人教版九年级数学下册《二十七章 相似 27.3 位似 位似图形概念》公开课教案_9
- 格式:doc
- 大小:48.50 KB
- 文档页数:2
27.3.2平面直角坐标系中的位似学习目标:(1)进一步熟悉位似的作图.(2)会用坐标的变化来表示图形的位似变换.(3)会根据位似图形上的点的坐标变化的规律,在坐标系中画一个图形以原点为位似中心的位似图形.(4)利用图形的位似解决一些简单的实际问题,并在有关的学习和运用过程中发展自己的数学应用意识和动手操作能力,培养合作探究意识。
学习重、难点:重点:位似图形的点的坐标变化规律. 难点:以原点为位似中心的位似作图.学习过程:一、知识点回顾上面两个三角形相似吗? 生:相似 师:你的依据是什么?生:三边对应成比例的的两个三角形相似。
问:那它们位似吗?你的依据是什么?设计意图:通过本题让学生复习相似图形及位似图形的判定,掌握位似图形一定是相似图形,相似图形不一定是位似图形导入:我们知道,在直角坐标系中,可以利用变化前后两个多边形对应顶点的坐标 之间的关系表示某些平移、轴对称和旋转(中心对称) 类似地,位似也可以用两个图形坐标之间的关系来表示位似图形在直角坐标系中又有什么规律呢?今天我们就来学习平面直角坐标系中的位似O D二、合作探究用上节课学过的位似作图方法找到所救线段并读出对应点坐标,和小组同学交流画图做法师:那位同学介绍一下你是怎样做的?还有没有符合条件的线段呢?(有上节课的知识,学生可以在位似中心的同侧和异测见图形放大或缩小)利用刚才的经验将三角形AOC放大二倍,读出对应点的坐标。
指一名同学在展示屏上作图,并说一说怎样找到的?2在直角坐标系中,△AOC 的三个顶点的坐标分别为A(4,4), O(0,0),C(5,0).以点O为位似中心,相似比为2,将△AOC放大.则A(4,4),对应点坐标为:C(5,0)对应点坐标为:O(0,0)对应点坐标为分类讨论:当以原点为位似中心的两位似图形位于原点同侧时,对应点的坐标有什么变化?观察对应点坐标,你发现了什么规律,互相说一说。
(小组讨论交流,选一名代表汇报,利用展示屏课件师生共同归纳)规律:在平面直角坐标系中,如果以原点为位似中心,新图形与原图形的相似比为k,那么当两图形位于原点同侧时,与原图形上的点(x , y)对应的位似图形上的点的坐标是()当以原点为位似中心的两位似图形位于原点异侧时,对应点的坐标有什么变化?规律:在平面直角坐标系中,如果以原点为位似中心,新图形与原图形的相似比为k,那么当两图形位于原点异侧时,与原图形上的点(x , y)对应的位似图形上的点的坐标是() .位似图形的坐标规律一般地,在平面直角坐标系中,如果以原点为位似中心,新图形与原图形的相似比为k,那么与原图形上的点(x,y)对应的位似图形上的点的坐标为(kx,ky)或(-kx,-ky).三、学以致用以后在平面直角坐标系作位似图形时,我们能不能用所学的知识解决问题呢?(先独立完成,各请一名学生上台汇报)1、△ABO的顶点坐标分别为A(-2,4),B(-2,0),O(0,0),试画出将△ABO放大为△EFO,使△EFO与△ABO的相似比为3∶22、四边形B (-8,2的一个以原点3.如图,△形顶点,坐标发生了什么变化,并求出其相似比和面积比.四、总结反思:如何在平面直角坐标系中,以原点为位似中心,画一个图形的位似图形? (小组讨论交流,选一名代表汇报,利用展示屏课件师生共同归纳)五、拓展提升;1.如图,以点Q 为位似中心,画出与矩形MNPQ 的相似比为0.75的一个图形.设计意图:使学生深刻体会运用规律的前提是位似中心是原点,才能使用。
27. 3 位似(一)
一、学习目标
1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.
2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.
二、学习重点、难点
1.重点:位似图形的有关概念、性质与作图.
2.难点:利用位似将一个图形放大或缩小.
三、学习过程
1.观察:在日常生活中,我们经常见到下面所给的这样一类相似的图形,它们有什么特征?
2.问:已知:如图,多边形ABCDE ,把它放大为原来的2倍,即
新图与原图的相似比为2.应该怎样做?你能说出画相似图形的一
种方法吗?
3、例题讲解
例1(补充)如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心.
例2(教材P61例题)把图1中的四边形ABCD 缩小到原来的2
1.
分析:把原图形缩小到原来的2
1,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .
四、课堂练习
1.教材P61.1、2
2.画出所给图中的位似中心.
1. 把右图中的五边形ABCDE 扩大到原来的2倍.
五、课后练习
1.教材P65.1、2、4
2.已知:如图,△ABC ,画△A ′B ′C ′,
使△A ′B ′C ′∽△ABC ,且使相似比为1.5,要求
(1)位似中心在△ABC 的外部;
(2)位似中心在△ABC 的内部;
(3)位似中心在△ABC 的一条边上;
(4)以点C 为位似中心.。