涨元,则销售量减少箱,由题意得:整理得:
解得:因为尽可能让利于顾客,赢得市场,
所以符合题意.
若每箱饮料上涨元,饮料售价为元箱,应进饮料(箱);
答:超市将饮料每箱售价定为元,这时售出饮料箱.
23. (1)因为,
所以点纵坐标为,
因为点在反比例函数的图象上,
所以,解得,
所以,
因为四边形为矩形,
所以,
所以,
所以,
所以点坐标为,
因为点在反比例函数图象上,
所以.
(2)如图,延长交轴于点,
,
所以过,两点的反比例函数解析式分别为,,
所以
矩形,
矩形
,
所以
矩形矩形矩形
.24. (1)当时,
因为四边形是平行四边形,
所以,
当从向运动时,
因为,,
所以,
解得.
所以当秒时,四边形是平行四边形.
(2)如图1,过点作,
中,,,
根据勾股定理得,,
由运动得,,,
所以,,
因为四边形为菱形,而,
所以,
所以,
所以,.
(3)当时,
所以,,
所以,,
当时,
如图2,作于点,
,
因为,,
所以,
所以,
所以,
当时,,
因为,
所以,
所以或(舍),
解得;
当时,
因为,
所以,
所以或(舍),
综上可知,当或或时,是等腰三角形.。