恒成立问题易错点最新衡水中学精品自用资料
- 格式:doc
- 大小:55.12 KB
- 文档页数:2
高三复习专题——恒成立与存在性问题知识点总结:(1)恒成立问题1. ∀x∈D,均有f(x)>A恒成立,则f(x)min>A;2. ∀x∈D,均有f(x)﹤A恒成立,则f(x)ma x<A.3. ∀x∈D,均有f(x) >g(x)恒成立,则F(x)=f(x)- g(x) >0,∴F(x)min >04. ∀x∈D,均有f(x)﹤g(x)恒成立,则F(x)=f(x)- g(x) ﹤0,∴F(x) ma x﹤05. ∀x1∈D, ∀x2∈E,均有f(x1) >g(x2)恒成立,则f(x)min> g(x)ma x6. ∀x1∈D, ∀x2∈E,均有f(x1) <g(x2)恒成立,则f(x) ma x < g(x) min(2)存在性问题1. ∃x0∈D,使得f(x0)>A成立,则f(x) ma x >A;2. ∃x0∈D,使得f(x0)﹤A成立,则f(x) min <A3. ∃x0∈D,使得f(x0) >g(x0)成立,设F(x)=f(x)- g(x),∴F(x) ma x >04. ∃x0∈D,使得f(x0) <g(x0)成立,设F(x)=f(x)- g(x),∴F(x) min <05. ∃x1∈D, ∃x2∈E, 使得f(x1) >g(x2)成立,则f(x) ma x > g(x) min6. ∃x1∈D, ∃x2∈E,均使得f(x1) <g(x2)成立,则f(x) min < g(x) ma x(3)相等问题1. ∀x1∈D, ∃x2∈E,使得f(x1)=g(x2)成立,则{ f(x)}{g(x)}(4)恒成立与存在性的综合性问题1. ∀x1∈D, ∃x2∈E, 使得f(x1) >g(x2)成立,则f(x)m in>g(x)m in2. ∀x1∈D, ∃x2∈E, 使得f(x1) <g(x2)成立,则f(x)max <g(x)max(5)恰成立问题1. 若不等式f(x)>A在区间D上恰成立,则等价于不等式f(x)>A的解集为D;2.若不等式f(x)<B在区间D上恰成立,则等价于不等式f(x)<B的解集为D.► 探究点一 ∀x ∈D ,f (x )>g (x )的研究例1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;【思路分析】等价转化为函数0)()(>-x g x f 恒成立,通过分离变量,创设新函数求最值解决.简解:(1)由12012232++<⇒>-+-x x x a x a ax x 成立,只需满足12)(23++=x xx x ϕ的最小值大于a 即可.对12)(23++=x x x x ϕ求导,0)12(12)(2224>+++='x x x x ϕ,故)(x ϕ在]2,1[∈x 是增函数,32)1()(min ==ϕϕx ,所以a 的取值范围是320<<a .► 探究点二 ∃x ∈D ,f (x )>g (x )的研究对于∃x ∈D ,f (x )>g (x )的研究,先设h (x )=f (x )-g (x ),再等价为∃x ∈D ,h (x )max >0,其中若g (x )=c ,则等价为∃x ∈D ,f (x )max >c . 例 已知函数f (x )=x 3-ax 2+10.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)在区间[1,2]内至少存在一个实数x ,使得f (x )<0成立,求实数a 的取值范围. 【解答】 (1)当a =1时,f ′(x )=3x 2-2x ,f (2)=14, 曲线y =f (x )在点(2,f (2))处的切线斜率k =f ′(2)=8, 所以曲线y =f (x )在点(2,f (x ))处的切线方程为 8x -y -2=0.(2)解法一:f ′(x )=3x 2-2ax =3x⎝⎛⎭⎫x -23a (1≤x ≤2),当23a ≤1,即a ≤32时,f ′(x )≥0,f (x )在[1,2]上为增函数, 故f (x )m in =f (1)=11-a ,所以11-a <0,a >11,这与a ≤32矛盾. 当1<23a <2,即32<a <3时,当1≤x <23a ,f ′(x )<0;当23a <x ≤2,f ′(x )>0, 所以x =23a 时,f (x )取最小值,因此有f ⎝⎛⎭⎫23a <0,即827a 3-49a 3+10=-427a 3+10<0,解得a >3352,这与32<a <3矛盾;当23a ≥2,即a ≥3时,f ′(x )≤0,f (x )在[1,2]上为减函数,所以f (x )m in =f (2)=18-4a ,所以18-4a <0,解得a >92,这符合a ≥3.综上所述,a 的取值范围为a >92. 解法二:由已知得:a >x 3+10x 2=x +10x 2, 设g (x )=x +10x 2(1≤x ≤2),g ′(x )=1-20x 3,∵1≤x ≤2,∴g ′(x )<0,所以g (x )在[1,2]上是减函数. g (x )m in =g (2),所以a >92.【点评】 解法一在处理时,需要用分类讨论的方法,讨论的关键是极值点与区间[1,2]的关系;解法二是用的参数分离,由于ax 2>x 3+10中x 2∈[1,4],所以可以进行参数分离,而无需要分类讨论.► 探究点三 ∀x 1∈D ,∀x 2∈D ,f (x 1)>g (x 2)的研究 例、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的取值范围.思路分析:解决双参数问题一般是先解决一个参数,再处理另一个参数.以本题为例,实质还是通过函数求最值解决.方法1:化归最值,10)(10)(max ≤⇔≤x h x h ;方法2:变量分离,)(10x x ab +-≤或x b x a )10(2-+-≤; 方法3:变更主元,0101)(≤-++⋅=b x a x a ϕ,]2,21[∈a简解:方法1:对b x x a b x x g x h ++=++=)()(求导,22))((1)(xa x a x x a x h +-=-=', 由此可知,)(x h 在]1,41[上的最大值为)41(h 与)1(h 中的较大者.⎪⎩⎪⎨⎧-≤-≤⇒⎪⎩⎪⎨⎧≤++≤++⇒⎪⎩⎪⎨⎧≤≤∴a b a b b a b a h h 944391011041410)1(10)41(,对于任意]2,21[∈a ,得b 的取值范围是47≤b .► 探究点四 ∀x 1∈D ,∃x 2∈D ,f (x 1)>g (x 2)的研究对于∀x 1∈D ,∃x 2∈D ,f (x 1)>g (x 2)的研究,第一步先转化为∃x 2∈D ,f (x 1)m in >g (x 2),再将该问题按照探究点一转化为f (x 1)m in >g (x 2)m in .例、已知函数f (x )=2|x -m |和函数g (x )=x |x -m |+2m -8.(1)若方程f (x )=2|m |在[-4,+∞)上恒有惟一解,求实数m 的取值范围; (2)若对任意x 1∈(-∞,4],均存在x 2∈[4,+∞), 使得f (x 1)>g (x 2)成立,求实数m 的取值范围.【解答】 (1)由f (x )=2|m |在x ∈[-4,+∞)上恒有惟一解, 得|x -m |=|m |在x ∈[-4,+∞)上恒有惟一解. 当x -m =m 时,得x =2m ,则2m =0或2m <-4, 即m <-2或m =0.综上,m 的取值范围是m <-2或m =0.(2)f (x )=⎩⎪⎨⎪⎧2x -m x ≥m ,2m -xx <m ,原命题等价为f (x 1)m in >g (x 2)m in .①当4≤m ≤8时,f (x )在(-∞,4]上单调递减,故f (x )≥f (4)=2m -4,g (x )在[4,m ]上单调递减,[m ,+∞)上单调递增,故g (x )≥g (m )=2m -8,所以2m -4>2m -8,解得4<m <5或m >6. 所以4<m <5或6<m ≤8.②当m >8时,f (x )在(-∞,4]上单调递减,故f (x )≥f (4)=2m -4,g (x )在⎣⎡⎦⎤4,m 2单调递增,⎣⎡⎦⎤m 2,m上单调递减,[m ,+∞)上单调递增,g (4)=6m -24>g (m )=2m -8,故g (x )≥g (m )=2m -8,所以2m -4>2m -8, 解得4<m <5或m >6.所以m >8.③0<m <4时,f (x )在(-∞,m ]上单调递减,[m ,4]上单调递增, 故f (x )≥f (m )=1.g (x )在[4,+∞)上单调递增, 故g (x )≥g (4)=8-2m ,所以8-2m <1,即72<m <4.④m ≤0时,f (x )在(-∞,m ]上单调递减,[m ,4]上单调递增, 故f (x )≥f (m )=1.g (x )在[4,+∞)上单调递增,故g (x )≥g (4)=8-2m ,所以8-2m <1,即m >72(舍去).综上,m 的取值范围是⎝⎛⎭⎫72,5∪(6,+∞). 【点评】 因为对于∀x ∈D ,f (x )>c ,可以转化为f (x )m in >c ;∃x ∈D ,c >g (x ),可以转化为c >g (x )m in ,所以本问题类型可以分两步处理,转化为f (x )m in >g (x )m in .► 探究点五 ∀x 1∈D ,∃x 2∈D ,f (x 1)=g (x 2)的研究对于∀x 1∈D ,∃x 2∈D ,f (x 1)=g (x 2)的研究,若函数f (x )的值域为C 1,函数g (x )的值域为C 2,则该问题等价为C 1⊆C 2.例、设函数f (x )=-13x 3-13x 2+53x -4.(1)求f (x )的单调区间; (2)设a ≥1,函数g (x )=x 3-3a 2x -2a .若对于任意x 1∈[0,1],总存在x 0∈[0,1],使得f (x 1)=g (x 0)成立,求a 的取值范围.【解答】 (1)f ′(x )=-x 2-23x +53,令f ′(x )>0,即x 2+23x -53<0,解得-53<x <1,∴f (x )的单调增区间为⎝⎛⎭⎫-53,1;单调减区间为⎝⎛⎭⎫-∞,-53和(1,+∞).(2)由(1)可知:当x ∈[0,1]时,f (x )单调递增,∴当x ∈[0,1]时,f (x )∈[f (0),f (1)],即f (x )∈[-4,-3].又g ′(x )=3x 2-3a 2,且a ≥1,∴当x ∈[0,1]时,g ′(x )≤0,g (x )单调递减,∴当x ∈[0,1]时,g (x )∈[g (1),g (0)],即g (x )∈[-3a 2-2a +1,-2a ],又对于任意x 1∈[0,1],总存在x 0∈[0,1],使得f (x 1)=g (x 0)成立⇔[-4,-3]⊆[-3a 2-2a +1,-2a ],即⎩⎪⎨⎪⎧-3a 2-2a +1≤-4,-3≤-2a ,解得1≤a ≤32.恒成立与存在有解的区别:恒成立和有解是有明显区别的,以下充要条件应细心思考,甄别差异,恰当使用,等价转化,切不可混为一体。
专题 恒成立存在性问题知识点梳理1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈Bx f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;题型一、常见方法1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的取值范围.3、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为题型二、主参换位法(已知某个参数的范围,整理成关于这个参数的函数)1、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。
1专题 恒成立存在性问题知识点梳理1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立(有解问题) 3函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥ 4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤ 5、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥ 6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤ 7、设函数()x f 、()x g ,任意 []b a x ,1∈,任意[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f min max ≤练习题1、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为2、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。
3、当()1,2x ∈时,不等式240x mx ++<恒成立,则m 的取值范围是 .4、若对任意x R ∈,不等式||x ax ≥恒成立,则实数a 的取值范围是________5、设函数⎥⎦⎤⎢⎣⎡∈≤⎥⎦⎤⎢⎣⎡∈++=1,4110)(,2,21,)(x x h a b x x a x h 在都有对任意上恒成立,求实数b 的取值范围。
不等式恒成立、能成立问题【七大题型】【题型1 一元二次不等式在实数集上恒成立问题】 (2)【题型2 一元二次不等式在某区间上的恒成立问题】 (2)【题型3 给定参数范围的一元二次不等式恒成立问题】 (3)【题型4 基本不等式求解恒成立问题】 (4)【题型5 一元二次不等式在实数集上有解问题】 (4)【题型6 一元二次不等式在某区间上有解问题】 (5)【题型7 一元二次不等式恒成立、有解问题综合】 (5)1、不等式恒成立、能成立问题一元二次不等式是高考数学的重要内容.从近几年的高考情况来看,“含参不等式恒成立与能成立问题”是常考的热点内容,这类问题把不等式、函数、三角、几何等知识有机地结合起来,其以覆盖知识点多、综合性强、解法灵活等特点备受高考命题者的青睐.另一方面,在解决这类数学问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维能力都起到很好的作用.【知识点1 不等式恒成立、能成立问题】1.一元二次不等式恒成立、能成立问题不等式对任意实数x恒成立,就是不等式的解集为R,对于一元二次不等式ax2+bx+c>0,它的解集为R的条件为{a>0,Δ=b2-4ac<0;一元二次不等式ax2+bx+c≥0,它的解集为R的条件为{a>0,Δ=b2-4ac≤0;一元二次不等式ax2+bx+c>0的解集为∅的条件为{a<0,Δ≤0.2.一元二次不等式恒成立问题的求解方法(1)对于二次不等式恒成立问题常见的类型有两种,一是在全集R上恒成立,二是在某给定区间上恒成立.(2)解决恒成立问题一定要搞清谁是自变量,谁是参数,一般地,知道谁的范围,谁就是变量,求谁的范围,谁就是参数.①若ax2+bx+c>0恒成立,则有a>0,且△<0;若ax2+bx+c<0恒成立,则有a<0,且△<0.②对第二种情况,要充分结合函数图象利用函数的最值求解(也可采用分离参数的方法).3.给定参数范围的一元二次不等式恒成立问题的解题策略解决恒成立问题一定要清楚选谁为主元,谁是参数;一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数;即把变元与参数交换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解.4.常见不等式恒成立及有解问题的函数处理策略不等式恒成立问题常常转化为函数的最值来处理,具体如下:(1)对任意的x∈[m,n],a>f(x)恒成立a>f(x)max;若存在x∈[m,n],a>f(x)有解a>f(x)min;若对任意x∈[m,n],a>f(x)无解a≤f(x)min.(2)对任意的x∈[m,n],a<f(x)恒成立a<f(x)min;若存在x∈[m,n],a<f(x)有解a<f(x)max;若对任意x∈[m,n],a<f(x)无解a≥f(x)max.【例1】(2023·福建厦门·二模)“b∈(0,4)”是“∀x∈R,bx2―bx+1>0成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【变式1-1】(2023·江西九江·模拟预测)无论x取何值时,不等式x2―2kx+4>0恒成立,则k的取值范围是()A.(―∞,―2)B.(―∞,―4)C.(―4,4)D.(―2,2)【变式1-2】(2023·福建厦门·二模)不等式ax2―2x+1>0(a∈R)恒成立的一个充分不必要条件是()A.a>2B.a≥1C.a>1D.0<a<12【变式1-3】(2023·四川德阳·模拟预测)已知p:0≤a≤2,q:任意x∈R,ax2―ax+1≥0,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【题型2 一元二次不等式在某区间上的恒成立问题】【例2】(2023·辽宁鞍山·二模)已知当x>0时,不等式:x2―mx+16>0恒成立,则实数m的取值范围是()A.(―8,8)B.(―∞,8]C.(―∞,8)D.(8,+∞)【变式2-1】(23-24高一上·贵州铜仁·期末)当x∈(―1,1)时,不等式2kx2―kx―38<0恒成立,则k的取值范围是()A.(―3,0)B.[―3,0)C.―D.―【变式2-2】(23-24高一上·江苏徐州·阶段练习)若对于任意x∈[m,m+1],都有x2+mx―1<0成立,则实数m的取值范围是()A.―23,0B.―,0C.―23,0D.,0【变式2-3】(22-23高一上·安徽马鞍山·期末)已知对一切x∈[2,3],y∈[3,6],不等式mx2―xy+y2≥0恒成立,则实数m的取值范围是()A.m≤6B.―6≤m≤0C.m≥0D.0≤m≤6【题型3 给定参数范围的一元二次不等式恒成立问题】【例3】(23-24高一上·山东淄博·阶段练习)若命题“∃―1≤a≤3,ax2―(2a―1)x+3―a<0”为假命题,则实数x的取值范围为()A.{x|―1≤x≤4 }B.x|0≤xC.x|―1≤x≤0或53≤x≤4D.x|―1≤x<0或53<x≤4【变式3-1】(23-24高一上·广东深圳·阶段练习)当1≤m≤2时,mx2―mx―1<0恒成立,则实数x的取值范围是()A<x<B<x<C<x<D<x<【变式3-2】(23-24高一下·河南濮阳·期中)已知当―1≤a≤1时,x2+(a―4)x+4―2a>0恒成立,则实数x的取值范围是()A.(―∞,3)B.(―∞,1]∪[3,+∞)C.(―∞,1)D.(―∞,1)∪(3,+∞)【变式3-3】(2008·宁夏·高考真题)已知a1>a2>a3>0,则使得(1―a i x)2<1(i=1,2,3)都成立的x取值范围是( )A.B.0,C.D.【题型4 基本不等式求解恒成立问题】【例4】(23-24高一下·贵州贵阳·期中)对任意的x∈(0,+∞),x2―2mx+1>0恒成立,则m的取值范围为()A.[1,+∞)B.(―1,1)C.(―∞,1]D.(―∞,1)【变式4-1】(22-23高三上·河南·期末)已知a>0,b∈R,若x>0时,关于x的不等式(ax―2)(x2+bx―5)≥0恒成立,则b+4a的最小值为()A.2B.C.D.【变式4-2】(23-24高三上·山东威海·期中)关于x的不等式ax2―|x|+2a≥0的解集是(―∞,+∞),则实数a的取值范围为()A+∞B.―∞C.―D.―∞,∪+∞【变式4-3】(23-24高一上·湖北·阶段练习)已知x>0,y>0,且1x+2+1y=27,若x+2+y>m2+5m恒成立,则实数m的取值范围是()A.(―4,7)B.(―2,7)C.(―4,2)D.(―7,2)【题型5 一元二次不等式在实数集上有解问题】【例5】(2024·陕西宝鸡·模拟预测)若存在实数x,使得mx2―(m―2)x+m<0成立,则实数m的取值范围为()A.(―∞,2)B.(―∞,0]∪C.―∞D.(―∞,1)【变式5-1】(22-23高一上·内蒙古兴安盟·阶段练习)若关于x 的不等式x 2―4x ―2―a ≤0有解,则实数a 的取值范围是( )A .{a |a ≥―2 }B .{a |a ≤―2 }C .{a |a ≥―6 }D .{a |a ≤―6 }【变式5-2】(23-24高一上·山东临沂·阶段练习)若不等式―x 2+ax ―1>0有解,则实数a 的取值范围为( )A .a <―2或a >2B .―2<a <2C .a ≠±2D .1<a <3【变式5-3】(23-24高一上·江苏徐州·期中)已知关于x 的不等式―x 2+4x ≥a 2―3a 在R 上有解,则实数a 的取值范围是( )A .{a |―1≤a ≤4 }B .{a |―1<a <4 }C .{a |a ≥4 或a ≤―1}D .{a |―4≤a ≤1 }【题型6 一元二次不等式在某区间上有解问题】【例6】(2023·福建宁德·模拟预测)命题“∃x ∈[1,2],x 2≤a ”为真命题的一个充分不必要条件是( )A .a ≥1B .a ≥4C .a ≥―2D .a ≤4【变式6-1】(22-23高二上·河南·开学考试)设a 为实数,若关于x 的不等式x 2―ax +7≥0在区间(2,7)上有实数解,则a 的取值范围是( )A .(―∞,8)B .(―∞,8]C .(―∞D .―∞【变式6-2】(23-24高一上·福建·期中)若至少存在一个x <0,使得关于x 的不等式3―|3x ―a |>x 2+2x 成立,则实数a 的取值范围是( )A .―374,3B .―C .―374D .(―3,3)【变式6-3】(22-23高一上·江苏宿迁·期末)若命题“∀x 0∈(0,+∞),使得x 20+ax 0+a +3≥0”为假命题,则实数a 的取值范围是( )A .(―∞,―2),(6,+∞)B .(―∞,―2)C .[―2,6]D .[2+【题型7 一元二次不等式恒成立、有解问题综合】【例7】(23-24高一上·山东潍坊·阶段练习)已知关于x 的不等式2x ―1>m(x 2―1).(1)是否存在实数m ,使不等式对任意x ∈R 恒成立,并说明理由;(2)若不等式对于m ∈[―2,2]恒成立,求实数x 的取值范围;(3)若不等式对x∈[2,+∞)有解,求m的取值范围.【变式7-1】(23-24高一上·江苏扬州·阶段练习)设函数y=ax2―(2a+3)x+6,a∈R.(1)若y+2>0恒成立,求实数a的取值范围:(2)当a=1时,∀t>―2,关于x的不等式y≤―3x+3+m在[―2,t]有解,求实数m的取值范围.,【变式7-2】(23-24高一上·浙江台州·期中)已知函数f(x)=2x2―ax+a2―4,g(x)=x2―x+a2―314(a∈R)(1)当a=1时,解不等式f(x)>g(x);(2)若任意x>0,都有f(x)>g(x)成立,求实数a的取值范围;(3)若∀x1∈[0,1],∃x2∈[0,1],使得不等式f(x1)>g(x2)成立,求实数a的取值范围.【变式7-3】(23-24高一上·山东威海·期中)已知函数f(x)=x2―(a+3)x+6(a∈R)(1)解关于x的不等式f(x)≤6―3a;(2)若对任意的x∈[1,4],f(x)+a+5≥0恒成立,求实数a的取值范围(3)已知g(x)=mx+7―3m,当a=1时,若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围.一、单选题1.(2023·河南·模拟预测)已知命题“∃x0∈[―1,1],―x20+3x0+a>0”为真命题,则实数a的取值范围是()A.(―∞,―2)B.(―∞,4)C.(―2,+∞)D.(4,+∞)2.(2024·浙江·模拟预测)若不等式kx2+(k―6)x+2>0的解为全体实数,则实数k的取值范围是()A.2≤k≤18B.―18<k<―2C.2<k<18D.0<k<23.(2023·辽宁鞍山·二模)若对任意的x∈(0,+∞),x2―mx+1>0恒成立,则m的取值范围是()A.(―2,2)B.(2,+∞)C.(―∞,2)D.(―∞,2]4.(2023·宁夏中卫·二模)已知点A(1,4)在直线xa +yb=1(a>0,b>0)上,若关于t的不等式a+b≥t2+5t+3恒成立,则实数t的取值范围为()A.[―6,1]B.[―1,6]C.(―∞,―1]∪[6,+∞)D.(―∞,―6]∪[1,+∞)5.(23-24高二上·山东潍坊·阶段练习)若两个正实数x,y满足1x +4y=2,且不等式x+y4<m2―m有解,则实数m的取值范围是( )A.(―1,2)B.(―∞,―2)∪(1,+∞)C.(―2,1)D.(―∞,―1)∪(2,+∞)6.(23-24高一上·全国·单元测试)不等式2x2―axy+y2≥0,对于任意1≤x≤2及1≤y≤3恒成立,则实数a的取值范围是()A.a|a≤B.a|a≥C.a|a≤D.a|a7.(2023·江西九江·二模)已知命题p:∃x∈R,x2+2x+2―a<0,若p为假命题,则实数a的取值范围为()A.(1,+∞)B.[1,+∞)C.(―∞,1)D.(―∞,1]8.(2024·上海黄浦·模拟预测)已知不等式ρ:ax2+bx+c<0(a≠0)有实数解.结论(1):设x1,x2是ρ的两个解,则对于任意的x1,x2,不等式x1+x2<―ba 和x1⋅x2<ca恒成立;结论(2):设x0是ρ的一个解,若总存在x0,使得ax02―bx0+c<,则c<0,下列说法正确的是()A.结论①、②都成立B.结论①、②都不成立C.结论①成立,结论②不成立D.结论①不成立,结论②成立二、多选题9.(2023·江苏连云港·模拟预测)若对于任意实数x,不等式(a―1)x2―2(a―1)x―4<0恒成立,则实数a可能是()A.―2B.0C.―4D.110.(2024·广东深圳·模拟预测)下列说法正确的是()A.不等式4x2―5x+1>0的解集是x|x>14或x<1B.不等式2x2―x―6≤0的解集是x|x≤―32或x≥2C.若不等式ax2+8ax+21<0恒成立,则a的取值范围是∅D.若关于x的不等式2x2+px―3<0的解集是(q,1),则p+q的值为―1211.(22-23高三上·河北唐山·阶段练习)若(ax-4)(x2+b)≥0对任意x∈(-∞,0]恒成立,其中a,b是整数,则a+b的可能取值为()A.-7B.-5C.-6D.-17三、填空题12.(2024·陕西渭南·模拟预测)若∀x∈R,a<x2+1,则实数a的取值范围是.(用区间表示)13.(2024·辽宁·三模)若“∃x∈(0,+∞),使x2―ax+4<0”是假命题,则实数a的取值范围为. 14.(2023·河北·模拟预测)若∃x∈R,ax2+ax+a―3<0,则a的一个可取的正整数值为.四、解答题15.(2024·全国·模拟预测)已知函数f(x)=|2x―a|,且f(x)≤b的解集为[―1,3].(1)求a和b的值;(2)若f(x)≤|x―t|在[―1,0]上恒成立,求实数t的取值范围.16.(2024·新疆乌鲁木齐·一模)已知函数f(x)=|x―1|+|x+2|.(1)求不等式f(x)≤5的解集;(2)若不等式f(x)≥x2―ax+1的解集包含[―1,1],求实数a的取值范围.17.(23-24高一上·江苏·阶段练习)设函数f(x)=ax2+(1―a)x+a―2.(1)若关于x的不等式f(x)≥―2有实数解,求实数a的取值范围;(2)若不等式f(x)≥―2对于实数a∈[―1,1]时恒成立,求实数x的取值范围;(3)解关于x的不等式:f(x)<a―1,(a∈R).18.(22-23高二上·陕西咸阳·阶段练习)已知函数f(x)=a2x2+2ax―a2+1.(1)当a=2时,求f(x)≤0的解集;(2)是否存在实数x,使得不等式a2x2+2ax―a2+1≥0对满足a∈[―2,2]的所有a恒成立?若存在,求出x的值;若不存在,请说明理由.19.(2024·全国·一模)已知a+b+c=3,且a,b,c都是正数.(1)求证:1a+b +1b+c+1c+a≥32(2)是否存在实数m,使得关于x的不等式-x2+mx+2≤a2+b2+c2对所有满足题设条件的正实数a,b,c 恒成立?如果存在,求出m的取值范围;如果不存在,请说明理由.。
考纲要求:1.理解不等式恒成立的基本概念,会根据不等式恒成立处理求参数范围的简单问题.2.通过自主学习与合作探究的教学过程,进一步提升学生自主学习的数学能力.3.通过本内容的教学,使学生掌握不等式恒成立与最值的关系,进一步了解数学各内容之间一种完美结合与渗透之美. 基础知识回顾:恒成立:关于x 的不等式f (x )≥0对于x 在某个范围内的每个值不等式都成立,就叫不等式在这个范围内恒成立。
若函数()f x 在区间D 上存在最小值min ()f x 和最大值max ()f x ,则: ①不等式()f x a >在区间D 上恒成立min ()f x a ⇔>; ②不等式()f x a ≥在区间D 上恒成立min ()f x a ⇔≥; ③不等式()f x b <在区间D 上恒成立max ()f x b ⇔<; ④不等式()f x b ≤在区间D 上恒成立max ()f x b ⇔≤;若函数()f x 在区间D 上不存在最大(小)值,且值域为(,)m n ,则: ①不等式()f x a >(或()f x a ≥)在区间D 上恒成立m a ⇔≥; ②不等式()f x b <(或()f x b ≤)在区间D 上恒成立n b ⇔≤; 应用举例【例1】【河南省2018年高考一模】已知定义在R 上的函数和分别满足,,则下列不等式恒成立的是A .B .C .D .【答案】C【详解】令,则,令,则,解得,则,令,,则函数在上单调递减,则,可得故选【点睛】本题考查了利用导数研究函数的单调性极值与最值、构造法、方程与不等式的解法,考查了推理能力与计算能力,属于难题。
【例2】【河北省唐山一中2018届高三下学期强化提升考试(一)】设,当时,不等式恒成立,则的取值范围是()A. B. C. D.【答案】A,令则令,可得当时,递减;当时,递增;则当时,,故的解集为:且则的取值范围是故选【点睛】本题运用导数解答了恒成立问题,先通过导数求出不等式左边的最小值,然后代入不等式,构造新函数,再次运用导数求出最值,从而计算出结果,本题导数的运用性较强、综合性强,需要掌握其解答方法。
易错点6 混淆“恒成立”与“能成立”1.“恒成立问题”:若不等式()f x A >在区间D 上恒成立,则等价于在区间D 上()min f x A >;若不等式()f x B <在区间D 上恒成立,则等价于在区间D 上()max f x B <.2.“能成立问题”:若在区间D 上存在实数x 使不等式()f x A >成立,则等价于在区间D 上()max f x A >; 若在区间D 上存在实数x 使不等式()f x B <成立,则等价于在区间D 上()min f x B <.3.易错点:解题是分不清楚题目条件中的阐述,将两个不同的说法混淆,造成错误.典例1 (2024河北沧州10月联考)已知函数()2ln f x x ax x =--,定义域为1,e e éùêúëû,在其定义域中任取12,x x (其中)12x x >都满足()()()12211212x f x x f x x x x x -<-,则实数a 的取值范围为()A .(],1-¥B .[)1,+¥C .(],e -¥D .[)e,+¥审题:根据题中函数()2ln f x x ax x =--,满足()()()12211212x f x x f x x x x x -<-,对此化简整理得()()212121f x f x x x x x +<+,从而构造新函数是关键,对其利用导数求解即可.解析: 由()()()12211212x f x x f x x x x x -<-,且120x x >>,可得()()212121f x f x x x x x +<+.【补盲点】将已知等式中的变量“归类”,结合转化的形式构造函数令()()f x h x x x=+,则()()12h x h x>恒成立,所以函数()h x 在1,e e éùêúëû上单调递增,则()21ln 10x h x a x -=-+³¢在1,e e x éùÎêúëû时恒成立,即21ln 1x a x -+³在1,e e x éùÎêúëû时恒成立.【破障碍】此处为恒成立问题,从而2min1ln 1x a x -æö+³ç÷èø设函数()21ln 11e e x g x x x -æö=+££ç÷èø,则()332ln 0xg x x ¢-+=<,所以()min ()e 1g x g ==,故1a £,即实数a 的取值范围为(],1-¥.故选A .【补盲点】利用导数求解函数或不等式恒成立问题的策略:①构造函数法,令()()()F x f x g x =-,利用导数确定函数()F x 的单调性与最值,则要使()()f x g x ³或()()f x g x £恒成立,只需min ()0F x ³或max ()0F x £即可;②分离参数法,转化为()a x j ³或()a x j £恒成立,即max ()a x j ³或min ()a x j £,只需利用导数确定函数()x j 的单调性与最值即可典例2 已知函数()()2ln ()f x x x b b =+-ÎR 在[]1,2上存在单调递减区间,则实数b 的取值范围是( )A .3,2éö+¥÷êëø B .9,4éö+¥÷êëøC .3,2æö+¥ç÷èøD .9,4æö+¥ç÷èø审题:根据条件:函数()()2ln ()f x x x b b =+-ÎR 在[]1,2上存在单调递减区间,可转化为导数小于0有解,对新函数()[]1,1,22g x x x x=+Î再次求导数,求出最小值即可.解析:因为函数()f x 在[]1,2上存在单调递减区间,所以()0f x ¢<在[]1,2上有解,()()11222f x x b x b x x¢=+-=+-,【避陷阱】“有解”问题即“能成立”问题,即在[]1,2上min ()0f x ¢<,注意与“恒成立”区分,此处若为恒成立,则在[]1,2上max ()0f x ¢<所以[]min1,1,22b x x x æö>+Îç÷èø.令()[]1,1,22g x x x x=+Î,则()2112g x x ¢=-+,显然()0g x ¢>,则函数()g x 单调递增,所以()min 3()12g x g ==,即32b >.故选C .典例3 (2024湖北武汉9月模拟)已知函数()1112e 1x f x -=++,若不等式()()1ln 120f ax f x +++-³对任意的()0,x Î+¥恒成立,则实数a 的取值范围是______.审题:根据条件函数()1112e 1x f x -=++,将其整理为:()()11ln 11f ax f x +-³-+-éùëû,以便构造新函数,联想到函数()()()11112e 1xg x f x x =+-=-+Î+R 是个奇函数,整体转化即可求解.解析:令()()()11112e 1xg x f x x =+-=-+Î+R ,则()112e 1x g x --=-++,()()1111e 1102e 12e 1e 1x x x x g x g x -+-+=-+-+=-+=+++,()()g x g x -=-,所以()g x 是奇函数,【补盲点】若未熟练掌握与指数型函数的奇偶性相关的结论,也可从题干条件()()1ln 120f ax f x +++-³入手,将其转化为()()11ln 11f ax f x +-³-+-éùëû,进而联想函数图象的对称性,构造函数又()()2e 0e1xxg x -=<+¢,所以()g x 在R 上单调递减.由()()1ln 120f ax f x +++-³,得()()ln 0g ax g x +³,即()()ln g ax g x ³-,所以ln £-ax x ,所以ln xa x£-在()0,x Î+¥时恒成立.【破障碍】“恒成立”问题,故需minln x a x æö£-ç÷èø,而非max ln x a x æö£-ç÷èø令()ln x h x x=-,则()2ln 1x h x x =¢-,令()0h x ¢<,得0e x <<,令()0h x ¢>,得e x >,所以函数()h x 在()0,e 上单调递减,在()e,+¥上单调递增,所以()()e 1e ³=-h x h ,所以1a e£-,即实数a 的取值范围是1,e æù-¥-çúèû.(2023·福建厦门·二模)1.“()0,4b Δ是“R x "Î,210bx bx -+>成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2023·辽宁鞍山·二模)2.已知当0x >时,不等式:2160x mx -+>恒成立,则实数m 的取值范围是( )A .()8,8-B .(],8¥-C .(),8¥-D .()8,+¥(23-24高三上·山东淄博·阶段练习)3.若命题“13a $-££,()22130ax a x a --+-<”为假命题,则实数x 的取值范围为( )A .{}14x x -££B .503x x ìü££íýîþC .51043x x x ìü-££££íýîþ或D .51043x x x ìü-£<<£íýîþ或(22-23高三上·河南·期末)4.已知0a >,b ÎR ,若0x >时,关于x 的不等式()()2250ax x bx -+-³恒成立,则4b a+的最小值为( )A .2B .C .D .(2024·陕西宝鸡·模拟预测)5.若存在实数x ,使得()220mx m x m --+<成立,则实数m 的取值范围为( )A .(),2-¥B .(]13,0,32¥æö-Èç÷èøC .2,3æö-¥ç÷èøD .(),1-¥(2023·福建宁德·模拟预测)6.命题“2[1,2],x x a $Σ”为真命题的一个充分不必要条件是( )A .1a ³B .4a ³C .2a ³-D .4a £(2023·河南·模拟预测)7.已知命题“[]01,1x $Î-,20030x x a -++>”为真命题,则实数a 的取值范围是( )A .(),2-¥-B .(),4-¥C .()2,-+¥D .()4,+¥(2023·宁夏中卫·二模)8.已知点(1,4)A 在直线()10,0x ya b a b+=>>上,若关于t 的不等式253a b t t +³++恒成立,则实数t 的取值范围为( )A .[]6,1-B .[]1,6-C .(][),16,-¥-È+¥D .(][),61,-¥-È+¥(2024·新疆乌鲁木齐·一模)9.已知函数()|1||2|f x x x =-++.(1)求不等式()5f x £的解集;(2)若不等式()21f x x ax ³-+的解集包含[]1,1-,求实数a 的取值范围.(22-23高三上·陕西咸阳·阶段练习)10.已知函数()22221f x a x ax a =+-+.(1)当2a =时,求()0f x £的解集;(2)是否存在实数x ,使得不等式222210a x ax a +-+³对满足[]2,2a Î-的所有a 恒成立?若存在,求出x 的值;若不存在,请说明理由.参考答案:1.A【分析】由R x "Î,210bx bx -+>成立求出b 的范围,再利用充分条件、必要条件的定义判断作答.【详解】由R x "Î,210bx bx -+>成立,则当0b =时,10>恒成立,即0b =,当0b ¹时,2040b b b >ìí-<î,解得04b <<,因此R x "Î,210bx bx -+>成立时,04b £<,因为(0,4) [0,4),所以“()0,4b Δ是“R x "Î,210bx bx -+>成立”的充分不必要条件.故选:A 2.C【分析】先由2160x mx -+>得16m x x<+,由基本不等式得168x x +³,故8m <.【详解】当0x >时,由2160x mx -+>得16m x x<+,因0x >,故168x x +³=,当且仅当16x x =即4x =时等号成立,因当0x >时,16m x x<+恒成立,得8m <,故选:C 3.C【分析】由题意可得:命题“()213,2130a ax a x a "-££--+-³”为真命题,根据恒成立问题结合一次函数运算求解.【详解】由题意可得:命题“()213,2130a ax a x a "-££--+-³”为真命题,即()()222132130ax a x a x x a x --+-=--++³对[]1,3a Î-恒成立,则()()22213032130x x x x x x ì---++³ïí--++³ïî,解得10x -≤≤或543x ££,即实数x 的取值范围为51043x x x ìü-££££íýîþ或.故选:C.4.B【分析】根据题意设2y ax =-,25y x bx =+-,由一次函数以及不等式()2(2)50ax x bx -+-³分析得2x a=时,250y x bx =+-=,变形后代入4b a +,然后利用基本不等式求解.【详解】设2y ax =-(0x >),25y x bx =+-(0x >),因为0a >,所以当20x a<<时,20y ax =-<;当2x a=时,20y ax =-=;当2x a>时,20y ax =->;由不等式()2(2)50ax x bx -+-³恒成立,得:22050ax x bx -£ìí+-£î或22050ax x bx -³ìí+-³î,即当20x a<£时,250x bx +-£恒成立,当2x a³时,250x bx +-³恒成立,所以当2x a =时,250y x bx =+-=,则20425b a a+-=,即225a b a =-,则当0a >时,45245222a a b a a a a +=-+=+³=当且仅当522a a =,即a =所以4b a+的最小值为故选:B.5.C【分析】分别在0m =、0m >和0m <的情况下,结合二次函数的性质讨论得到结果.【详解】①当0m =时,不等式化为20x <,解得:0x <,符合题意;②当0m >时,()22y mx m x m =--+为开口方向向上的二次函数,只需()222243440m m m m D =--=--+>,即203m <<;③当0m <时,()22y mx m x m =--+为开口方向向下的二次函数,则必存在实数x ,使得()220mx m x m --+<成立;综上所述:实数m 的取值范围为2,3æö-¥ç÷èø.故选:C.6.B【分析】根据能成立问题求a 的取值范围,结合充分不必要条件理解判断.【详解】∵2[1,2],x x a $Σ,则()2minx a £,即1a ³,∴a 的取值范围[)1,+¥由题意可得:选项中的取值范围对应的集合应为[)1,+¥的真子集,结合选项可知B 对应的集合为[)4,+¥为[)1,+¥的真子集,其它都不符合,∴符合的只有B ,故选:B.7.C【分析】由题知[]01,1x Î-时,()min2003a x x ->,再根据二次函数求最值即可得答案.【详解】解:因为命题“[]01,1x $Î-,20030x x a -++>”为真命题,所以,命题“[]01,1x $Î-,2003a x x >-”为真命题,所以,[]01,1x Î-时,()min2003a x x ->,因为,2239324y x x x æö=-=--ç÷èø,所以,当[]1,1x Î-时,min 2y =-,当且仅当1x =时取得等号.所以,[]01,1x Î-时,()200min32a x x ->=-,即实数a 的取值范围是()2,-+¥故选:C 8.A【分析】将点代入直线方程,再利用基本不等式求得a b +的最小值,从而将问题转化2953t t ³++,解之即可.【详解】因为点(1,4)A 在直线()10,0x ya b a b+=>>上,所以141a b+=,故()144559b aa b a b æö+++=++³+=ç÷èøa b =a b ,当且仅当4b a a b =且141a b+=,即3,6a b ==时等号成立,因为关于t 的不等式253a b t t +³++恒成立,所以2953t t ³++,解得61t -££,所以[]61t ,Î-.故选:A9.(1)[]3,2-;(2)[]1,1-.【解析】(1)分类讨论,求解不等式即可;(2)将问题转化为二次函数在区间上恒成立的问题,列出不等式组即可求得.【详解】(1)当2x £-时,()5f x £等价于215x --£,解得[]3,2x Î--;当21x -<<时,()5f x £等价于35£,恒成立,解得()2,1x Î-;当1x ³时,()5f x £等价于215x +£,解得[]1,2x Î;综上所述,不等式的解集为[]3,2-.(2)不等式()21f x x ax ³-+的解集包含[]1,1-,等价于()21f x x ax ³-+在区间[]1,1-上恒成立,也等价于220x ax --£在区间[]1,1-恒成立.则只需()22g x x ax =--满足:()10g -£且()10g £即可.即120,120a a +-£--£,解得[]1,1a Î-.【点睛】本题考查绝对值不等式的求解,以及二次函数在区间上恒成立的问题,属综合基础题.10.(1)31,22éù-êúëû(2)不存在,理由见解析【分析】(1)求解一元二次不等式即可;(2)关于a 的不等式恒成立问题转化为关于a 的函数最值问题求解,按系数符号与轴与区间的关系分类讨论求解即可.【详解】(1)2a =时,函数()2443f x x x =+-,不等式()0f x £即为24430x x +-£,即()()23210x x +-£,解得3122x -££,∴不等式()0f x £的解集为31,22éù-êúëû.(2)设()()2222221121g a a x ax a x a xa =+-+=-++,[]2,2a Î-,根据题意知,()0g a ³在[]22-,上恒成立,①当210x -=时,解得1x =±,若1x =,则()21g a a =+在[]22-,上单调递增,则()min ()230g a g =-=-<,不符合题意;若=1x -,则()21g a a =-+在[]22-,上单调递减,则()min ()230g a g ==-<,不符合题意;②当210x -<,即11x -<<时,()g a 的图像为开口向下的抛物线,要使()0g a ³在[]22-,上恒成立,需()()2020g g ì-³ïí³ïî,即2244304430x x x x ì--³í+-³î,解得32x £-或32x ³,又∵11x -<<,∴此时无解;③当210x ->,即1x <-或1x >时,()g a 的图像为开口向上的抛物线,其对称轴方程为21x a x =-,(i )当221x x £--,即1x <£时,()g a 在[]22-,上单调递增,∴()2min ()24430g a g x x =-=--³,解得12x £-或32x ³,∵32>112-<,∴此时无解;(ii )当2221x x -<<-,即x x >()g a 在22,1x x éù-êú-ëû上单调递减,在2,21x x éùêú-ëû上单调递增,∴min 221()011x g a g x xæö==³ç÷--èø,此时无解;(iii )当221x x ³-1x £<-时,()g a 在[]22-,上单调递减,∴()2min ()24430g a g x x ==+-³,解得32x £-或12x ³,∵32-<,112>-,∴此时无解;综上,不存在符合题意的实数x .。
高三数学专题——恒成立与存在性问题高三复专题——恒成立与存在性问题知识点总结:1.___成立问题:1) 若对于D中的任意x,都有f(x)>A,则f(x)的最小值>A;2) 若对于D中的任意x,都有f(x)<A,则f(x)的最大值<A;3) 若对于D中的任意x,都有f(x)>g(x),则F(x)=f(x)-g(x)>0,因此F(x)的最小值>0;4) 若对于D中的任意x,都有f(x)<g(x),则F(x)=f(x)-g(x)<0,因此F(x)的最大值<0;5) 若对于D中的任意x1和E中的任意x2,都有f(x1)>g(x2),则f(x)的最小值>g(x)的最大值;6) 若对于D中的任意x1和E中的任意x2,都有f(x1)<g(x2),则f(x)的最大值<g(x)的最小值。
2.存在性问题:1) 若存在D中的x,使得f(x)>A,则f(x)的最大值>A;2) 若存在D中的x,使得f(x)<A,则f(x)的最小值<A;3) 若存在D中的x,使得f(x)>g(x),则F(x)=f(x)-g(x),因此F(x)的最大值>0;4) 若存在D中的x,使得f(x)<g(x),则F(x)=f(x)-g(x),因此F(x)的最小值<0;5) 若存在D中的x1和E中的x2,使得f(x1)>g(x2),则f(x)的最大值>g(x)的最小值;6) 若存在D中的x1和E中的x2,使得f(x1)<g(x2),则f(x)的最小值<g(x)的最大值。
3.相等问题:1) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)=g(x2),则{f(x)}={g(x)};4.___成立与存在性的综合性问题:1) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)>g(x2),则f(x)的最小值>g(x)的最小值;2) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)<g(x2),则f(x)的最大值<g(x)的最大值。
不等式恒成立问题易错点
主标题:不等式恒成立问题
副标题:从考点分析不等式恒成立问题在高考中的易错点,为学生备考提供简洁有效的备考策略。
关键词:不等式,不等式恒成立问题,易错点
难度:3
重要程度:5
内容:
一、忘记二次项系数为0的情况导致错误
例1.若不等式mx 2+2mx +1>0的解集为R ,则m 的取值范围是________. 错解:由条件知
⎩⎪⎨⎪⎧
m >0,Δ=4m 2-4m <0.,解得0<m <1. 剖析:因为不等式的二次项系数含有字母,所以该不等式不一定是一元二次不等式,本题忘记讨论“0=m ”的情况,导致错误.
正解:①当m =0时,1>0显然恒成立.
②当m ≠0时,由条件知
⎩⎪⎨⎪⎧
m >0,Δ=4m 2-4m <0. 得0<m <1,
由①②知0≤m <1.
二、忽视自变量的范围导致错误
例2、若不等式012≥++ax x 对一切⎥⎦
⎤ ⎝⎛
∈21,0x 都成立,则a 的最小值是 . 错解:由题意,得:0≤∆,即042≤-a ,解得22≤≤-a ,即a 的最小值为2-. 剖析:忽视条件中的“⎥⎦
⎤ ⎝⎛∈21,0x ”导致错误. 正解:0>x ,012
≥++∴ax x 对一切⎥⎦⎤ ⎝⎛∈21,0x 都成立等价于)1(12x x x x a +-=+-≥对一切⎥⎦⎤ ⎝⎛∈21,0x 都成立,而当⎥⎦⎤ ⎝⎛∈21,0x 时,25)]1([max -=+-x x ,即25
-≥a ,即a 的最小
5
.
值为
2。