2014年高考数学专家讲坛 把脉考向:第5讲 等差数列、等比数列(含名师点评)
- 格式:doc
- 大小:1.23 MB
- 文档页数:12
2014高考数学知识点讲析:数列【专题要点】数列的概念及表示方法,等差数列和等比数列的定义、通项公式、前n项和公式、性质、判定,等差数列和等比数列的比较,等差数列和等比数列与其它知识的综合应用【考纲要求】1. 了解数列的概念和几种简单的表示方法,了解递推公式是给出数列的一种方法,并能根据数列的通项公式写出数列的前几项。
2.理解等差、等比数列的概念并能解决简单的实际问题,掌握等差、等比数列的通项公式、前n项和公式3.能在具体的问题情境中识别数列的等差(或等比)关系,能够构造等差、等比数列的模型,并能用有关知识解决相应的实际问题【知识纵横】【教法指引】数列是高中数学的重要内容,又是学习高等数学的基础。
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
在解决综合题和探索性问题时,教师可适当引导学生加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,从而提高分析问题和解决问题的能力, 进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力.【典例精析】例1.(04年浙江)设数列{a n }的前项的和S n =31(a n -1) (n ∈N +),(1)求a 1;a 2; (2)求证数列{a n }为等比数列解: (1)由)1(3111-=a S ,得)1(3111-=a a ∴=1a 21- 又)1(3122-=a S ,即)1(31221-=+a a a ,得412=a .(2)当n >1时,),1(31)1(3111---=-=--n n n n n a a S S a得,211-=-n n a a 所以{}n a 是首项21-,公比为21-的等比数列 例2.(2008深圳模拟)图(1)、(2)、(3)、(4)分别包含1个、5个、13个、25个第二十九届北京奥运会吉祥物“福娃迎迎”,按同样的方式构造图形,设第n 个图形包含()f n 个“福娃迎迎”,则(5)f = ;()(1)f n f n --=____解:第1个图个数:1第2个图个数:1+3+1第3个图个数:1+3+5+3+1第4个图个数:1+3+5+7+5+3+1第5个图个数:1+3+5+7+9+7+5+3+1=41,所以,f(5)=41f(2)-f(1)=4,f(3)-f(2)=8,f(4)-f(3)=12,f(5)-f(4)=16()(1)f n f n--=4(1)n-点评:由特殊到一般,考查逻辑归纳能力,分析问题和解决问题的能力,本题的第二问是一个递推关系式,有时候求数列的通项公式,可以转化递推公式来求解,体现了转化与化归的数学思想例3.已知数列{an }是公差d≠0的等差数列,其前n项和为Sn.(2)过点Q1(1,a1),Q2(2,a2)作直线12,设l1与l2的夹角为θ,证明:(1)因为等差数列{an}的公差d≠0,所以Kp1p k是常数(k=2,3,…,n).(2)直线l2的方程为y-a1=d(x-1),直线l2的斜率为d.例4.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==,⑴设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2==n a c n nn ,求证:数列{}n c 是等差数列; ⑶求数列{}n a 的通项公式及前n 项和分析:由于{b n }和{c n }中的项都和{a n }中的项有关,{a n }中又有S 1n +=4a n +2,可由S 2n +-S 1n +作切入点探索解题的途径.解:(1)由S 1n +=4a 2n +,S 2n +=4a 1n ++2,两式相减,得S 2n +-S 1n +=4(a 1n +-a n ),即 a 2n +=4a 1n +-4a n .(根据b n 的构造,如何把该式表示成b 1n +与b n 的关系是证明的关键,注意加强恒等变形能力的训练)a 2n +-2a 1n +=2(a 1n +-2a n ),又b n =a 1n +-2a n ,所以b 1n +=2b n ① 已知S 2=4a 1+2,a 1=1,a 1+a 2=4a 1+2,解得a 2=5,b 1=a 2-2a 1=3 ② 由①和②得,数列{b n }是首项为3,公比为2的等比数列,故b n =3·21n -.当n ≥2时,S n =4a 1n -+2=21n -(3n-4)+2;当n=1时,S 1=a 1=1也适合上式.综上可知,所求的求和公式为S n =21n -(3n-4)+2.说明:1.本例主要复习用等差、等比数列的定义证明一个数列为等差,等比数列,求数列通项与前n 项和。
2014年高考一轮复习热点难点精讲精析:5.1等差数列与等比数列一、数列的概念与简单表示法(一)由数列的前几项求数列的通项公式 ※相关链接※ 数列的通项公式(1)据所给数列的前几项求其通项公式时,需仔细观察观察分析,抓住以下几方面的特征: ①分式中分子、分母的特征; ②相邻项的变化特征; ③拆项后的特征;④各项符特征等,并对此进行归纳、联想。
(2)观察、分析问题的特点是最重要的,观察要有目的,观察出项与项数之间的关系、规律,利用我们熟知的一些基本数列(如自然数列、奇偶数列等)转换而使问题得到解决。
(3)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着从特殊到一般的思想,由不完全归纳提出的结果是不可靠的,要注意代值检验,对于正负符变化,可用(1)n-或1(1)n +-来调整。
※例题解析※〖例〗写出下列各数列的一个通项公式:1371531(1)4,6,8,10,(2),,,,,2481632210172637(3),1,,,,,3791113(4)3,33,333,3333,---思路解析:由所给数列前几项的特点,归纳出其通项公式,注意项与项数的关系,项与前后项之间的关系,通项公式的形式并不唯一。
解答:(1)各项是从4开始的偶数,所以22n a n =+;(2)每一项分子比分母少1,而分母可写成21,22,23,24,25,……,故所求数列的一个通项公式可定为212n n na -=; (3)带有正负,故每项中必须含有一个1(1)n +-这个因式,而后去掉负,观察可得。
将第二项-1写成55-。
分母可化为3,5,7,9,11,13,……为正奇数,而分子可化为12+1,22+1,32+1,42+1,52+1,62+1,……故其一个通项公式可写为:211(1)21n n n a n ++=-+; (4)将数列各项写为9999999999,,,,3333分母都是3,而分子分别是10-1,102-1,103-1,104-1,……,所以1(101)3nn a =- (二)由递推公式求数列通项公式 ※相关链接※1、由1a 和递推关系求通项公式,可观察其特点,一般常利用化归法、累加法、累乘法等。
2014年高考数学数列专题解读作者:靳文岚来源:《甘肃教育》2015年第08期【关键词】数学教学;数列;解读【中图分类号】 G633.6 【文献标识码】 C【文章编号】 1004—0463(2015)08—0123—01数列是高中数学的重要内容,也是高考数学的重要考查内容.2014新课标全国卷Ⅱ理科数学高考中数列为第18大题,分值12分;文科数学数列为第5题选择,分值5分和第16题填空,分值5分,共10分.从考题的类型来看,数列会在高考中以各种题型出现,并且题目的难易程度分布均匀,是每年的必考题型之一.从分值来看,数列占10或12分,在高考中占举足轻重的作用,而且是学生容易得分的模块,所以数列在高考中的重要性是不言而喻的.数列在高考中考查的内容主要有以下几个方面:1.能用等差或等比数列的概念、性质、通项公式、求和公式求解;2.等差或等比数列的判断与证明;3.数列和其他知识的结合,其中数列常与函数、方程、不等式等知识综合求解.下面对2014高考中的一些典型题进行分析一、等差、等比数列基本量的计算[2014·湖北卷18] 已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{an}的通项公式.(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n 的最小值;若不存在,说明理由.解:(1)设数列{an}的公差为d,依题意得:2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),化简得d2-4d=0,解得d=0或d=4.当d=0时,an=2;当d=4时,an=2+(n-1)·4=4n-2.从而得数列{an}的通项公式为an=2或an=4n-2.(2)当an=2时,Sn=2n,显然2n此时不存在正整数n,使得Sn>60n+800成立.当an=4n-2时,Sn==2n2.令2n2>60n+800,即n2-30n-400>0,解得n>40或n此时存在正整数n,使得Sn>60n+800成立,n的最小值为41.综上,当an=2时,不存在满足题意的正整数n;当an=4n-2时,存在满足题意的正整数n,其最小值为41.考点分析:本题主要考查等差数列的通项公式,前n项和公式和不等式的相关知识,考查方程思想、分类讨论的思想,同时考查学生的运算能力以及综合运用知识分析问题、解决问题的能力.二、等差、等比数列的判断与证明[2014·新课标全国卷Ⅱ17] 已知数列{an}满足a1=1,an+1=3an+1.(1)证明an+是等比数列,并求{an}的通项公式;(2)证明++…+解:(1)由an+1=3an+1得an+1+=3an+又a1+=,所以an+是首项为,公比为3的等比数列,所以an+=,因此数列{an}的通项公式为an=.(2)证明:由(1)知=.因为当n≥1时,3n-1≥2×3n-1,所以≤,即=≤.于是++…+≤1++…+=1-所以++…+考点分析:本题主要考查数列的递推关系,考查等比数列的概念,不等式的证明及数列的求和等知识,意在考查考生的分析转化能力与推理论证能力.三、等差、等比数列性质的应用1.[2014·安徽卷12] 数列{an}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q= 1考查性质:(1)若{an}是等差数列,则ak,ak+m,ak+2m,…(k、m∈N+)也是等差数列;(2)若{an},{bn}是等差数列,则{pan+qbn}是等差数列.2.[2014·北京卷12] 若等差数列{an}满足a7+a8+a9>0,a7+a103.[2014·辽宁卷8] 设等差数列{an}的公差为d.若数列2a1an为递减数列,则( C )A.d0 C.a1d0考点分析:本题主要考查等差数列的通项公式、函数的单调性等知识,体现了对数列和函数的综合考查.编辑:谢颖丽。
【命题探究】2014版高考数学知识点讲座:考点23等比数列(解析版)加(*)号的知识点为了解内容,供学有余力的学生学习使用 一.考纲目标等比数列的定义、通项公式、前n 项和及等比数列的基本性质;等比数列的应用. 二。
知识梳理1.等比数列的概念:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0≠q )2.等比中项:如果在a 与b 之间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,也就是,如果是的等比中项,那么Gba G=,即ab G=23.等比数列的判定方法: ①定义法:对于数列{}na ,若)0(1≠=+q q aa nn ,则数列{}na 是等比数列②等比中项:对于数列{}na ,若212++=n n na aa ,则数列{}n a 是等比数列 4.等比数列的通项公式:如果等比数列{}na 的首项是1a ,公比是q ,则等比数列的通项为11-=n nq a a或着n m n m a a q -=5.等比数列的前n 项和:○1)1(1)1(1≠--=q qq a S n n ○2)1(11≠--=q qqa a Sn n○,3当1=q 时,1na Sn=当1q ≠时,前n 项和必须具备形式(1),(0)n nS A q A =-≠6.等比数列的性质:①等比数列任意两项间的关系:如果na 是等比数列的第n 项,ma 是等差数列的第m 项,且n m ≤,公比为q ,则有m n m nq a a-=②对于等比数列{}na ,若v u m n +=+,则v u m na a a a⋅=⋅也就是: =⋅=⋅=⋅--23121n n n a a a a a a如图所示:nn a a n a a n n a a a a a a ⋅⋅---112,,,,,,12321 ③若数列{}na 是等比数列,nS 是其前n 项的和,*N k ∈,那么只有当公比1q =-且k 为偶数时,kS ,kkS S-2,kkS S23-不成等比数列如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++ 三、考点逐个突破1.等比数列的概念与通项公式例1.(1) 已知等比数列}{na 的公比为正数,且3a ·9a =225a ,2a =1,则1a =A 。
【命题探究】2014版高考数学知识点讲座:考点24数列的综合问题与数列的应用(解析版)加(*)号的知识点为了解内容,供学有余力的学生学习使用一。
考纲目标等差、等比数列的综合运用;灵活运用数列知识、解决有关数列的综合问题. 二.知识梳理(一)。
数列的知识结构等比数列等差数列表示方法图像与函数的关系前n 项和通项定义数列正整数集上函数及性质数列知识结构(二).数列总论1。
数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想.2.等差、等比数列中,a 1、n a 、n 、d (q )、nS “知三求二”,体现了方程(组)的思想、整体思想,有时用到换元法3。
求等比数列的前n 项和时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想4.数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累加法,等价转化等. (三).等差数列1相关公式: (1)定义:),1(1为常数d n d a an n ≥=-+(2)通项公式:d n a an)1(1-+=(3)前n 项和公式:d n n na a a n S n n2)1(2)(11-+=+=(4)通项公式推广:d m n a am n)(-+=2等差数列}{na 的一些性质 (1)对于任意正整数n,都有121a a a a n n -=-+(2)}{na 的通项公式)2()(2112a a n a a an-+-=(3)对于任意的整数s r q p ,,,,如果s r q p +=+,那么s r q pa a a a +=+(4)对于任意的正整数r q p ,,,如果q r p 2=+,则q r pa a a 2=+(5)对于任意的正整数n 〉1,有112-++=n n na a a(6)对于任意的非零实数b,数列}{nba 是等差数列,则}{na 是等差数列 (7)已知}{nb 是等差数列,则}{n nb a±也是等差数列(8)}{},{},{},{},{23133122---n n n n na a a a a 等都是等差数列(9)n S 是等差数列{}na 的前n 项和,则kk k k kS S S S S232,,-- 仍成等差数列,即)(323m m mS S S-=(10)若)(n m S S n m≠=,则0=+n n S(11)若p S q S q p==,,则)(q p S q p +-=+(12)bn an Sn+=2,反之也成立(四).等比数列 1相关公式: (1)定义:)0,1(1≠≥=+q n q a ann(2)通项公式:11-=n nq a a(3)前n项和公式:⎪⎩⎪⎨⎧≠--==1q 1)1(1q11qq a na S n n (4)通项公式推广:mn m nq a a-=2等比数列}{na 的一些性质 (1)对于任意的正整数n ,均有121a a a ann =+(2)对于任意的正整数s r q p ,,,,如果s r q p +=+,则s r q pa a a a =(3)对于任意的正整数r q p ,,,如果r p q +=2,则2qr p a a a =(4)对于任意的正整数n>1,有112+-=n n na a a(5)对于任意的非零实数b ,}{nba 也是等比数列 (6)已知}{nb 是等比数列,则}{nn b a 也是等比数列(7)如果0>na ,则}{log n a a 是等差数列 (8)数列}{logn aa 是等差数列,则}{n a 是等比数列(9)}{},{},{},{},{23133122---n n n n na a a a a等都是等比数列(10)nS 是等比数列{}na 的前n 项和, ①当q =-1且k 为偶数时,kk k k kS S S S S 232,,--不是等比数列 ②当q ≠-1或k 为奇数时,kk k kkS S S SS 232,,-- 仍成等比数列(五)。
省级优质课参赛说课稿§2.4.1等比数列(第一课时)宋民友卢氏县第一高级中学2013.11《等比数列》说课稿今天我说的课题是《等比数列》的第一课时。
通过这节课学习希望达到两个目标:一是掌握等比数列的定义、通项公式和等比中项,以及等比数列的特点,并能运用所学知识解决相关问题。
二是激发学生的探索精神,培养独立思考和善于总结的优良习惯,达到新课程标准中提出的“关注学生体验、感悟和实践活动的要求”。
下面我就六个方面阐述这节课。
一、教材分析:1、教材的地位和作用:《等比数列》是人教A版高中数学教材必修模块五第二章第四节的第一课时. 其主要内容是等比数列的概念、通项公式和性质。
有利于进一步提高学生对数列的通项公式的认识,加强对数学规律性的探讨,从而提高学生观察、分析、猜想、归纳的综合思维能力。
2、教材的处理:高二上期的学生,已经具有学习高中数学的基本思路和方法,根据本节内容,我将《等比数列》安排了2节课时。
本节课是第一课时。
根据目前学生的知识结构状况,为激发学生的学习热情,提高学生的学习效率,我从问题出发引出本节课的要探究的问题,之后,再由学生自学、互学、交流、练习巩固等,由浅入深,由低到高地设置了不同层次的问题,逐步加深学生对等比数列及其通项公式的理解,初步掌握等比数列的常规问题解答思路和技巧。
为此,我对教材的例题、练习做了适当的补充和修改。
3、教学重点与难点及解决办法:根据学生现状、教学要求及教材内容,确立本节课的教学重点为:等比数列的定义、通项公式和等比中项。
解决的办法是:归纳类比。
难点为:等比数列的定义及通项公式的深刻理解。
要突破这个难点,关键在于紧扣定义,类比等差数列的相关知识,来发现等比数列的一些性质。
二、教学目标分析:根据教学要求,教材的地位和作用,以及学生现有的知识水平和数学能力,我把本节课的教学目的定为如下三个方面:(一)知识教学目标:理解等比数列的概念,掌握等比数列的通项公式,掌握等比中项的定义并能解决相应问题。
第六讲 数列求和及综合应用真题试做►———————————————————1.(2011·高考某某卷)已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10=( )A .1B .9C .10D .552.(2013·高考某某卷)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.3.(2013·高考某某卷)设S n 为数列{a n }的前n 项和,已知a 1≠0,2a n -a 1=S 1·S n ,n ∈N *. (1)求a 1,a 2,并求数列{a n }的通项公式; (2)求数列{na n }的前n 项和.考情分析►———————————————————数列求和问题是数列中的重要知识,在各地的高考试题中频频出现,对于等差数列、等比数列的求和主要是运用公式;而非等差数列、非等比数列的求和问题,一般用倒序相加法、通项化归法、错位相减法、裂项相消法、分组求和法等.等差数列与等比数列、数列与函数、数列与不等式、数列与概率、数列的实际应用等知识交汇点的综合问题是近几年高考的重点和热点,此类问题在客观题和解答题中都有所体现,难度不一,求解此类问题的主要方法是利用转化与化归的思想,根据所学数列知识及题目特征,构造出解题所需的条件.考点一 数列求和数列的求和问题多从数列的通项入手,通过分组、错位相减等转化为等差或等比数列的求和问题,考查等差、等比数列求和公式及转化与化归思想的应用,属中档题.(2013·高考某某卷)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈N *,求{b n }的前n 项和T n .【思路点拨】 (1)由于已知{a n }是等差数列,因此可考虑用基本量a 1,d 表示已知等式,进而求出{a n }的通项公式.(2)先求出b n a n,进而求出{b n }的通项公式,再用错位相减法求{b n }的前n 项和.强化训练1 (2013·某某调研)设{a n}是公比大于1的等比数列,S n为数列{a n}的前n 项和.已知S3=7,且3a2是a1+3和a3+4的等差中项.(1)求数列{a n}的通项公式;(2)设b n=a n(a n+1)(a n+1+1),数列{b n}的前n项和为T n,求证:T n<12.考点二数列的实际应用数列应用题是近年来高考命题改革的一个亮点,主要考查学生数列建模能力,其题型为:一是,构造等差数列或等比数列模型,然后用相应的通项公式与求和公式求解;二是,通过归纳得到结论,再用数列知识求解.(2012·高考某某卷)某公司一下属企业从事某种高科技产品的生产,该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为a n万元.(1)用d表示a1,a2,并写出a n+1与a n的关系式;(2)若公司希望经过m(m≥3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d的值(用m表示).【思路点拨】(1)由第n年和第(n+1)年的资金变化情况,得到a n和a n+1的递推关系.(2)由递推关系,利用迭代的方法可求通项公式,问题得解.解决数列实际应用问题的关键是要做好三件事情:第一是努力读懂题意,能用自己的语言把问题表述出来;第二是找出关键字句,其他的文字可以不管;第三是将实际生活化的语言翻译成数学语言.在做好这三件事情的基础上,经过设元、列式,就不难实现这种数学模型的转化.强化训练2 某市投资甲、乙两个工厂,2012年两工厂的年产量均为100万吨,在今后的若干年内,甲工厂的年产量每年比上一年增加10万吨,乙工厂第n年比上一年增加2n-1万吨.记2012年为第一年,甲、乙两工厂第n年的年产量分别记为a n,b n.(1)求数列{a n},{b n}的通项公式;(2)若某工厂年产量超过另一工厂年产量的2倍,则将另一工厂兼并,问到哪一年底其中一个工厂将被另一工厂兼并?考点三 数列的综合问题数列与其他知识的综合问题在高考中大多属于中、高档难度问题.在复习这部分内容时,要注意对基础知识的梳理,把握通性通法,不必刻意追求难度.(2013·高考某某卷)已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值.【思路点拨】 (1)利用等比数列的性质结合已知条件求出公比q ,进而可得到通项公式;(2)结合数列的单调性求数列的最大项与最小项的值.数列的综合性问题是高考的热点,此类问题一般以数列与函数、数列与不等式、数列与解析几何的综合应用为主.在该类问题的求解过程中往往会遇到递推数列,因此掌握递推数列的常见解法有助于该类问题的解决,解题时要注意沟通数列与函数的内在联系,灵活运用函数的思想方法求解,而本题利用数列的单调性求{T n }的最值.强化训练3 设数列{a n }的前n 项和为S n ,如果S nS 2n为常数,则称数列{a n }为“幸福数列”. (1)等差数列{b n }的首项为1,公差不为零,若{b n }为“幸福数列”,求{b n }的通项公式;(2)数列{}的各项都是正数,前n 项和为S n ,若c 31+c 32+c 33+…+c 3n =S 2n 对任意n ∈N *都成立,试推断数列{}是否为“幸福数列”?并说明理由.数列与三类知识的交汇数列与函数、不等式、解析几何、平面几何等知识的交汇问题是高考的难点,与函数、不等式的交汇问题主要考查利用函数与方程的思想方法解决数列中的问题及用解决不等式的方法研究数列的性质;与解析几何交汇,主要涉及点列问题,与平面几何交汇,主要涉及面积(周长)问题,求解时应建立数列的递推关系或通项公式之间的关系,然后借助数列的知识加以解决.一、数列和平面几何的交汇(2013·高考某某卷)如图,互不相同的点A 1,A 2,…,A n ,…和B 1,B 2,…,B n ,…分别在角O 的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n +1A n +1的面积均相等,设OA n =a n .若a 1=1,a 2=2,则数列{a n }的通项公式是________.【解析】 设OA n =x (n ≥3),OB 1=y ,∠O =θ,记S △OA 1B 1=12×1×y sin θ=S ,那么S △OA 2B 2=12×2×2y sin θ=4S ,S △OA 3B 3=4S +(4S -S )=7S , …S △OA n B n =12x ·xy sin θ=(3n -2)S ,∴S △OA n B n S △OA 2B 2=12×x ×xy sin θ12×2×2y sin θ=(3n -2)S 4S, ∴x 24=3n -24,∴x =3n -2. 即a n =3n -2(n ≥3).经验证知a n =3n -2(n ∈N *). 【答案】 a n =3n -2对于数列与几何图形相结合的问题,通常利用几何知识,并结合图形,得出关于数列相邻项a n 与a n +1之间的关系,然后根据递推关系,结合所求内容变形,得出通项公式或其他所求结论.二、数列和函数的交汇(2013·高考某某卷)设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈N *,函数 f (x )=(a n -a n +1+a n +2)x +a n +1cos x -a n +2sin x 满足f ′(π2)=0.(1)求数列{a n }的通项公式;(2)若b n =2(a n +12an),求数列{b n }的前n 项和S n .【解】 (1)由题设可得f ′(x )=a n -a n +1+a n +2-a n +1sin x -a n +2cos x .对任意n ∈N *,f ′(π2)=a n -a n +1+a n +2-a n +1=0,即a n +1-a n =a n +2-a n +1,故{a n }为等差数列.由a 1=2,a 2+a 4=8,可得数列{a n }的公差d =1, 所以a n =2+1·(n -1)=n +1.(2)由b n =2(a n +12an )=2(n +1+12n +1)=2n +12n +2知,S n =b 1+b 2+…+b n=2n +2·n (n +1)2+12[1-(12)n ]1-12=n 2+3n +1-12n .(1)本题以函数为载体考查了数列的基本问题,求解中利用f ′(π2)=0,把函数知识转化为数列知识,这种题型经常见到.(2)数列与函数交汇问题的常见类型及解法:①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题; ②已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的X 围、分式、求和方法对式子化简变形.另外,解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解.三、数列与不等式的交汇(2013·高考某某卷)已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式;(2)证明S n +1S n ≤136(n ∈N *).【解】 (1)设等比数列{a n }的公比为q . 因为-2S 2,S 3,4S 4成等差数列, 所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4,可得2a 4=-a 3,于是q =a 4a 3=-12.又因为a 1=32,所以等比数列{a n }的通项公式为a n =32·⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .(2)证明:S n =1-⎝ ⎛⎭⎪⎫-12n,S n +1S n =1-⎝ ⎛⎭⎪⎫-12n+11-⎝⎛⎭⎪⎫-12n=⎩⎪⎨⎪⎧2+12n(2n+1),n 为奇数,2+12n(2n-1),n 为偶数.当n 为奇数时,S n +1S n随n 的增大而减小,所以S n +1S n ≤S 1+1S 1=136.当n 为偶数时,S n +1S n随n 的增大而减小,所以S n +1S n ≤S 2+1S 2=2512.故对于n ∈N *,有S n +1S n ≤136.本题考查了数列不等式的证明,求解此类问题时应根据题目特征,确定出与不等式有关的数列的项或前n 项和,根据题目特征求解,求解时注意放缩法的应用.而本题利用了数列的单调性求解.体验真题·把脉考向_ 1.【解析】选A.∵S n +S m =S n +m ,且a 1=1,∴S 1=1,可令m =1,得S n +1=S n +1,∴S n+1-S n =1,即当n ≥1时,a n +1=1,∴a 10=1.2.【解析】每天植树的棵数构成以2为首项,2为公比的等比数列,其前n 项和S n =a 1(1-q n )1-q =2(1-2n )1-2=2n +1-2.由2n +1-2≥100,得2n +1≥102.由于26=64,27=128.则n +1≥7,即n ≥6.【答案】63.【解】(1)令n =1,得2a 1-a 1=a 21,即a 1=a 21. 因为a 1≠0,所以a 1=1.令n =2,得2a 2-1=S 2=1+a 2,解得a 2=2.当n ≥2时,由2a n -1=S n ,2a n -1-1=S n -1两式相减,得2a n -2a n -1=a n ,即a n =2a n -1. 于是数列{a n }是首项为1,公比为2的等比数列.因此,a n =2n -1.所以数列{a n }的通项公式为a n =2n -1.(2)由(1)知,na n =n ·2n -1.记数列{n ·2n -1}的前n 项和为B n ,于是B n =1+2×2+3×22+…+n ×2n -1,①2B n =1×2+2×22+3×23+…+n ×2n.②①-②,得-B n =1+2+22+…+2n -1-n ·2n=2n -1-n ·2n .从而B n =1+(n -1)·2n . _典例展示·解密高考_【例1】【解】(1)设等差数列{a n }的首项为a 1,公差为d . 由S 4=4S 2,a 2n =2a n +1,得 ⎩⎪⎨⎪⎧4a 1+6d =8a 1+4d ,a 1+(2n -1)d =2a 1+2(n -1)d +1. 解得⎩⎪⎨⎪⎧a 1=1,d =2.因此a n =2n -1,n ∈N *.(2)由已知b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈N *,当n =1时,b 1a 1=12;当n ≥2时,b n a n =1-12n -(1-12n -1)=12n .所以b n a n =12n ,n ∈N *.由(1)知a n =2n -1,n ∈N *,所以b n =2n -12n ,n ∈N *.所以T n =12+322+523+…+2n -12n ,12T n =122+323+…+2n -32n +2n -12n +1. 两式相减,得 12T n =12+(222+223+…+22n )-2n -12n +1 =32-12n -1-2n -12n +1, 所以T n =3-2n +32n .[强化训练1]【解】(1)由已知,得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,(a 1+3)+(a 3+4)2=3a 2.解得a 2=2.设数列{a n }的公比为q , 则a 1q =2,∴a 1=2q,a 3=a 1q 2=2q .由S 3=7,可知2q+2+2q =7,∴2q 2-5q +2=0,解得q 1=2,q 2=12.由题意,得q >1,∴q =2. ∴a 1=1.故数列{a n }的通项公式为a n =2n -1. (2)证明:∵b n =a n(a n +1)(a n +1+1)=2n -1(2n -1+1)(2n+1)=12n -1+1-12n +1,∴T n =(11+1-121+1)+(121+1-122+1)+(122+1-123+1)+…+(12n -1+1-12n +1)=11+1-12n +1=12-12n +1<12. 【例2】【解】(1)由题意得a 1=2 000(1+50%)-d =3 000-d ,a 2=a 1(1+50%)-d =32a 1-d =4 500-52d ,a n +1=a n (1+50%)-d =32a n -d .(2)由(1)得a n =32a n -1-d =32⎝ ⎛⎭⎪⎫32a n -2-d -d =⎝ ⎛⎭⎪⎫322a n -2-32d -d =…=⎝ ⎛⎭⎪⎫32n -1a 1-d ⎣⎢⎡⎦⎥⎤1+32+⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -2. 整理得a n =⎝ ⎛⎭⎪⎫32n -1(3 000-d )-2d ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1-1 =⎝ ⎛⎭⎪⎫32n -1(3 000-3d )+2d . 由题意,知a m =4 000, 即⎝ ⎛⎭⎪⎫32m -1(3 000-3d )+2d =4 000, 解得d =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32m -2×1 000⎝ ⎛⎭⎪⎫32m-1=1 000(3m -2m +1)3m-2m.故该企业每年上缴资金d 的值为1 000(3m-2m +1)3m -2m时,经过m (m ≥3)年企业的剩余资金为4 000万元.[强化训练2]【解】(1)因为{a n }是等差数列,a 1=100,d =10, 所以a n =10n +90.因为b n -b n -1=2n -1,b n -1-b n -2=2n -2,…,b 2-b 1=2,所以b n =100+2+22+…+2n -1=2n+98. (2)当n ≤5时,a n ≥b n 且a n <2b n .当n ≥6时,a n ≤b n ,所以甲工厂有可能被乙工厂兼并.2a n <b n ,即2(10n +90)<2n+98,解得n ≥8,故2019年底甲工厂将被乙工厂兼并. 【例3】【解】(1)设等比数列{a n } 的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3,于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .(2)由(1)得S n=1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数.当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.所以数列{T n }最大项的值为56,最小项的值为-712.[强化训练3]【解】(1)设等差数列b n 的公差为d (d ≠0),S nS 2n=k ,因为b 1=1, 则n +12n (n -1)d =k [2n +12·2n (2n -1)d ],即2+(n -1)d =4k +2k (2n -1)d ,整理得,(4k -1)dn +(2k -1)(2-d )=0,因为对任意正整数n 上式恒成立,则⎩⎪⎨⎪⎧d (4k -1)=0(2k -1)(2-d )=0,解得⎩⎪⎨⎪⎧d =2k =14.故数列b n 的通项公式是b n =2n -1.(2)由已知,当n =1时,c 31=S 21=c 21.因为c 1>0,所以c 1=1.当n ≥2时,c 31+c 32+c 33+…+c 3n =S 2n ,c 31+c 32+c 33+…+c 3n -1=S 2n -1.两式相减,得c 3n =S 2n -S 2n -1=(S n -S n -1)(S n +S n -1)=·(S n +S n -1).因为>0,所以c 2n =S n +S n -1=2S n -,显然c 1=1适合上式,所以当n ≥2时,c 2n -1=2S n -1--1.于是c 2n -c 2n -1=2(S n -S n -1)-+-1=2-+-1=+-1. 因为+-1>0,则--1=1,所以数列{}是首项为1,公差为1的等差数列. 所以S n S 2n =n (n +1)2n (2n +1)=n +14n +2不为常数,故数列{}不是“幸福数列”。
第五讲 等差数列、等比数列真题试做►———————————————————1.(2013·高考课标全国卷Ⅰ)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( ) A .S n =2a n -1 B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n2.(2013·高考重庆卷)已知{a n }是等差数列,a 1=1,公差d ≠0,S n 为其前n 项和,若a 1,a 2,a 5成等比数列,则S 8=________.3.(2013·高考江西卷)正项数列{a n }满足:a 2n -(2n -1)a n -2n =0.(1)求数列{a n }的通项公式a n ;(2)令b n =1(n +1)a n,求数列{b n }的前n 项和T n .考情分析►———————————————————等差数列与等比数列是最重要也是最基本的数列模型,因而也是高考中重点考查的内容.客观题突出“小而巧”,主要考查等差(比)数列的性质,利用方程思想求a1、d、q、S n、n、a n等一些基本元素;主观题一般“大而全”,常与函数、不等式、解析几何等知识相结合,注重考查题目的综合性与新颖性,属于中档题,主要考查考生灵活运用两种数列分析问题、解决问题的能力.考点一等差(比)数列的基本运算等差数列和等比数列在公式和性质上有许多相似性,是高考必考内容,着重考查等差、等比数列的基本运算、基本技能和基本思想方法,题型不仅有选择题、填空题,还有解答题,题目难度中等.(2013·高考重庆卷)设数列{a n}满足:a1=1,a n+1=3a n,n∈N+.(1)求{a n}的通项公式及前n项和S n;(2)已知{b n}是等差数列,T n为其前n项和,且b1=a2,b3=a1+a2+a3,求T20.【思路点拨】根据等比、等差数列的通项公式及前n项和公式直接运算求解.关于等差(等比)数列的基本运算,一般通过其通项公式和前n项和公式构造关于a1和d(或q)的方程或方程组解决,如果在求解过程中能够灵活运用等差(等比)数列的性质,不仅可以快速获解,而且有助于加深对等差(等比)数列问题的认识.强化训练1 (2012·高考重庆卷)已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,若a 1,a k ,S k +2成等比数列,求正整数k 的值.考点二 等差(比)数列的判定与证明等差(比)数列的判定与证明,以及在此基础上延伸出来的一些新数列是历年高考数列问题的一大热点.主要以解答题的形式进行考查,考查的目的是:考生对基本数列的理解和利用,对已知信息进行转化和变通的能力.在解决此类问题时,要注意S n 与a n 关系的应用.(2013·高考陕西卷)设S n 表示数列{a n }的前n 项和.(1)若{a n }是等差数列, 推导S n 的计算公式;(2)若a 1=1,q ≠0,且对所有正整数n ,有S n =1-q n1-q,判断{a n }是否为等比数列,并证明你的结论.【思路点拨】 利用等差数列的性质倒序相加求和;等比数列的证明通过定义进行.判定或证明{a n }为等差数列或等比数列时也常用以下方法:(1)通项公式法:a n =pn +q (p ,q 为常数,n ∈N *)⇔{a n }为等差数列;a n =cq n (c ,q 为非零常数,n ∈N *)⇔{a n }为等比数列.(2)前n 项和公式法:S n =an 2+bn +c (a ,b ,c 都是常数),c =0⇔{a n }为等差数列;S n =k (q n -1),k 为常数,且q ≠0,1⇔{a n }为等比数列.强化训练2 (2013·东北三校高三第一次联合模拟考试)已知数列{a n }的前n 项和S n 满足S n =2a n +(-1)n (n ∈N *).(1)求数列{a n }的前三项a 1,a 2,a 3;(2)求证:数列{a n +23(-1)n }为等比数列,并求出{a n }的通项公式.考点三 等差数列与等比数列的综合应用从近几年的考题看,对于等差与等比数列的综合考查也频频出现.考查的目的在于测试考生灵活运用知识的能力,这个“灵活”就集中在“转化”的水平上.(2013·高考湖北卷)已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18.(1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.【思路点拨】首先由S4,S2,S3成等差数列,且a2+a3+a4=-18,求得a1和公比q,进而得通项公式;然后根据等比数列的前n项和公式列出关于n的不等式,通过解不等式进而做出判断.对于等差数列与等比数列综合性的问题,要找准其结合点,弄清哪些是等差数列中的量,哪些是等比数列中的量,注意它们的区别,避免用错公式.强化训练3已知等比数列{a n}的前n项和为S n,a1=2,S1、2S2、3S3成等差数列.(1)求数列{a n}的通项公式;(2)数列{b n-a n}是首项为-6,公差为2的等差数列,求数列{b n}的前n项和.结构创新型试题的解题技巧——函数与数列的珠联璧合数列是定义在正整数集上的一类特殊的函数,以函数为背景的数列问题通常有两种:一是数列由函数关系给出;二是利用函数的有关方法求解数列的有关问题.数列与函数的这种关系也是数列解答题命题的重点之一.(2012·高考四川卷)设函数f (x )=2x -cos x ,{a n }是公差为π8的等差数列,f (a 1)+f (a 2)+…+f (a 5)=5π,则[f (a 3)]2-a 1a 5=( )A .0 B.116π2 C.18π2 D.1316π2 (1)给出以等差数列前5项为自变量的函数值之和.(2)根据等差数列性质和三角函数性质把f (a 1)+f (a 2)+f (a 3)+f (a 4)+f (a 5)的结构用a 3表达.(3)构造函数,通过函数的单调性确定a 3的值.(4)将求解结果用a 3表示、化简.抓信息 寻思路【解析】 f (a 1)+f (a 2)+f (a 3)+f (a 4)+f (a 5)=2(a 1+a 2+a 3+a 4+a 5)-(cos a 1+cos a 2+cos a 3+cos a 4+cos a 5)=10a 3-[cos(a 3-π4)+cos(a 3-π8)+cos a 3+cos(a 3+π8)+cos(a 3+π4)] =10a 3-(2cos π4+2cos π8+1)cos a 3.构造函数g (x )=10x -(2cos π4+2cos π8+1)cos x -5π, g ′(x )=10+(2cos π4+2cos π8+1)sin x >0, 函数g (x )在(-∞,+∞)内单调递增,由g (π2)=0, 所以方程10x -(2cos π4+2cos π8+1)cos x -5π=0有唯一解x =π2,所以a 3=π2. 所以[f (a 3)]2-a 1a 5=[f (a 3)]2-(a 3-π4)(a 3+π4) =[f (a 3)]2-a 23+π216=π2-(π2)2+π216=13π216. 【答案】 D跟踪训练 (2013·成都市高中毕业班第二次诊断性检测)已知数列{a n }满足a n +2-a n +1=a n+1-a n ,n ∈N *,且a 5=π2.若函数f (x )=sin 2x +2cos 2 x 2,记y n =f (a n ),则数列{y n }的前9项和为( )A .0B .-9C .9D .1_体验真题·把脉考向_1.【解析】选D.法一:在等比数列{a n }中,S n =a 1-a n q 1-q =1-a n ·231-23=3-2a n . 法二:在等比数列{a n }中,a 1=1,q =23,∴a n =1×(23)n -1=(23)n -1. S n =1×[1-(23)n ]1-23=3[1-(23)n ] =3[1-23(23)n -1]=3-2a n . 2.【解析】∵a 1,a 2,a 5成等比数列,∴a 22=a 1a 5, ∴(1+d )2=1×(4d +1),∴d 2-2d =0.∵d ≠0,∴d =2.∴S 8=8×1+8×72×2=64. 【答案】643.【解】(1)由a 2n -(2n -1)a n -2n =0,得(a n -2n )(a n +1)=0.由于{a n }是正项数列,所以a n =2n .(2)由a n =2n ,b n =1(n +1)a n,则 b n =12n (n +1)=12⎝⎛⎭⎫1n -1n +1, T n =12⎝⎛⎭⎫1-12+12-13+…+1n -1-1n +1n -1n +1 =12⎝⎛⎭⎫1-1n +1=n 2(n +1)._典例展示·解密高考_【例1】【解】(1)由题设知{a n }是首项为1,公比为3的等比数列, 所以a n =3n -1,S n =1-3n 1-3=12(3n -1). (2)b 1=a 2=3,b 3=1+3+9=13,b 3-b 1=10=2d , 所以公差d =5,故T 20=20×3+20×192×5=1 010. [强化训练1]【解】(1)设数列{a n }的公差为d ,由题意知⎩⎪⎨⎪⎧2a 1+2d =8,2a 1+4d =12,解得⎩⎪⎨⎪⎧a 1=2,d =2. 所以a n =a 1+(n -1)d =2+2(n -1)=2n .(2)由(1)可得S n =n (a 1+a n )2=n (2+2n )2=n (n +1). 因为a 1,a k ,S k +2成等比数列,所以a 2k =a 1S k +2.从而(2k )2=2(k +2)(k +3),即k 2-5k -6=0,解得k =6或k =-1(舍去).因此k =6.【例2】【解】(1)法一:设{a n }的公差为d ,则S n =a 1+a 2+…+a n =a 1+(a 1+d )+…+[a 1+(n -1)d ]. 又S n =a n +(a n -d )+…+[a n -(n -1)d ],∴2S n =n (a 1+a n ),∴S n =n (a 1+a n )2. 法二:设{a n }的公差为d ,则S n =a 1+a 2+…+a n =a 1+(a 1+d )+…+[a 1+(n -1)d ]. 又S n =a n +a n -1+…+a 1=[a 1+(n -1)d ]+[a 1+(n -2)d ]+…+a 1,∴2S n =[2a 1+(n -1)d ]+[2a 1+(n -1)d ]+…+[2a 1+(n -1)d ]=2na 1+n (n -1)d ,∴S n =na 1+n (n -1)2d . (2){a n }是等比数列.证明如下:∵S n =1-q n1-q, ∴a n +1=S n +1-S n =1-q n +11-q -1-q n 1-q =q n (1-q )1-q =q n .∵a 1=1,q ≠0,∴当n ≥1时,有a n +1a n =q nq n -1=q . 因此,{a n }是首项为1且公比为q (q ≠0)的等比数列.[强化训练2]【解】(1)在S n =2a n +(-1)n (n ∈N *)中分别令n =1,2,3得: ⎩⎪⎨⎪⎧a 1=2a 1-1a 1+a 2=2a 2+1a 1+a 2+a 3=2a 3-1,解得⎩⎪⎨⎪⎧a 1=1a 2=0a 3=2. (2)证明:由S n =2a n +(-1)n (n ∈N *)得: S n -1=2a n -1+(-1)n -1(n ≥2),两式相减得: a n =2a n -1-2(-1)n (n ≥2),a n =2a n -1-43(-1)n -23(-1)n =2a n -1+43(-1)n -1-23(-1)n (n ≥2), ∴a n +23(-1)n =2[a n -1+23(-1)n -1](n ≥2). 故数列{a n +23(-1)n }是以a 1-23=13为首项,公比为2的等比数列. ∴a n +23(-1)n =13×2n -1, ∴a n =13×2n -1-23×(-1)n =2n -13-23(-1)n . 【例3】【解】(1)设等比数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得⎩⎪⎨⎪⎧S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18,即⎩⎪⎨⎪⎧-a 1q 2-a 1q 3=a 1q 2,a 1q (1+q +q 2)=-18, 解得⎩⎪⎨⎪⎧a 1=3,q =-2. 故数列{a n }的通项公式为a n =3×(-2)n -1. (2)由(1)有S n =3[1-(-2)n ]1-(-2)=1-(-2)n . 假设存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013,即(-2)n ≤-2 012.当n 为偶数时,(-2)n >0,上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 012,即2n ≥2 012,即n ≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}.[强化训练3]【解】(1)由已知4S 2=S 1+3S 3,4(a 1+a 1q )=a 1+3a 1(1+q +q 2),3q 2-q =0,∴q =0(舍),或q =13, ∴a n =2·⎝⎛⎭⎫13n -1.(2)由题意得:b n -a n =2n -8,b n =a n +2n -8=2⎝⎛⎭⎫13n -1+2n -8.设数列{b n }的前n 项和为T n ,T n =2⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13+n (-6+2n -8)2=3⎝⎛⎭⎫1-13n +n (n -7) =-13n -1+n 2-7n +3. _名师讲坛·精彩推荐_[跟踪训练]【解析】选C.由数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *可知该数列是等差数列,根据题意可知只要该数列中a 5=π2,数列{y n }的前9项和就能计算得到一个定值,又因为f (x )=sin 2x +1+cos x ,则可令数列{a n }的公差为0,则数列{y n }的前9项和为S 9=(sin 2a 1+sin 2a 2+…+sin 2a 9)+(cos a 1+cos a 2+…+cos a 9)+9=9sin 2a 5+9cos a 5+9=9sin(2×π2)+9cos π2+9=9.。