2019-2020学年安徽省十校联考中考数学二模试卷(有标准答案)
- 格式:doc
- 大小:291.00 KB
- 文档页数:16
2019年安徽省二十所初中名校教育联盟中考数学二模试卷一、选择题(本大题共10小题,共40.0分)1.计算(-2)+1的结果是()A. 1B.C. 3D. −32.若整数n满足2n•2n•2n=8,则n的值为()A. 1B. 2C. 3D. 63.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A. 8×1012B. 8×1013C. 8×1014D. 0.8×10134.如图所示是机器零件的立体图,从左面看到的平面图形是()A.B.C.D.5.下列多项式能因式分解的是()A. m2+n2B. m2−m+1C. m2−2m+1D. m2+2m−16.某超市设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样,规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回),某顾客刚好消费200元,则该原客所获得购物券的金额超过30元的概率为()A. 12B. 13C. 23D. 147.若关于x的一元二次方程x2-2kx-k=0有两个相等的实数根,则k的值是()A. k=0B. k=2C. k=0或k=−1D. k=2或k=−18.已知四边形ABCD的对角线AC、BD相交于点O,下列条件中,不能判定四边形ABCD是平行四边形的是()A. ∠ADB=∠CBD,AB∥CDB. ∠ADB=∠CBD,∠DAB=∠BCDC. ∠DAB=∠BCD,AB=CDD. ∠ABD=∠CDB,OA=OC9.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么AFAG的值为()A. 23B. 34C. 35D. 5610.甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地.甲乙两车距A 地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示,则下列说法:①a=4.5;②甲的速度是60km/h;③乙出发80min追上甲;④乙刚到达货站时,甲距B地180km.其中正确是()A. ①②③B. ①②④C. ②③④D. ①②③④二、填空题(本大题共4小题,共20.0分)11.黄金分割数√5−12是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请向问√5-1最接近的整数为______.12.如图,点A是反比例函数y=kx的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是______.13.如图,点C在⊙O上,将圆心角∠AOB绕点O按逆时针方向旋转到∠A′OB′,旋转角为α(0°<α<180°),若∠AOB=30°,∠BCA′=20°,且⊙O的半径为6,则AB′⏜的弧长为______.(结果保留π).14.如图,在等边△ABC中,AB=4cm,点M为边BC的中点,点N为边AB上的任意一点(不与点A,B重合).若点B关于直线MN的对称点B'恰好落在等边△ABC的边上,则BN的长为______cm.三、计算题(本大题共2小题,共18.0分)15.先化简,再求值:1x−1+x21−x,其中x=-1.16.如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)四、解答题(本大题共6小题,共58.0分)17.请你解决《孙子算经》中的一个问题.“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”18.如图.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2),(1)画△ABC关于y轴对称的图形△A1B1C1;(2)以O为位似中心,在第二象限内把△ABC扩大到原来的两倍,得则△A2B2C2,画出△A2B2C2;(3)△ABC的面积为______.19.如图是2019年1月份的日历.任意选择图中的菱形框部分,将每个菱形框部分中去掉中间位置的数之后,相对的两对数分别相乘,再相减,例如:9×11-3×17=48,13×15-7×21=48.不难发现,结果都是48(1)请证明发现的规律;(2)小明说:他用一个如图所示菱形框,框出5个数字,其中最小数与最大数的积是120,请判断他的说法是否正确.20.如图,点P是圆O直径CA延长线上的一点,PB切圆O于点B,点D是圆上的一点,连接AB,AD,BD,CD,PB=BC.(1)求证:OP=2OC;(2)若OC=5,sin∠DCA=3,求BD的长.521.甲、乙人5场10次投篮命中次数如图(1)填写表格.平均数众数中位数方差甲______ 88______乙8______ ______ 3.2(2)①教练根据这5个成绩,选择甲参加投篮比赛,理由是什么?②如果乙再投篮1场,命中8次,那么乙的投监成绩的方差将会怎样变化?(“变大”“变小”或”不变”)22.水库90天内的日捕捞量y(kg)与时间第x(天)满足一次函数的关系,部分数据如表:时间第x13610(天)日捕捞量(kg)198194188180(2)水库前50天采用每天降低水位的办法减少捕捞成本,到达最低水位标准后,后40天水库维持最低水位进行捕捞.捕捞成本和时间的关系如下表:时间第x(天)1≤x<5050≤x≤90捕捞成本(元/kg)60-x10已知鲜鱼销售单价为每千克70元,假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出.设销售该鲜鱼的当天收入w元(当天收入=日销售额-日捕捞成本),①请写出w与x之间的函数解析式,并求出90天内哪天收入最大?当天收入是多少?②若当天收入不低于4800元,请直接写出x的取值范围?23如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)(1)如图1,若点C是AB的中点,则∠CED=______°;(2)如图2.若点C不是AB的中点①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,AD=,请求出DE的长.答案和解析1.【答案】B【解析】【分析】此题主要考查了有理数的加法法则:符号不相同的两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.符号不相同的两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值,所以-2+1=-1.【解答】解:-2+1=-1.故选B.2.【答案】A【解析】解:2n•2n•2n=2n+n+n=23n=8,∴3n=3,∴n=1;故选:A.根据同底数幂的法则有:2n•2n•2n=2n+n+n=23n=8,即可求解;本题考查同底数幂的乘法;熟练掌握同底数幂的乘法法则是解题的关键.3.【答案】B【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿=80000000000000,80000000000000用科学记数法表示为8×1013,∴80万亿用科学记数法表示为故选B.4.【答案】C【解析】解:机器零件从左面看到的平面图形是故选:C.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.【答案】C【解析】解:A、m2+n2不能分解因式,故A错误;B、m2-m+1不能因式分解,故B错误;C、m2-2m+1=(m-1)2,故C正确;D、m2+2m-1不能分解因式,故D错误;故选:C .根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 本题考查了因式分解,利用了因式分解的意义. 6.【答案】B【解析】解:根据题意画图如下:共有12种可能结果,其中该原客所获得购物券的金额超过30元的有4种可能结果, 因此P (超过30元)=412=13;故选:B .根据题意画出树状图得出所有等情况数和获得购物券的金额超过30元的情况数,再根据概率公式即可得出答案.本题主要考查用列表法或树状图求概率.解决本题的关键是弄清题意,满200元可以摸两次,但摸出一个后不放回,概率在变化.用到的知识点为:概率=所求情况数与总情况数之比. 7.【答案】C【解析】解:∵方程x 2-2kx -k =0有两个相等的实数根,∴△=(-2k )2-4×1×(-k )=4k 2+4k =0, 解得:k 1=0,k 2=-1. 故选:C .由方程有两个相等的实数根可得出△=4k 2+4k =0,解之即可得出结论. 本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键. 8.【答案】C【解析】解:A 、∵∠ADB =∠CBD , ∴AD ∥BC , ∵AB ∥CD ,∴四边形ABCD 是平行四边形,故此选项不合题意; B 、∵∠ADB =∠CBD , ∴AD ∥BC ,∵∠DAB =∠BCD ,∴∠BAD +∠ABC =∠ADC +∠BCD =180°, ∴∠ABC =∠ADC ,∴四边形ABCD 是平行四边形,故此选项不符合题意; C 、∠DAB =∠BCD ,AB =CD 不能判定四边形ABCD 是平行四边形,故此选项符合题意;D 、∵∠ABD =∠CDB ,∠AOB =∠COD ,OA =OC , ∴△AOB ≌△COD (AAS ), ∴OB =OC ,∴四边形ABCD 为平行四边形,故此选项不合题意; 故选:C .根据平行四边形的判定定理分别进行分析即可.此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形. 9.【答案】C【解析】解:∵AG 平分∠BAC , ∴∠DAF =∠CAG , ∵∠ADF =∠C , ∴△ADF ∽△ACG , ∴AD AC =AFAG , ∵D 是AB 的中点, ∴AD =12AB =3, ∴AG AG =35, 故选:C .证明△ADF ∽△ACG ,可得AD AC =AFAG ,解决问题.本题考查相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型. 10.【答案】D【解析】解:由题意可得, a =4+0.5=4.5,故①正确,甲的速度是:460÷(7+4060)=60km /h ,故②正确,设乙刚开始的速度为xkm /h ,则4x +(7-4.5)×(x -50)=460,得x =90, 则设经过b min ,乙追上甲, 90×b60=60×40+b 60,解得,b =80,故③正确,乙刚到达货站时,甲距B 地:60×(7-4)=180km ,故④正确, 故选:D .根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题. 本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答. 11.【答案】1【解析】解:∵√5≈2.236, ∴√5-1最接近的整数为1. 故答案为1.利用√5的近似值求解.本题考查了黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC =AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.其中AC =√5−12AB ≈0.618AB ,并且线段AB 的黄金分割点有两个.12.【答案】-8【解析】解:连结OA ,如图, ∵AB ⊥x 轴, ∴OC ∥AB ,∴S △OAB =S △ABC =4, 而S △OAB =12|k |, ∴12|k |=4,∵k <0, ∴k =-8.故答案为:-8.连结OA ,如图,利用三角形面积公式得到S △OAB =S △ABC =4,再根据反比例函数的比例系数k 的几何意义得到12|k |=4,然后去绝对值即可得到满足条件的k 的值.本题考查了反比例函数的比例系数k 的几何意义:在反比例函数y =kx 图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |.13.【答案】10π3【解析】解:∵∠BCA ′=20°, ∴∠BOA ′=2∠BCA ′=40°,∵点C 在⊙0上,将圆心角∠AOB 绕点0按逆时针方向旋转到∠A ′OB ′, ∴∠A ′OB ′=∠AOB =30°, ∴∠AOB ′=100°, ∴AB′⏜的弧长=100⋅π×6180=10π3,故答案为:10π3.由∠BCA ′=40°,根据圆周角定理,即可求得∠BOA ′的度数,由旋转的性质,即可求得∠A ′OB ′的度数,继而求得∠AOB ′的度数,根据弧长公式即可得到结论.此题考查了弧长的计算,圆周角定理与旋转的性质.此题难度不大,注意掌握数形结合思想的应用.14.【答案】1或2【解析】解:如图1,当点B 关于直线MN 的对称点B '恰好落在等边三角形ABC 的边AB 上时, 则MN ⊥AB ,BN =BN ′, ∵△ABC 是等边三角形, ∴AB =AC =BC ,∠ABC =60°, ∵点M 为边BC 的中点, ∴BM =12BC =12AB =2, ∴BN =12BM =1,如图2,当点B 关于直线MN 的对称点B '恰好落在等边三角形ABC 的边A ,C 上时, 则MN ⊥BB ′,四边形BMB ′N 是菱形, ∵∠ABC =60°,点M 为边BC 的中点,∴BN =BM =12BC =12AB =2, 故答案为:1或2.如图1,当点B 关于直线MN 的对称点B '恰好落在等边三角形ABC 的边AB 上时,于是得到MN ⊥AB ,BN =BN ′,根据等边三角形的性质得到=AC =BC ,∠ABC =60°,根据线段中点的定义得到BN =12BM =1,如图2,当点B 关于直线MN 的对称点B '恰好落在等边三角形ABC 的边A ,C 上时,则MN ⊥BB ′,四边形BMB ′N 是菱形,根据线段中点的定义即可得到结论.本题考查了轴对称的性质,等边三角形的性质,菱形的判定和性质,分类讨论是解题的关键. 15.【答案】解:原式=1x−1-x 2x−1=-x 2−1x−1=-(x+1)(x−1)x−1=-x -1,当x =-1时,原式=1-1=0.【解析】原式变形后,利用同分母分式的减法法则计算,约分得到最简结果,把x 的值代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16.【答案】解:作PE ⊥OB 于点E ,PF ⊥CO 于点F ,在Rt △AOC 中,AO =100,∠CAO =60°,∴CO =AO •tan60°=100√3(米).设PE =x 米,∵tan ∠PAB =PE AE =12,∴AE =2x .在Rt △PCF 中,∠CPF =45°,CF =100√3-x ,PF =OA +AE =100+2x ,∵PF =CF ,∴100+2x =100√3-x ,解得x =100(√3−1)3(米). 答:电视塔OC 高为100√3米,点P 的铅直高度为100(√3−1)3(米).【解析】在图中共有三个直角三角形,即Rt △AOC 、Rt △PCF 、Rt △PAE ,利用60°、45°以及坡度比,分别求出CO 、CF 、PE ,然后根据三者之间的关系,列方程求解即可解决. 本题考查的知识点是解直角三角形的应用,关键要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.17.【答案】解:设木条长x 尺,绳子长y 尺,根据题意得:{y −x =4.5x −12y =1, 解得:{x =6.5y =11. 答:木条长5.5尺.【解析】设木条长x 尺,绳子长y 尺,根据“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.18.【答案】2【解析】解:(1)如图所示:△A 1B 1C 1顶点坐标为:A 1(2,1),B 1(1,4),C 1(3,2);(2)如图所示:△A 2B 2C 2顶点坐标为:A 2(-4,2),B 2(-2,8),C 2(-6,4);(3)△ABC 的面积为:2×3-12×2×2-12×1×1-12×1×3=2.故答案为:2.(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接利用三角形所在矩形面积减去周围三角形面积进而得出答案.此题主要考查了轴对称变换以及位似变换,正确得出对应点位置是解题关键.19.【答案】(1)证明:设中间的数为a ,则另外4个数分别为(a -7),(a -1),(a +1),(a +7),∴(a -1)(a +1)-(a -7)(a +7)=a 2-1-(a 2-49)=48.(2)解:设这5个数中最大数为x ,则最小数为(x -14),依题意,得:x (x -14)=120,解得:x 1=20,x 2=-6(不合题意,舍去).∵20在第一列,∴不符合题意,∴小明的说法不正确.【解析】(1)设中间的数为a ,则另外4个数分别为(a -7),(a -1),(a +1),(a +7),利用相对的两对数分别相乘再相减,可证出规律成立;(2)设这5个数中最大数为x ,则最小数为(x -14),根据最小数与最大数的积是120,即可得出关于x 的一元二次方程,解之取其正值,由该值在第一列可知不符合题意,进而可得出小明的说法不正确.本题考查了一元二次方程的应用以及规律型:数字的变化类,找准等量关系,正确列出一元二次方程是解题的关键.20.【答案】(1)证明:如图1,连接OB ,∵PB 切圆O 于点B ,∴∠OBP =90°,∴∠P +∠POB =90°,∵OB =OC ,∴∠OBC =∠OCB ,∴∠POB =∠OBC +∠OCB =2∠OCB ,∵PB =BC ,∴∠P =∠OCB ,∴∠P +∠POB =∠P +2∠OCB =3∠P =90°,∴∠P =30°,∴OP =2OB =2OC ;(2)解:如图2,作AH ⊥BD 于H ,∵AC 为⊙O 的直径,∴∠ADC =90°,∠ABC =90°∵OC =5,sin ∠DCA =35,∴AC =10,CD =8,AD =6,∵∠OCB =30°,∴AB =12AC =5,∵sin ∠ABD =sin ∠DCA =35,∴AH =3,BH =4,∵∠ADH =∠OCB =30°,∴DH =√3AH =3√3,∴BD =BH +DH =4+3√3.【解析】(1)连接OB ,由切线的性质和等腰三角形的性质得出得出∠P =30°,再由直角三角形的性质即可得出结论;(2)作AH ⊥BD 于H ,由圆周角定理和三角函数得出AC =10,CD =8,AD =6,由直角三角形的性质得出AB =12AC =5,由三角函数得出AH =3,BH =4,求出DH =√3AH =3√3,即可得出结果.本题考查了切线的性质、等腰三角形的性质、圆周角定理、直角三角形的性质、勾股定理、三角函数等知识;熟练掌握切线的性质和三角函数是解题的关键.21.【答案】8 0.4 9 9【解析】解:(1)甲5 次的成绩是:8,8,7,8,9;则平均数为8;方差为:0.4, 乙5 次的成绩是:5,9,7,10,9;则众数为9;中位数为9;(2)①∵S 甲2=0.4<S 乙2=3.2,∴甲的成绩稳定,故选甲;②如果乙再投篮1场,命中8次,那么乙的投篮成绩的方差将会变小.(1)根据众数、中位数和方差的定义计算可得;(2)根据方差的意义求解可得.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.22.【答案】解:(1)设y 与x 之间的函数解析式为y =kx +b (k ≠0),将(1,198)、(3,194)代入y =kx +b 中,{198=k +b 194=3k +b ,解得:{k =−2b =200, ∴y 与x 之间的函数解析式为y =-2x +200.(2)①当1≤x <50时,w =70(-2x +200)-(-2x +200)(60-x )=-2x 2+180x +2000; 当50≤x ≤90时,w =70(-2x +200)-10(-2x +200)=-120x +12000.∴w 与x 之间的函数解析式为w ={−2x 2+180x +2000(1≤x <50)−120x +12000(50≤x ≤90). ∵w =-2x 2+180x +2000=-2(x -45)2+6050,∴当x =45时,w =-2x 2+180x +2000(1≤x <50)取最大值,最大值为6050;∵w=-120x+12000中-120<0,∴当x=50时,w=-120x+12000(50≤x≤90)取最大值,最大值为6000.∵6050>6000,∴第45天当天收入最大,最大收入为6050元.②令-2x2+180x+2000≥4800,解得:20≤x≤70,∵20≤x<50,∴20≤x<50;令-120x+12000≥4800,解得:x≤60,∵50≤x≤70,∴50≤x≤60.综上所述:当20≤x≤60时,当天收入不低于4800元.【解析】(1)根据表格内数据,利用待定系数法即可求出y与x之间的函数解析式;(2)①根据当天收入=日销售额-日捕捞成本即可找出w与x之间的函数解析式,再利用配方法及一次函数的性质,即可解决最值问题;②分别求出w=-2x2+180x+2000(1≤x<50)中≥4800的x的取值范围及w=-120x+12000(50≤x≤70)中≥4800的x的取值范围,合在一起即可得出结论.本题考查了二次函数的应用、待定系数法求一次函数解析式、二次函数的最值、一次函数的性质以及解一元二次(一元一次)不等式,解题的关键是:(1)熟练掌握待定系数法求一次函数解析式的应用;(2)①根据数量关系,找出w关于x的函数解析式;②解不等式找出x的取值范围.23解:(1)如图1,过E作EH⊥AB于H,连接CD,设EH=x,则AE=2x,AH=x,∵AE=EC,∴AC=2AH=2x,∵C是AB的中点,AD=BD,∴CD⊥AB,∵∠ADB=120°,∴∠DAC=30°,∴DC=2x,∴DC=CE=2x,∵EH∥DC,∴∠HED=∠EDC=∠CED,∵∠CEH=60°,∴∠DEC=30°,故答案为:30°;(2)①如图2,延长FC交AD于H,连接HE,∵CF=FB,∴∠FCB=∠FBC,∵∠CFB=120°,∴∠FCB=∠FBC=30°,同理:∠DAB=∠DBA=30°,∠EAC=∠ECA=30°,∴∠DAB=∠ECA=∠FBD,∴AD∥EC∥BF,同理AE∥CF∥BD,∴四边形BDHE、四边形AECH是平行四边形,∴EC=AH,BF=HD,∵AE=EC,∴AE=AH,∵∠HAE=60°,∴△AEH是等边三角形,∴AE=AH=HE=CE,∠AHE=∠AEH=60°,∴∠DHE=120°,∴∠DHE=∠FCE.∵DH=BF=FC,∴△DHE≌△FCE(SAS),∴DE=EF,∠DEH=∠FEC,∴∠DEF=∠CEH=60°,∴△DEF是等边三角形;②如图3,过E作EM⊥AB于M,∵∠ADC=90°,∠DAC=30°,AD=,∴∠ACD=60°,CD=1,AC=2,∵∠DBA=30°,∴∠CDB=∠DBC=30°,∴CD=BC=1,∵∠ACE=30°,∠ACD=60°,∴∠ECD=30°+60°=90°,∵AE=CE,∴CM=AC=1,∵∠ACE=30°,∴CE=,Rt△DEC中,DE===.(1)如图1,作辅助线,构建高线,根据等腰三角形三线合一的性质得DC=AE=CE,证明∠HED=∠EDC=∠CED,由∠CEH=60°得∠DEC=30°;(2)①作辅助线,构建等边三角形AEH,先证明四边形BDHF、四边形AECH是平行四边形,得对边相等,再证明△AEH是等边三角形,由SAS证明△DHE≌△FCE,可得DE=EF,∠DEH=∠FEC,所以△DEF是等边三角形;②过E作EM⊥AB于M,由∠ADC=90°,∠DAC=30°,AD=得∠ACD=60°,CD=1,AC=2,再证CD=BC=1,证∠ECD=90°,由AE=CE得CM=AC=1,CE=,利用勾股定理求出DE==.此题是三角形的综合问题,考查了等边三角形的性质与判定,三角形全等的判定与性质,等腰三角形的性质、直角三角形中30度角的性质等知识点;熟练掌握30度的等腰三角形的判定与性质,证明三角形全等是解决问题的关键,本题难度适中.。
安徽省安庆市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .02.如图所示的正方体的展开图是( )A .B .C .D .3.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°4.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B 时,点B 所表示的实数是( ) A .1 B .-6 C .2或-6 D .不同于以上答案5.如图,矩形ABCD 中,E 为DC 的中点,AD :AB =3:2,CP :BP =1:2,连接EP 并延长,交AB 的延长线于点F ,AP 、BE 相交于点O .下列结论:①EP 平分∠CEB ;②2BF =PB•EF ;③PF•EF =22AD ;④EF•EP =4AO•PO .其中正确的是( )A .①②③B .①②④C .①③④D .③④6.把多项式ax 3﹣2ax 2+ax 分解因式,结果正确的是( )A .ax (x 2﹣2x )B .ax 2(x ﹣2)C .ax (x+1)(x ﹣1)D .ax (x ﹣1)27.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是( )A .5B .9C .15D .228.已知:二次函数y=ax 2+bx+c (a≠1)的图象如图所示,下列结论中:①abc>1;②b+2a=1;③a-b<m (am+b )(m≠-1);④ax 2+bx+c=1两根分别为-3,1;⑤4a+2b+c>1.其中正确的项有( )A .2个B .3个C .4个D .5个9.下面运算结果为6a 的是( )A .33a a +B .82a a ÷C .23•a aD .()32a -10.下列立体图形中,主视图是三角形的是( )A .B .C .D .11.化简221121211x x x x ÷+--++的结果是( ) A .1 B .12 C .11x x -+ D .222(1)x x -+ 12.点M (1,2)关于y 轴对称点的坐标为( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)二、填空题:(本大题共6个小题,每小题4分,共24分.)13162(5)-=_____510.14.方程1223x x =+的解为__________. 15.如图,等腰△ABC 中,AB =AC =5,BC =8,点F 是边BC 上不与点B ,C 重合的一个动点,直线DE 垂直平分BF ,垂足为D .当△ACF 是直角三角形时,BD 的长为_____.16.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为_______.17.分解因式:x2–4x+4=__________.18.早春二月的某一天,大连市南部地区的平均气温为﹣3℃,北部地区的平均气温为﹣6℃,则当天南部地区比北部地区的平均气温高_____℃.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).20.(6分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.(1)求证:OC OP PD AP;(2)若△OCP与△PDA的面积比为1:4,求边AB的长.21.(6分)已知关于x 的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0 有两个不相等的实数根.求k 的取值范围;写出一个满足条件的k 的值,并求此时方程的根.22.(8分)某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:请将图2的统计图补充完整;根据本次调查的数据,每周参加课外辅导班的学科数的众数是 个学科;若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有 人.23.(8分)解方程:1+231833x x x x x-=-- 24.(10分)如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O .求证:AB =DC ;试判断△OEF 的形状,并说明理由.25.(10分)如图,在平面直角坐标系中,一次函数y=kx+b 与反比例函数y=m x(m≠0)的图象交于点A (3,1),且过点B (0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P 是x 轴上一点,且△ABP 的面积是3,求点P 的坐标.26.(12分)计算:033.14 3.1412cos45π⎫-+÷-⎪⎪⎝⎭o )()12009211-++-.27.(12分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数k y x=的图象上,将这两点分别记为A ,B ,另一点记为C ,(1)求出k 的值;(2)求直线AB 对应的一次函数的表达式;(3)设点C 关于直线AB 的对称点为D ,P 是x 轴上的一个动点,直接写出PC +PD 的最小值(不必说明理由).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】 根据已知和根与系数的关系12c x x a =得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =, ∴k 2=1,解得k=1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k=1时,34430∆=--+=-<,∴k=1不合题意,故舍去,∆=-++=>,符合题意,当k=−1时,34450∴k=−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.2.A【解析】【分析】有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.【详解】把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A正确.故选A【点睛】本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.3.B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.4.C【解析】解:∵点A为数轴上的表示-1的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-1-4=-6;②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为-1+4=1.故选C.点睛:注意数的大小变化和平移之间的规律:左减右加.与点A的距离为4个单位长度的点B有两个,一个向左,一个向右.5.B【解析】【分析】由条件设,AB=2x,就可以表示出,x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.【详解】解:设x,AB=2x∵四边形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴,CD=2x∵CP:BP=1:2∴CP=3,x∵E为DC的中点,∴CE=12CD=x,∴tan∠CEP=PCEC=3,tan∠EBC=ECBC=3∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正确;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴BE BP EF BF∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴2BF=PB·EF,故②正确∵∠F=30°,∴PF=2PB=433x,过点E作EG⊥AF于G,∴∠EGF=90°,∴3∴PF·43x·322AD2=2×3)2=6x2,∴PF·EF≠2AD2,故③错误. 在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=3 3x∵tan∠PAB=PBAB=33∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,,∴4AO·2又EF·2∴EF·EP=4AO·PO.故④正确.故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.6.D【解析】【分析】先提取公因式ax,再根据完全平方公式把x2﹣2x+1继续分解即可.【详解】原式=ax(x2﹣2x+1)=ax(x﹣1)2,故选D.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.7.B【解析】【分析】条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【详解】课外书总人数:6÷25%=24(人),看5册的人数:24﹣5﹣6﹣4=9(人),故选B .【点睛】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键. 8.B【解析】【分析】根据二次函数的图象与性质判断即可.【详解】①由抛物线开口向上知: a >1; 抛物线与y 轴的负半轴相交知c <1; 对称轴在y 轴的右侧知:b >1;所以:abc<1,故①错误;②Q 对称轴为直线x=-1,12b a∴-=-,即b=2a, 所以b-2a=1.故②错误;③由抛物线的性质可知,当x=-1时,y 有最小值,即a-b+c <2am bm c ++(1m ≠-),即a ﹣b <m (am+b )(m≠﹣1),故③正确;④因为抛物线的对称轴为x=1, 且与x 轴的一个交点的横坐标为1, 所以另一个交点的横坐标为-3.因此方程ax+bx+c=1的两根分别是1,-3.故④正确;⑤由图像可得,当x=2时,y >1,即: 4a+2b+c >1,故⑤正确.故正确选项有③④⑤,故选B.【点睛】本题二次函数的图象与性质,牢记公式和数形结合是解题的关键.9.B【解析】【分析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【详解】 A .3332a a a += ,此选项不符合题意;B .826a a a ÷=,此选项符合题意;C .235a a a ⋅=,此选项不符合题意;D .236()a a -=-,此选项不符合题意;故选:B .【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.10.A【解析】【分析】考查简单几何体的三视图.根据从正面看得到的图形是主视图,可得图形的主视图【详解】A 、圆锥的主视图是三角形,符合题意;B 、球的主视图是圆,不符合题意;C 、圆柱的主视图是矩形,不符合题意;D 、正方体的主视图是正方形,不符合题意.故选A .【点睛】主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看11.A【解析】原式=()()111x x +-•(x –1)2+21x +=11x x -++21x +=11x x ++=1,故选A . 12.A【解析】【分析】关于y 轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.【详解】点M (1,2)关于y 轴对称点的坐标为(-1,2)【点睛】本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4 5【解析】【分析】根据二次根式的性质即可求出答案.【详解】①原式=4;②原式=5-=5;③原式,故答案为:①4;②5;③【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.14.1x =【解析】【分析】两边同时乘2(3)x x +,得到整式方程,解整式方程后进行检验即可.【详解】解:两边同时乘2(3)x x +,得34x x +=,解得1x =,检验:当1x =时,2(3)x x +≠0,所以x=1是原分式方程的根,故答案为:x=1.【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.15.2或78【解析】【分析】分两种情况讨论:(1)当AFC 90∠︒=时,AF BC ⊥,利用等腰三角形的三线合一性质和垂直平分线的性质可解;(2)当CAF 90=∠︒时,过点A 作AM BC ⊥于点M ,证明AMC FAC V V ∽,列比例式求出FC ,从而得BF ,再利用垂直平分线的性质得BD .【详解】解:(1)当AFC 90∠︒=时,AF BC ⊥,142AB ACBF BC BF=∴=∴=Q∵DE垂直平分BF,8122BCBD BF=∴==Q.(2)当CAF90=∠︒时,过点A作AM BC⊥于点M,AB ACQ=BM CM=∴在Rt AMCV与Rt FACV中,AMC FAC90C C∠∠∠∠︒==,=,AMC FAC∴V V∽,AC MCFC AC=Q2ACFCMC∴=15,42254AC MC BCFC===∴=Q2578441728BF BC FCBD BF∴=-=-=∴==.故答案为2或78.【点睛】本题主要考查了等腰三角形的三线合一性质和线段垂直平分线的性质定理得应用.本题难度中等.16.215【解析】【分析】如图,作OH⊥CD于H,连结OC,根据垂径定理得HC=HD,由题意得OA=4,即OP=2,在Rt△OPH中,根据含30°的直角三角形的性质计算出OH=12OP=1,然后在在Rt△OHC中,利用勾股定理计算得到CH=15,即CD=2CH=215.【详解】解:如图,作OH⊥CD于H,连结OC,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=12OP=1,在Rt△OHC中,∵OC=4,OH=1,∴22OC OH15-=∴15故答案为15【点睛】本题主要考查了圆的垂径定理,勾股定理和含30°角的直角三角形的性质,解此题的关键在于作辅助线得到直角三角形,再合理利用各知识点进行计算即可17.(x–1)1【解析】试题分析:直接用完全平方公式分解即可,即x1﹣4x+4=(x﹣1)1.考点:分解因式.18.3【解析】【分析】用南部气温减北部的气温,根据“减去一个数等于加上这个数的相反数”求出它们的差就是高出的温度.【详解】解:(﹣3)﹣(﹣6)=﹣3+6=3℃.答:当天南部地区比北部地区的平均气温高3℃,故答案为:3.【点睛】本题考查了有理数的减法运算法则,减法运算法则:减去一个数等于加上这个数的相反数.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.【解析】【分析】过点C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD=tanCDCAD∠=3x,根据AD+BD=AB列方程求解可得.【详解】解:过点C作CD⊥AB于点D,设CD=x,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵tanCD CADAD ∠=,∴AD=tan CDCAD∠=tan30x︒33,由AD+BD=AB3=10,解得:x=3﹣5,答:飞机飞行的高度为(5)km .20. (1)详见解析;(2)10.【解析】【分析】 ①只需证明两对对应角分别相等可得两个三角形相似;故OC OP PD AP=. ②根据相似三角形的性质求出PC 长以及AP 与OP 的关系,然后在Rt △PCO 中运用勾股定理求出OP 长,从而求出AB 长.【详解】①∵四边形ABCD 是矩形,∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.由折叠可得:AP=AB ,PO=BO ,∠PAO=∠BAO ,∠APO=∠B.∴∠APO=90°.∴∠APD=90°−∠CPO=∠POC.∵∠D=∠C ,∠APD=∠POC.∴△OCP ∽△PDA. ∴OC OP PD AP=. ②∵△OCP 与△PDA 的面积比为1:4,∴OCPD=OPPA=CPDA=14−−√=12.∴PD=2OC ,PA=2OP ,DA=2CP.∵AD=8,∴CP=4,BC=8.设OP=x ,则OB=x ,CO=8−x.在△PCO 中,∵∠C=90∘,CP=4,OP=x ,CO=8−x ,∴x 2=(8−x)2+42.解得:x=5.∴AB=AP=2OP=10.∴边AB 的长为10.【点睛】本题考查了相似三角形的判定与性质以及翻转变换,解题的关键是熟练的掌握相似三角形与翻转变换的相关知识.21.方程的根120=2x x =-或【解析】【分析】(1)根据方程的系数结合根的判别式,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.【详解】(1)∵关于x的一元二次方程x1﹣1(k﹣a)x+k(k+1)=0有两个不相等的实数根,∴△=[﹣1(k﹣1)]1﹣4k(k﹣1)=﹣16k+4>0,解得:k<14.(1)当k=0时,原方程为x1+1x=x(x+1)=0,解得:x1=0,x1=﹣1.∴当k=0时,方程的根为0和﹣1.【点睛】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(1)取k=0,再利用分解因式法解方程.22.(1)图形见解析;(2)1;(3)1.【解析】【分析】(1)由A的人数及其所占百分比求得总人数,总人数减去其它类别人数求得B的人数即可补全图形;(2)根据众数的定义求解可得;(3)用总人数乘以样本中D和E人数占总人数的比例即可得.【详解】解:(1)∵被调查的总人数为20÷20%=100(人),则辅导1个学科(B类别)的人数为100﹣(20+30+10+5)=35(人),补全图形如下:(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科,故答案为1;(3)估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有2000×105100=1(人),故答案为1.【点睛】 此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键.23.无解.【解析】【分析】两边都乘以x(x-3),去分母,化为整式方程求解即可.【详解】解:去分母得:x 2﹣3x ﹣x 2=3x ﹣18,解得:x =3,经检验x =3是增根,分式方程无解.【点睛】题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.24.(1)证明略(2)等腰三角形,理由略【解析】【详解】证明:(1)∵BE =CF ,∴BE +EF =CF +EF , 即BF =CE .又∵∠A =∠D ,∠B =∠C ,∴△ABF ≌△DCE (AAS ),∴AB =DC .(2)△OEF 为等腰三角形理由如下:∵△ABF ≌△DCE ,∴∠AFB=∠DEC .∴OE=OF .∴△OEF 为等腰三角形.25.(1)y=3x;y=x-2;(2)(0,0)或(4,0) 【解析】试题分析:(1)利用待定系数法即可求得函数的解析式;(2)首先求得AB 与x 轴的交点,设交点是C ,然后根据S △ABP =S △ACP +S △BCP 即可列方程求得P 的横坐标.试题解析:(1)∵反比例函数y=m x (m≠0)的图象过点A (1,1), ∴1=1m ∴m=1. ∴反比例函数的表达式为y=3x . ∵一次函数y=kx+b 的图象过点A (1,1)和B (0,-2).∴31{2k b b ==+-,解得:1{2k b -==, ∴一次函数的表达式为y=x-2;(2)令y=0,∴x-2=0,x=2,∴一次函数y=x-2的图象与x 轴的交点C 的坐标为(2,0).∵S △ABP =1,12PC×1+12PC×2=1. ∴PC=2,∴点P 的坐标为(0,0)、(4,0).【点睛】本题考查了待定系数法求函数的解析式以及三角形的面积的计算,正确根据S △ABP =S △ACP +S △BCP 列方程是关键.26.π【解析】【分析】根据绝对值的性质、零指数幂的性质、特殊角的三角函数值、负整数指数幂的性质、二次根式的性质及乘方的定义分别计算后,再合并即可【详解】原式()3.14 3.141π=--+÷ ()21-+-3.14 3.141π=-+-11π=-π=.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.27.(2)2;(2)y=x+2;(3)34.【解析】【分析】(2)确定A、B、C的坐标即可解决问题;(2)理由待定系数法即可解决问题;(3)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′的长.【详解】解:(2)∵反比例函数y=kx的图象上的点横坐标与纵坐标的积相同,∴A(2,2),B(-2,-2),C(3,2)∴k=2.(2)设直线AB的解析式为y=mx+n,则有221 m nm n++⎧⎨-+-⎩=,解得11mn⎧⎨⎩==,∴直线AB的解析式为y=x+2.(3)∵C、D关于直线AB对称,∴D(0,4)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值223+5=34【点睛】本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题.。
安徽省安庆市2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列美丽的壮锦图案是中心对称图形的是( )A. B. C. D.2.如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为( )A.100° B.80° C.50° D.20°3.有两组数据,A组数据为2、3、4、5、6;B组数据为1、7、3、0、9,这两组数据的( ) A.中位数相等 B.平均数不同 C.A组数据方差更大 D.B组数据方差更大4.的倒数是( )A. B. C. D.5.一元二次方程x2-2x=0的解是( )A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-26.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是( )A. B. C. D.7.点M(a,2a)在反比例函数y=8x的图象上,那么a的值是( )A.4 B.﹣4 C.2 D.±2 8.下列说法正确的是( )A .一个游戏的中奖概率是则做10次这样的游戏一定会中奖B .为了解全国中学生的心理健康情况,应该采用普查的方式C .一组数据 8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是 8D .若甲组数据的方差 S =" 0.01" ,乙组数据的方差 s = 0 .1 ,则乙组数据比甲组数据稳定9.给出下列各数式,①2?--() ②2-- ③2 2-④22-() 计算结果为负数的有( ) A .1个 B .2个 C .3个 D .4个10.在平面直角坐标系xOy 中,若点P (3,4)在⊙O 内,则⊙O 的半径r 的取值范围是( ) A .0<r <3B .r >4C .0<r <5D .r >511.如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC ,FC=2,则AB 的长为( )A .83B .8C .43D .612.以坐标原点为圆心,以2个单位为半径画⊙O ,下面的点中,在⊙O 上的是( ) A .(1,1)B .(2,2)C .(1,3)D .(1,2)二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.若关于x 的方程x 2+x ﹣a+54=0有两个不相等的实数根,则满足条件的最小整数a 的值是() A .﹣1B .0C .1D .214.若正多边形的一个内角等于120°,则这个正多边形的边数是_____.15.一艘轮船在小岛A 的北偏东60°方向距小岛80海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为____________海里/时. 16.将多项式32m mn -因式分解的结果是 .17.如图,在网格中,小正方形的边长均为1,点A 、B 、O 都在格点上,则∠OAB 的正弦值是_____.18.比较大小:11_____1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解方程组220y xx y =⎧⎨+-=⎩. 20.(6分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案. 21.(6分)一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各是多少.22.(8分)如图,在Rt △ABC 中,∠C=90°,BE 平分∠ABC 交AC 于点E ,作ED ⊥EB 交AB 于点D ,⊙O 是△BED 的外接圆.求证:AC 是⊙O 的切线;已知⊙O 的半径为2.5,BE=4,求BC ,AD 的长.23.(8分)(阅读)如图1,在等腰△ABC 中,AB=AC ,AC 边上的高为h ,M 是底边BC 上的任意一点,点M 到腰AB 、AC 的距离分别为h 1,h 1.连接AM . ∵ABMACMABC SSS∆∆∆+=∴12111222h AB h AC hAC +=(思考)在上述问题中,h 1,h 1与h 的数量关系为: .(探究)如图1,当点M 在BC 延长线上时,h 1、h 1、h 之间有怎样的数量关系式?并说明理由. (应用)如图3,在平面直角坐标系中有两条直线l 1:334y x =+,l 1:y=-3x+3,若l 1上的一点M 到l 1的距离是1,请运用上述结论求出点M 的坐标.24.(10分)如图,AB 是半圆O 的直径,D 为弦BC 的中点,延长OD 交弧BC 于点E ,点F 为OD 的延长线上一点且满足∠OBC =∠OFC ,求证:CF 为⊙O 的切线;若四边形ACFD 是平行四边形,求sin ∠BAD 的值.25.(10分)在Rt △ABC 中,∠ACB =90°,BE 平分∠ABC ,D 是边AB 上一点,以BD 为直径的⊙O 经过点E ,且交BC 于点F . (1)求证:AC 是⊙O 的切线;(2)若BF =6,⊙O 的半径为5,求CE 的长.26.(12分)如图,在平面直角坐标系中,直线10y kx =-经过点(12,0)A 和(,5)B a -,双曲线(0)m y x x=>经过点B .(1)求直线10y kx =-和双曲线m yx=的函数表达式; (2)点C 从点A 出发,沿过点A 与y 轴平行的直线向下运动,速度为每秒1个单位长度,点C 的运动时间为t (0<t <12),连接BC ,作BD ⊥BC 交x 轴于点D ,连接CD ,①当点C 在双曲线上时,求t 的值;②在0<t <6范围内,∠BCD 的大小如果发生变化,求tan ∠BCD 的变化范围;如果不发生变化,求tan ∠BCD 的值; ③当136112DC =时,请直接写出t 的值.27.(12分)如图,AD 是△ABC 的中线,CF ⊥AD 于点F ,BE ⊥AD ,交AD 的延长线于点E ,求证:AF+AE=2AD.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据中心对称图形的定义逐项进行判断即可得.【详解】A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误,故选A.【点睛】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.2.B【解析】解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC∥AB,则∠4=30°=80°.故选+50°=80°4=30°+50°+50°B.点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键.3.D分别求出两组数据的中位数、平均数、方差,比较即可得出答案.【详解】5=4,(2+3+4+5+6) ÷5=4A组数据的中位数是:4,平均数是:(2+3+4+5+6) ÷方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2] ÷] ÷5=2;5=2;5=4,(1+7+3+0+9) ÷5=4B组数据的中位数是:3,平均数是:(1+7+3+0+9) ÷方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2] ÷] ÷5=12;5=12;∴两组数据的中位数不相等,平均数相等,B组方差更大.故选D.【点睛】本题考查了中位数、平均数、方差的计算,熟练掌握中位数、平均数、方差的计算方法是解答本题的关键. 4.C【解析】【分析】由互为倒数的两数之积为1,即可求解.【详解】∵,∴的倒数是.故选C5.A【解析】试题分析:原方程变形为:x(x-1)=0x1=0,x1=1.故选A.考点:解一元二次方程-因式分解法.6.A【解析】分析:根据从上面看得到的图形是俯视图,可得答案.详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A.点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.7.D根据点M(a ,2a)在反比例函数y =8x的图象上,可得:228a =,然后解方程即可求解.【详解】因为点M(a ,2a)在反比例函数y =8x的图象上,可得: 228a =, 24a =,解得:2a =±, 故选D. 【点睛】本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征. 8.C 【解析】 【分析】众数,中位数,方差等概念分析即可. 【详解】A 、中奖是偶然现象,买再多也不一定中奖,故是错误的;B 、全国中学生人口多,只需抽样调查就行了,故是错误的;C 、这组数据的众数和中位数都是8,故是正确的;D 、方差越小越稳定,甲组数据更稳定,故是错误.故选C. 【点睛】考核知识点:众数,中位数,方差. 9.B【解析】∵①(2)2--=;②22--=-;③224-=-;④2(2)4-=; ∴上述各式中计算结果为负数的有2个. 故选B. 10.D 【解析】 【分析】先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r 的范围. 【详解】∵点P 的坐标为(3,4),∴OP 2234=+=1. ∵点P (3,4)在⊙O 内,∴OP <r ,即r >1. 故选D . 【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系. 11.D 【解析】分析: 连接OB ,根据等腰三角形三线合一的性质可得BO ⊥EF ,再根据矩形的性质可得OA=OB ,根据等边对等角的性质可得∠BAC=∠ABO ,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC ,再利用勾股定理列式计算即可求出AB. 详解: 如图,连接OB ,∵BE=BF ,OE=OF ,∴BO ⊥EF ,∴在Rt △BEO 中,∠BEF+∠ABO=90°, 由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC ,∴∠BAC=∠ABO , 又∵∠BEF=2∠BAC , 即2∠BAC+∠BAC=90°, 解得∠BAC=30°, ∴∠FCA=30°, ∴∠FBC=30°, ∵FC=2, ∴BC=23, ∴AC=2BC=43, ∴AB=22AC BC -=22(43)(23)-=6,故选D .点睛: 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键. 12.B 【解析】 【分析】根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系. 【详解】A 选项,(1,1)到坐标原点的距离为2<2,因此点在圆内,B 选项(2,2) 到坐标原点的距离为2=2,因此点在圆上,C 选项 (1,3) 到坐标原点的距离为10>2,因此点在圆外D 选项(1,2) 到坐标原点的距离为3<2,因此点在圆内, 故选B. 【点睛】本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.D 【解析】 【分析】根据根的判别式得到关于a 的方程,求解后可得到答案. 【详解】关于x 的方程2504x x a +-+=有两个不相等的实数根, 则251410,4a ⎛⎫∆=-⨯⨯-+>⎪⎝⎭解得: 1.a >满足条件的最小整数a 的值为2. 故选D. 【点睛】本题考查了一元二次方程根与系数的关系,理解并能运用根的判别式得出方程是解题关键. 14.6 【解析】试题分析:设所求正n 边形边数为n ,则120°120°n=n=(n ﹣2)•180°,解得n=6; 考点:多边形内角与外角.15.404033+ 【解析】 【分析】设该船行驶的速度为x 海里/时,由已知可得BC =3x ,AQ ⊥BC ,∠BAQ =60°,∠CAQ =45°,AB =80海里,在直角三角形ABQ 中求出AQ 、BQ ,再在直角三角形AQC 中求出CQ ,得出BC =40+403=3x ,解方程即可. 【详解】 如图所示:该船行驶的速度为x 海里/时,3小时后到达小岛的北偏西45°的C 处, 由题意得:AB =80海里,BC =3x 海里, 在直角三角形ABQ 中,∠BAQ =60°, ∴∠B =90°−60°=30°, ∴AQ =12AB =40,BQ =3AQ =403, 在直角三角形AQC 中,∠CAQ =45°, ∴CQ =AQ =40, ∴BC =40+403=3x , 解得:x =404033+.即该船行驶的速度为404033+海里/时; 故答案为:404033+.【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键. 16.m (m+n )(m ﹣n ). 【解析】试题分析:原式=22()m m n -=m (m+n )(m ﹣n ).故答案为:m (m+n )(m ﹣n ). 考点:提公因式法与公式法的综合运用. 17.55【解析】 【详解】如图,过点O 作OC ⊥AB 的延长线于点C ,则AC=4,OC=2,在Rt △ACO 中,AO=22224225AC OC +=+=,∴sin ∠OAB=25525OC OA ==. 故答案为55.18.>【解析】 【分析】先将1化为根号的形式,根据被开方数越大值越大即可求解. 【详解】 解:93=Q,119> ,,故答案为>. 【点睛】本题考查实数大小的比较,比较大小时,常用的方法有:①作差法,②作商法,③如果有一个是二次根式,要把另一个也化为二次根式的形式,根据被开方数的大小进行比较.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.22x y =-⎧⎨=-⎩或11x y =⎧⎨=⎩. 【解析】 【分析】把y=x 代入220x y +-=,解得x 的值,然后即可求出y 的值; 【详解】把(1)代入(2)得:x 2+x ﹣2=0, (x+2)(x ﹣1)=0, 解得:x =﹣2或1, 当x =﹣2时,y =﹣2, 当x =1时,y =1,∴原方程组的解是22x y =-⎧⎨=-⎩或11x y =⎧⎨=⎩.【点睛】本题考查了高次方程的解法,关键是用代入法先求出一个未知数,再代入求出另一个未知数.20.(1)甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)有6种购买方案.(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台. 【解析】 【分析】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可; (2)设购买甲型设备m 台,乙型设备()10m -台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m 的值,即可确定方案;(3)因为公司要求每月的产量不低于2040吨,据此可得关于m 的不等式,解之即可由m 的值确定方案,然后进行比较,做出选择即可. 【详解】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,由题意得:3216263x y x y -=⎧⎨+=⎩,解得:1210x y =⎧⎨=⎩,则甲,乙两种型号设备每台的价格分别为12万元和10万元; (2)设购买甲型设备m 台,乙型设备()10m -台, 则()121010110m m +-≤, ∴5m ≤,∵m 取非负整数,∴0,1,2,3,4,5m =, ∴有6种购买方案;(3)由题意:()240180102040m m +-≥, ∴4m ≥, ∴m 为4或5,当4m =时,购买资金为:124106108⨯+⨯=(万元), 当5m =时,购买资金为:125105110⨯+⨯=(万元), 则最省钱的购买方案是选购甲型设备4台,乙型设备6台. 【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键. 21.40% 【解析】 【分析】先设第次降价的百分率是x ,则第一次降价后的价格为500(1-x )元,第二次降价后的价格为500(1-2x ),根据两次降价后的价格是240元建立方程,求出其解即可. 【详解】第一次降价的百分率为x ,则第二次降价的百分率为2x , 根据题意得:500(1﹣x )(1﹣2x )=240,解得x 1=0.2=20%,x 2=1.3=130%.则第一次降价的百分率为20%,第二次降价的百分率为40%. 【点睛】本题考查了一元二次方程解实际问题,读懂题意,找出题目中的等量关系,列出方程,求出符合题的解即可.22.(1)证明见解析;(2)BC=165,AD=457. 【解析】分析:(1)连接OE ,由OB=OE 知∠OBE=∠OEB 、由BE 平分∠ABC 知∠OBE=∠CBE ,据此得∠OEB=∠CBE ,从而得出OE ∥BC ,进一步即可得证; (2)证△BDE ∽△BEC 得BD BEBE BC =,据此可求得BC 的长度,再证△AOE ∽△ABC 得AO OE AB BC=,据此可得AD 的长. 详解:(1)如图,连接OE ,∵OB=OE , ∴∠OBE=∠OEB , ∵BE 平分∠ABC , ∴∠OBE=∠CBE , ∴∠OEB=∠CBE , ∴OE ∥BC , 又∵∠C=90°,∴∠AEO=90°,即OE ⊥AC , ∴AC 为⊙O 的切线; (2)∵ED ⊥BE , ∴∠BED=∠C=90°, 又∵∠DBE=∠EBC , ∴△BDE ∽△BEC ,∴BD BEBE BC =,即54=4BC, ∴BC=165;∵∠AEO=∠C=90°,∠A=∠A , ∴△AOE ∽△ABC ,∴AO OE AB BC=,即 2.5 2.51655AD AD +=+, 解得:AD=457.点睛:本题主要考查切线的判定与性质,解题的关键是掌握切线的判定与性质及相似三角形的判定与性质. 23.【思考】h 1+h 1=h ;【探究】h 1-h 1=h .理由见解析;【应用】所求点M 的坐标为(13,1)或(-13,4). 【解析】 【分析】思考:根据等腰三角形的性质,把代数式12111222h AB h AC hAC +=化简可得12h h h +=. 探究:当点M 在BC 延长线上时,连接AM ,可得ABM ACM ABC S S S ∆∆∆-=,化简可得12h h h -=.应用:先证明AB AC =,△ABC 为等腰三角形,即可运用上面得到的性质,再分点M 在BC 边上和在CB 延长线上两种情况讨论,第一种有1+My=OB ,第二种为M y -1=OB ,解得M 的纵坐标,再分别代入2l 的解析式即可求解.【详解】 思考Q ABM ACM ABC S S S ∆∆∆+= 即12111222h AB h AC hAC += Q AB AC =∴h 1+h 1=h .探究 h 1-h 1=h . 理由.连接AM , ∵ABM ACM ABC S S S ∆∆∆-=∴12111222h AB h AC hAC -= ∴h 1-h 1=h . 应用 在334y x =+中,令x=0得y=3; 令y=0得x=-4,则: A (-4,0),B (0,3) 同理求得C (1,0),225AB OA OB =+=,又因为AC=5, 所以AB=AC ,即△ABC 为等腰三角形. ①当点M 在BC 边上时, 由h 1+h 1=h 得:1+My=OB ,My=3-1=1, 把它代入y=-3x+3中求得:13x M =,∴1,23M ⎛⎫ ⎪⎝⎭; ②当点M 在CB 延长线上时,由h 1-h 1=h 得: M y -1=OB ,M y =3+1=4, 把它代入y=-3x+3中求得:13x M =-,∴1,43M ⎛⎫-⎪⎝⎭, 综上,所求点M 的坐标为1,23⎛⎫ ⎪⎝⎭或1,43⎛⎫-⎪⎝⎭. 【点睛】本题结合三角形的面积和等腰三角形的性质考查了新性质的推理与证明,熟练掌握三角形的性质,结合图形层层推进是解答的关键. 24. (1)见解析;(2)13. 【解析】 【分析】(1)连接OC ,根据等腰三角形的性质得到∠OCB=∠B ,∠OCB=∠F ,根据垂径定理得到OF ⊥BC ,根据余角的性质得到∠OCF=90°,于是得到结论;(2)过D 作DH ⊥AB 于H ,根据三角形的中位线的想知道的OD=12AC ,根据平行四边形的性质得到DF=AC ,设OD=x ,得到AC=DF=2x ,根据射影定理得到CD=2x ,求得BD=2x ,根据勾股定理得到AD=226AC CD +=x ,于是得到结论.【详解】解:(1)连接OC ,∵OC=OB , ∴∠OCB=∠B , ∵∠B=∠F , ∴∠OCB=∠F , ∵D 为BC 的中点, ∴OF ⊥BC ,∴∠F+∠FCD=90°, ∴∠OCB+∠FCD=90°, ∴∠OCF=90°, ∴CF 为⊙O 的切线; (2)过D 作DH ⊥AB 于H , ∵AO=OB ,CD=DB , ∴OD=12AC , ∵四边形ACFD 是平行四边形, ∴DF=AC , 设OD=x , ∴AC=DF=2x ,∵∠OCF=90°,CD ⊥OF , ∴CD 2=OD•DF=2x 2, ∴CD=2x , ∴BD=2x ,∴AD=226AC CD +=x ,∵OD=x ,BD=2x , ∴OB=3x , ∴DH=63CD BD OB ⋅=x , ∴sin ∠BAD=DH AD =13. 【点睛】本题考查了切线的判定和性质,平行四边形的性质,垂径定理,射影定理,勾股定理,三角函数的定义,正确的作出辅助线是解题的关键. 25.(1)证明见解析;(2)CE=1. 【解析】 【分析】(1)根据等角对等边得∠OBE=∠OEB ,由角平分线的定义可得∠OBE=∠EBC ,从而可得∠OEB=∠EBC ,根据内错角相等,两直线平行可得OE ∥BC ,根据两直线平行,同位角相等可得∠OEA=90°,从而可证AC 是⊙O 的切线.(2)根据垂径定理可求BH=12BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的长,从而求出CE的长. 【详解】(1)证明:如图,连接OE,∵OB=OE,∴∠OBE=∠OEB,∵ BE平分∠ABC.∴∠OBE=∠EBC,∴∠OEB=∠EBC,∴OE∥BC,∵ ∠ACB=90° ,∴∠OEA=∠ACB=90°,∴ AC是⊙O的切线 .(2)解:过O作OH⊥BF,∴BH=12BF=3,四边形OHCE是矩形,∴CE=OH,在Rt△OBH中,BH=3,OB=5,∴OH=22OB OH=1,∴CE=1.【点睛】本题考查切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.26.(1)直线的表达式为5106y x =-,双曲线的表达式为30y x =-;(2)①52;②当06t <<时,BCD ∠的大小不发生变化,tan BCD ∠的值为56;③t 的值为52或152. 【解析】 【分析】(1)由点(12,0)A 利用待定系数法可求出直线的表达式;再由直线的表达式求出点B 的坐标,然后利用待定系数法即可求出双曲线的表达式;(2)①先求出点C 的横坐标,再将其代入双曲线的表达式求出点C 的纵坐标,从而即可得出t 的值; ②如图1(见解析),设直线AB 交y 轴于M ,则(0,10)M -,取CD 的中点K ,连接AK 、BK .利用直角三角形的性质证明A 、D 、B 、C 四点共圆,再根据圆周角定理可得BCD DAB ∠=∠,从而得出tan tan OMBCD DAB OA∠=∠=,即可解决问题; ③如图2(见解析),过点B 作⊥BM OA 于M ,先求出点D 与点M 重合的临界位置时t 的值,据此分05t <<和512t ≤<两种情况讨论:根据,,A B C 三点坐标求出,,AM BM AC 的长,再利用三角形相似的判定定理与性质求出DM 的长,最后在Rt ACD ∆中,利用勾股定理即可得出答案. 【详解】(1)∵直线10y kx =-经过点(12,0)A 和(,5)B a - ∴将点(12,0)A 代入得12100k -= 解得56k =故直线的表达式为5106y x =- 将点(,5)B a -代入直线的表达式得51056a -=- 解得6a =(6,5)B ∴-∵双曲线(0)m y x x=>经过点(6,5)B -56m ∴=-,解得30m =-故双曲线的表达式为30y x=-; (2)①//AC y Q 轴,点A 的坐标为(12,0)A ∴点C 的横坐标为12将其代入双曲线的表达式得305122y =-=- ∴C 的纵坐标为52-,即52AC =由题意得512t AC ⋅==,解得52t = 故当点C 在双曲线上时,t 的值为52;②当06t <<时,BCD ∠的大小不发生变化,求解过程如下: 若点D 与点A 重合由题意知,点C 坐标为(12,)t -由两点距离公式得:222(612)(50)61AB =-+--=2222(126)(5)36(5)BC t t =-+-+=+-+ 22AC t =由勾股定理得222AB BC AC +=,即226136(5)t t ++-+= 解得12.2t =因此,在06t <<范围内,点D 与点A 不重合,且在点A 左侧 如图1,设直线AB 交y 轴于M ,取CD 的中点K ,连接AK 、BK 由(1)知,直线AB 的表达式为5106y x =- 令0x =得10y =-,则(0,10)M -,即10OM =Q 点K 为CD 的中点,BD BC ⊥12BK DK CK CD ∴===(直角三角形中,斜边上的中线等于斜边的一半)同理可得:12AK DK CK CD ===BK DK CK AK ∴===∴A 、D 、B 、C 四点共圆,点K 为圆心BCD DAB ∴∠=∠(圆周角定理)105tan tan 126OM BCD DAB OA ∴∠=∠===;③过点B 作⊥BM OA 于M由题意和②可知,点D 在点A 左侧,与点M 重合是一个临界位置 此时,四边形ACBD 是矩形,则5AC BD ==,即5t = 因此,分以下2种情况讨论:如图2,当05t <<时,过点C 作CN BM ⊥于N (6,5(1),2,0),(12,)B A t C --Q12,6,6,5,OA OM AM OA OM BM AC t ∴===-=== 90CBN DBM BDM DBM ∠+∠=∠+∠=︒Q CBN BDM ∴∠=∠又90CNB BMD ∠=∠=︒QCNB BMD ∴∆~∆CN BNBM DM ∴=AM BM AC BM DM-∴=,即655t DM -= 5(5)6DM t ∴=- 56(5)6AD AM DM t ∴=+=+- 由勾股定理得222AD AC CD +=即222513616(5)()612t t ⎡⎤+-+=⎢⎥⎣⎦ 解得52t =或152t =(不符题设,舍去) 当512t ≤<时,同理可得:222513616(5)()612t t ⎡⎤--+=⎢⎥⎣⎦ 解得152t =或52t =(不符题设,舍去)综上所述,t 的值为52或152. 【点睛】本题考查反比例函数综合题、锐角三角函数、相似三角形的判定和性质、四点共圆、勾股定理等知识点,解题的关键是学会添加常用辅助线,构造相似三角形解决问题. 27.证明见解析.【解析】【分析】由题意易用角角边证明△BDE ≌△CDF ,得到DF=DE ,再用等量代换的思想用含有AE 和AF 的等式表示AD 的长.【详解】证明:∵CF ⊥AD 于,BE ⊥AD , ∴BE ∥CF ,∠EBD=∠FCD , 又∵AD 是△ABC 的中线, ∴BD=CD ,∴在△BED 与△CFD 中, EBD FCDBED CFD BD CD∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△△BED ≌△CFD (AAS ) ∴ED=FD ,又∵AD=AF+DF ①, AD=AE-DE ②, 由①+②得:AF+AE=2AD.【点睛】该题考察了三角形全等的证明,利用全等三角形的性质进行对应边的转化.。
2019年安徽省名校大联考中考数学模拟试卷(二)一、选择题(本大题共10小题,每小题4分,满分40分.在每小题给出的选项中,只有一个符合题意,请将正确的一项代号填入下面括号内)1.(4分)与﹣3的和为0的有理数是()A.﹣3B.3C.﹣D.2.(4分)下列运算中正确的是()A.x2+x2=2x4B.x5﹣x3=x2C.x2•x3=x6D.(﹣x)6÷(﹣x2)=﹣x43.(4分)如图,是一个水平放置的圆柱体笔筒的示意图,它的主视图是()A.B.C.D.4.(4分)2019年4月,黄山风景区玫瑰花旅游节举行,吸引着各地游客前来观赏游玩.玫瑰花花粉的直径约为0.00000018m,这里“0.00000018”用科学记数法可表示为()A.1.8×10﹣6B.1.8×10﹣7C.0.18×10﹣6D.18×10﹣85.(4分)估算5﹣在下列哪两个相邻的整数之间()A.﹣2~﹣1之间B.0~1之间C.1~2之间D.2~3之间6.(4分)关于x的一元二次方程x2﹣(2k﹣1)x+k2+1=0有实数根,则k的取值范围是()A.k≤﹣B.k>﹣C.k≥﹣D.k<﹣7.(4分)对于一组数据:85,95,85,80,80,85,表述正确的是()A.众数是80和85B.平均数是86C.方差是25D.中位数是808.(4分)如图,AD是△ABC的中线,点E在AD上,AD=4DE,连接BE并延长交AC 于点F,则AF:FC的值是()A.3:2B.4:3C.2:1D.2:39.(4分)如图,Rt△ABC中,∠C=90°,AB=5cm,AC=4cm,点P从点A出发,以1cm/s的速度沿A→C向点C运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C 向点C运动,直到它们都到达点C为止.若△APQ的面积为S(cm2),点P的运动时间为t(s),则S与t的函数图象是()A.B.C.D.10.(4分)如图,矩形ABCD中,BC=2,AB=4,点P是对角线AC上的一动点,以BP为直角边作等腰Rt△BPQ(其中∠PBQ=90°),则PQ的最小值是()A.B.C.2D.2二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)16的平方根是.12.(5分)分解因式2x3﹣12x2+18x=.13.(5分)已知:如图,直线l经过点A(﹣2,0)和点B(0,1),点M在x轴上,过点M作x轴的垂线交直线l于点C,若OM=2OA,则经过点C的反比例函数表达式为.14.(5分)△ABC中,∠C=90°,AC=3,BC=4,点P是△ABC边上的一点,且PC =2PA,则PA的长是.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)先化简再求值:(3﹣)÷,其中x=2.16.(8分)古代名著《算学启蒙》中有这样一个问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”译文:跑得快的马平均每天能跑240里,跑得慢的马平均每天能跑150里.如果慢马先行12天,快马多少天能够追上慢马?请解答这个问题.四、(本大题共2小题,每小题8分,满分16分)17.(8分)观察下列等式:12﹣4×1×2=﹣7;①32﹣4×2×3=﹣15;②52﹣4×3×4=﹣23;③…(1)请直接写出第④个等式;(2)根据上述等式的排列规律,猜想第n个等式(n是正整数),并验证它的正确性.18.(8分)在边长为1的小正方形组成的网格中建立如图所示的平面直角坐标系,△ABC 为格点三角形(顶点是网格线的交点).(1)画出△ABC先向上平移2个单位长度,再向左平移3个单位长度得到的△A1B1C1;(2)以点O为位似中心,在第一象限画出△ABC的位似图形△A2B2C2,使△A2B2C2与△ABC的位似比为2:1.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,是某小区入口抽象成的平面示意图,已知入口BC宽4米,栏杆支点O 与地面BC的距离为0.8米,当栏杆OM升起到与门卫室外墙AB的夹角成30°时,一辆宽2.4米,高1.6米的轿车能否从该入口的正中间位置进入该小区?若能,请通过计算说明;若不能,请说明理由.(参考数据: 1.7)20.(10分)如图,线段AB为⊙O的直径,点C、E在⊙O上,,连接BE、CE,过点C作CM∥BE交AB的延长线于点M.(1)求证:直线CM是⊙O的切线;(2)若sin∠ABE=,BM=4,求⊙O的半径.六、(本题满分12分)21.(12分)某校举行“诵读经典”朗诵比赛,把比赛成绩分为四个等次:A优秀,B.良好,C.一般,D较差,从参加比赛的学生中随机抽取部分学生的成绩进行调查,并根据调查结果制作了如下的统计图表(不完整):(1)这次共调查了名学生,表中m=,n=,p=;(2)补全频数分布直方图;(3)若抽查的学生中,等次A中有2名女生,其他为男生,从等次A中选取两名同学参加市中学生朗诵比赛,求恰好选取一名男生和一名女生的概率.七、(本题满分12分)22.(12分)如图,抛物线y1=ax2﹣x+c与x轴交于点A(﹣3,0)和点B,并经过点(2,﹣),抛物线y1的顶点为C.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.(1)求抛物线y2的表达式;(2)在直线l上是否存在点P,使△PBC为等腰三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.八、(本题满分14分)23.(14分)(1)如图1,正方形ABCD与正方形AEFG有公共的顶点A,连接DG,BE,AC,CF.①求证:DG=BE;②求的值;(2)将图1中的正方形AEFG旋转到图2的位置,当D,G,E在一条直线上,若DG =GE=3,求正方形ABCD的边长.2019年安徽省名校大联考中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分.在每小题给出的选项中,只有一个符合题意,请将正确的一项代号填入下面括号内)1.(4分)与﹣3的和为0的有理数是()A.﹣3B.3C.﹣D.【分析】根据相反数和为零可得答案.【解答】解:与﹣3的和为0的有理数是3,故选:B.【点评】此题主要考查了相反数,关键是掌握只有符号不同的两个数叫做互为相反数.2.(4分)下列运算中正确的是()A.x2+x2=2x4B.x5﹣x3=x2C.x2•x3=x6D.(﹣x)6÷(﹣x2)=﹣x4【分析】分别根据合并同类项法则、同底数幂的乘法和除法法则逐一计算可得.【解答】解:A.x2+x2=2x2,此选项错误;B.x5与x3不是同类项,不能合并,此选项错误;C.x2•x3=x5,此选项错误;D.(﹣x)6÷(﹣x2)=﹣x4,此选项正确;故选:D.【点评】本题主要考查同底数幂的除法,解题的关键是掌握合并同类项法则、同底数幂的乘法和除法法则.3.(4分)如图,是一个水平放置的圆柱体笔筒的示意图,它的主视图是()A.B.C.D.【分析】从正面看所得到的图形是主视图.【解答】解:从正面看所得到的图形为C.故选:C.【点评】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.4.(4分)2019年4月,黄山风景区玫瑰花旅游节举行,吸引着各地游客前来观赏游玩.玫瑰花花粉的直径约为0.00000018m,这里“0.00000018”用科学记数法可表示为()A.1.8×10﹣6B.1.8×10﹣7C.0.18×10﹣6D.18×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000018=1.8×10﹣7.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.(4分)估算5﹣在下列哪两个相邻的整数之间()A.﹣2~﹣1之间B.0~1之间C.1~2之间D.2~3之间【分析】利用”夹逼法“得出的范围,继而也可得出5﹣的范围.【解答】解:∵4<7<9,∴2<<3.∴2<5﹣<3.故选:D.【点评】此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.6.(4分)关于x的一元二次方程x2﹣(2k﹣1)x+k2+1=0有实数根,则k的取值范围是()A.k≤﹣B.k>﹣C.k≥﹣D.k<﹣【分析】先根据判别式的意义得到△=[﹣(2k﹣1)]2﹣4(k2+1)≥0,然后解关于k的一元一次不等式即可.【解答】解:根据题意得△=[﹣(2k﹣1)]2﹣4(k2+1)≥0,解得k≤﹣.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(4分)对于一组数据:85,95,85,80,80,85,表述正确的是()A.众数是80和85B.平均数是86C.方差是25D.中位数是80【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.利用平均数和方差的定义可分别求出.【解答】解:这组数据中85出现了3次,出现的次数最多,所以这组数据的众数位85;由平均数公式求得这组数据的平均数位85,方差为:[(85﹣85)2+(95﹣85)2+(85﹣85)2+(80﹣85)2+(80﹣85)2+(85﹣85)2]=25;将这组数据按从大到校的顺序排列,第3,4个数是85,故中位数为85.所以选项C正确.故选:C.【点评】本题考查了统计学中的平均数,众数,中位数与方差的定义.解答这类题学生常常对中位数的计算方法掌握不好而错选.8.(4分)如图,AD是△ABC的中线,点E在AD上,AD=4DE,连接BE并延长交AC 于点F,则AF:FC的值是()A.3:2B.4:3C.2:1D.2:3【分析】过点D作DG∥AC,与BF交于点G.于是FC=2DG,AF=3DG,因此AF:FC=3DG:2DG=3:2.【解答】解:过点D作DG∥AC,与BF交于点G.∵AD=4DE,∴AE=3DE,∵AD是△ABC的中线∴,∴,即AF=3DG∴,即FC=2DG,∴AF:FC=3DG:2DG=3:2.故选:A.【点评】本题考查了平行线分线段成比例,正确作出辅助线充分利用平行线分线段成比例的性质是解题的关键.9.(4分)如图,Rt△ABC中,∠C=90°,AB=5cm,AC=4cm,点P从点A出发,以1cm/s的速度沿A→C向点C运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C 向点C运动,直到它们都到达点C为止.若△APQ的面积为S(cm2),点P的运动时间为t(s),则S与t的函数图象是()A.B.C .D .【分析】分两种情况讨论:当0≤t ≤时,过Q 作QD ⊥AC 交AC 于点D ,S △APQ =×AP ×QD ;当<t ≤4时,S △APQ =S △ABC ﹣S △CPQ ﹣S △ABQ ;【解答】解:①当0≤t ≤时,点Q 在AB 上, ∴AQ =2t ,AP =t ,过Q 作QD ⊥AC 交AC 于点D ,∵Rt △ABC 中,∠C =90°,AB =5cm ,AC =4cm , ∴BC =3cm ,∴=,∴QD =t ,S △APQ =×AP ×QD =×t ×t =t 2,②当<t ≤4时,点Q 在BC 上,S △APQ =S △ABC ﹣S △CPQ ﹣S △ABQ =×3×4﹣×(4﹣t )×(8﹣2t )﹣×4×(2t ﹣5)=﹣t 2+4t =﹣(t ﹣2)2, 综上所述,正确的图象是D . 故选:D .【点评】本题考查动点运动,三角形面积.B 点是Q 点运动的分界点,将运动过程分两种情况进行讨论是解题的关键.10.(4分)如图,矩形ABCD 中,BC =2,AB =4,点P 是对角线AC 上的一动点,以BP 为直角边作等腰Rt △BPQ (其中∠PBQ =90°),则PQ 的最小值是( )A .B .C .2D .2【分析】根据题意可得当BP 最短时,PQ 值最小,即BP ⊥AC 时,PQ 最小.利用面积法计算BP 长度,即可得PQ 长度.【解答】解:∵△BPQ 是等腰直角三角形,若PQ 最小,则BP 值最小即可. ∵点P 是对角线AC 上的一动点,B 点是定点, ∴当BP ⊥AC 时,BP 最短.在Rt △ABC 中,AC ==2,∴2×BP =2×4,解得BP =.在等腰Rt △BPQ 中,PQ =BP =. 故选:B .【点评】本题主要考查矩形的性质、勾股定理以及垂线段最短,解题的关键是根据图形特征转化最短线段.二、填空题(本大题共4小题,每小题5分,满分20分) 11.(5分)16的平方根是 ±4 .【分析】根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得x 2=a ,则x 就是a 的平方根,由此即可解决问题. 【解答】解:∵(±4)2=16, ∴16的平方根是±4. 故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.(5分)分解因式2x 3﹣12x 2+18x = 2x (x ﹣3)2 . 【分析】首先提公因式2x ,然后利用完全平方公式即可分解. 【解答】解:原式=2x (x 2﹣6x +9)=2x (x ﹣3)2. 故答案是:2x (x ﹣3)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.13.(5分)已知:如图,直线l经过点A(﹣2,0)和点B(0,1),点M在x轴上,过点M作x轴的垂线交直线l于点C,若OM=2OA,则经过点C的反比例函数表达式为y=.【分析】设直线l的解析式为y=kx+b,列方程组求得y=x+1,根据已知条件得到点C(3,4),设反比例函数表达式为y=,把C的坐标代入即可得到结论.【解答】解:设直线l的解析式为:y=kx+b,∵直线l经过点A(﹣2,0)和点B(0,1),∴,解得:,∴直线l的解析式为:y=x+1,∵点A(﹣2,0),∴OA=2,∵OM=2OA,∴OM=4,∴点C的横坐标为4,当x=4时,y=3,∴点C(3,4),设反比例函数表达式为y=,∴m=12,∴反比例函数表达式为y=,故答案为:y=.【点评】本题考查了待定系数法求反比例函数和一次函数的解析式,正确的理解题意是解题的关键.14.(5分)△ABC中,∠C=90°,AC=3,BC=4,点P是△ABC边上的一点,且PC=2PA,则PA的长是1或.【分析】根据勾股定理求出AB,分点P在AC上、点P在AB上、点P在BC上三种情况,结合图形、根据勾股定理计算,得到答案.【解答】解:由勾股定理得,AB==5,当点P在AC上时,AC=3,PC=2PA,∴AP=1;当点P在AB上时,作CD⊥AB于D,×AC×BC=×AB×CD,即×3×4=×5×CD,解得,CD=,由勾股定理得,AD==,设AP=x,则PD=﹣x,PC=2x,则(2x)2=(﹣x)2+()2,解得,x1=,x2=(舍去);当点P在BC上时,PA>PC,PC≠2PA,综上所述,PC=2PA时,则PA的长为1或,故答案为:1或.【点评】本题考查的是勾股定理、三角形的面积公式,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)先化简再求值:(3﹣)÷,其中x=2.【分析】直接将括号里面通分运算,再进行分式的加减以及乘除运算,进而把已知代入求出答案.【解答】解:原式=[﹣]×=×=,当x=2时,原式==.【点评】此题主要考查了分式的化简求值,正确进行分式的加减运算是解题关键.16.(8分)古代名著《算学启蒙》中有这样一个问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”译文:跑得快的马平均每天能跑240里,跑得慢的马平均每天能跑150里.如果慢马先行12天,快马多少天能够追上慢马?请解答这个问题.【分析】设快马x天能够追上慢马,根据快马和慢马的路程相等,可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设快马x天能够追上慢马,则慢马跑了(x+12)天,依题意,得:240x=150(x+12),解得:x=20.答:快马20天能够追上慢马.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.四、(本大题共2小题,每小题8分,满分16分)17.(8分)观察下列等式:12﹣4×1×2=﹣7;①32﹣4×2×3=﹣15;②52﹣4×3×4=﹣23;③…(1)请直接写出第④个等式;(2)根据上述等式的排列规律,猜想第n个等式(n是正整数),并验证它的正确性.【分析】(1)通过观察可知,72﹣4×4×5=﹣31;(2)把题目中的式子用含n的形式分别表示出来,从而寻得规律.【解答】解:(1)第④个等式:72﹣4×4×5=﹣31;(2)题目中的式子用含n的形式分别表示出来是:(2n﹣1)2﹣4n(n+1)=﹣8n+1.验证:∵等式左边=4n2﹣4n+1﹣4n2﹣4n=﹣8n+1=等式右边,∴结论正确.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.通过观察,分析、归纳,发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.18.(8分)在边长为1的小正方形组成的网格中建立如图所示的平面直角坐标系,△ABC 为格点三角形(顶点是网格线的交点).(1)画出△ABC先向上平移2个单位长度,再向左平移3个单位长度得到的△A1B1C1;(2)以点O为位似中心,在第一象限画出△ABC的位似图形△A2B2C2,使△A2B2C2与△ABC的位似比为2:1.【分析】(1)分别画出A,B,C的对应点A1,B1,C1即可.(2)延长OA到A2,使得OA2=2OA1,同法作出B2,C2即可.【解答】解:(1)△A1B1C1;如图所示.(2)△A2B2C2如图所示.【点评】本题考查作图﹣位似变换,作图﹣平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,是某小区入口抽象成的平面示意图,已知入口BC宽4米,栏杆支点O 与地面BC的距离为0.8米,当栏杆OM升起到与门卫室外墙AB的夹角成30°时,一辆宽2.4米,高1.6米的轿车能否从该入口的正中间位置进入该小区?若能,请通过计算说明;若不能,请说明理由.(参考数据: 1.7)【分析】直接在BC上取点Q,使BQ=0.8m,过Q作QP⊥BC交MO于点P,过O作OM⊥OQ于点M,分别得出PM,PQ的长进而得出答案.【解答】解:轿车能安全通过.理由:如图所示:当轿车从该入口的正中间位置进入该小区时,车与OB的距离为:4.0÷2﹣2.4÷2=0.8(m),在BC上取点Q,使BQ=0.8m,过Q作QP⊥BC交MO于点P,过O作OM⊥OQ于点M,则MQ=OB=0.8m,OM=BQ=0.8m,在Rt△OPM中,∵tan60°=,∴PM=OM•tan60°=0.8×=1.36(m),∴PQ=PM+MQ=2.16m>1.6m,∴轿车能安全通过.【点评】此题主要考查了解直角三角形的应用,正确得出PQ的长是解题关键.20.(10分)如图,线段AB为⊙O的直径,点C、E在⊙O上,,连接BE、CE,过点C作CM∥BE交AB的延长线于点M.(1)求证:直线CM是⊙O的切线;(2)若sin∠ABE=,BM=4,求⊙O的半径.【分析】(1)连接OC交BE于G,根据垂径定理得到OC⊥BE,根据平行线的性质得到∠OCM=∠OGB=90°,于是得到结论;(2)根据平行线的性质得到∠ABE=∠OMC,根据三角函数的定义即可得到结论.【解答】(1)证明:连接OC交BE于G,∵,∴OC⊥BE,∴∠OGB=90°,∵CM∥BE,∴∠OCM=∠OGB=90°,∴直线CM是⊙O的切线;(2)解:∵CM∥BE,∴∠ABE=∠OMC,∵sin∠ABE=,∴sin∠OMC=,∵∠OCM=90°,∴sin∠OMC===,设⊙O的半径为r,∴=,解得:r=6,∴⊙O的半径为6.【点评】本题考查了切线的判定和性质,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.六、(本题满分12分)21.(12分)某校举行“诵读经典”朗诵比赛,把比赛成绩分为四个等次:A优秀,B.良好,C.一般,D较差,从参加比赛的学生中随机抽取部分学生的成绩进行调查,并根据调查结果制作了如下的统计图表(不完整):(1)这次共调查了50名学生,表中m=5,n=15,p=0.3;(2)补全频数分布直方图;(3)若抽查的学生中,等次A中有2名女生,其他为男生,从等次A中选取两名同学参加市中学生朗诵比赛,求恰好选取一名男生和一名女生的概率.【分析】(1)根据B等级的人数和频率求出总人数,用总人数乘以A等级的频率求出m,用总人数减去其它等级的人数求出n,再用C等级的人数除以总人数求出p;(2)根据(1)求出m和n的值,即可补全统计图;(3)根据题意先画出树状图得出所有等情况数和选取一名男生和一名女生的情况数,然后根据概率公式即可得出答案.【解答】解:(1)共抽查了20÷0.4=50名学生;m=50×0.1=5;n=50﹣5﹣20﹣10=15;p==0.3;故答案为:50,5,15,0.3;(2)根据(1)的结果补全统计图如下:(3)根据题意画图如下:共有20种等可能情况,而选取一名男生和一名女生的情况有12种,所以恰好选取一名男生和一名女生的概率=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分)22.(12分)如图,抛物线y1=ax2﹣x+c与x轴交于点A(﹣3,0)和点B,并经过点(2,﹣),抛物线y1的顶点为C.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.(1)求抛物线y2的表达式;(2)在直线l上是否存在点P,使△PBC为等腰三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.【分析】(1)根据待定系数法求得抛物线y1=﹣x2﹣x+,然后求得点B的坐标,根据题意即可求得抛物线y2的表达式;(2)由y1=﹣x2﹣x+=﹣(x+1)2+2可知C点的坐标为(﹣1,2),根据勾股定理BC==2,设P点的坐标为(1,m),然后分三种情况列出关于m的方程,解方程即可求得.【解答】解:(1)由于抛物线y1=ax2﹣x+c与x轴交于点A(﹣3,0)和点B,并经过点(2,﹣),∴,解得,∴抛物线y1=﹣x2﹣x+,当y1=0时,x2﹣x+=0,解得x1=﹣3,x2=1,∴B点的坐标为(1,0),∵将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.∴抛物线y2的表达式为:y2=﹣(x﹣1)2;(2)在直线l上存在点P,使△PBC是等腰三角形,由y1=﹣x2﹣x+=﹣(x+1)2+2可知C点的坐标为(﹣1,2),根据勾股定理BC==2,设P点的坐标为(1,m),分三种情况:①当PB=PC时,m2=22+(m﹣2)2,解得m=2,此时点P坐标为(1,2);②当PB=BC时,m2=(2)2,解得m=±2,此时点P坐标为(1,2)或(1,﹣2);③当PC=BC时,22+(m﹣2)2=(2)2,解得m=4或m=0(舍去),此时点P坐标为(1,4);综上,△PBC是等三角形时,点P的坐标为(1,2)或(1,2)或(1,﹣2)或(1,4).【点评】本题是二次函数的综合题,考查了二次函数性质、等腰三角形判定,应用了数形结合和分类讨论的数学思想.八、(本题满分14分)23.(14分)(1)如图1,正方形ABCD与正方形AEFG有公共的顶点A,连接DG,BE,AC,CF.①求证:DG=BE;②求的值;(2)将图1中的正方形AEFG旋转到图2的位置,当D,G,E在一条直线上,若DG =GE=3,求正方形ABCD的边长.【分析】(1)①可通过证明△ADG≌△BEA,得到DG=BE.②可通过证明△DAG∽△CAF,得到CF和DG的比值.(2)可以根据相似和题目当中的特殊角度,利用勾股定理或者三角函数求相关的线段长度.【解答】证明:(1)①∵四边形ABCD和四边形AEFG是正方形∴AD=AB,AG=AE,∠DAB=∠GAE=90°∴∠DAG=∠BAE,且AD=AB,AG=AE∴△ADG≌△ABE(SAS)∴DG=BE②如图1所示,连接AF,∵四边形ABCD和四边形AEFG是正方形∴∠CAD=∠FAG=45°,∠CDA=∠EGA=90°,CD=AD,AG=GF∴AC=AD,AF=AG,∠DAG=∠FAC∵,且∠DAG=∠FAC∴△DAG∽△CAF∴(2)如图2所示,连接BE,由①可知△ADG∽△ABE,∴DG=BE=3,由②得,∠CFA=∠DGA=180°﹣45°=135°,∴CF=6,∠CFG=90°,而∠GFE=90°,∴C、F、E共线,∵EF=AE=3,在Rt△CEA中,AC=3,∴AD=3,∴正方形的边长为3.【点评】此题考查了全等三角形的判定和相似三角形的判定以及性质,找到相似三角形列出比例关系以及借助特殊角度为解题关键.。
2020届安徽省二十所初中名校教育联盟中考数学二模试卷一、选择题(本大题共10小题,共40.0分)1.计算|−4+1|的结果是()A. −5B. −3C. 3D. 52.下列运算正确的是()A. 2y3+y3=3y6B. y2⋅y3=y6C. (3y2)3=9y6D. y3÷y−2=y53.大运河森林公园位于北京市通州区的北运河两侧,占地面积约为10700亩,公园沿水系长达8公里,分别建有潞河桃柳、月岛闻莺、明镜移舟等六大景区和长虹花雨、半山人家、皇木古渡等十八处景点.将10700用科学记数法表示应为()A. 1.07×104B. 10.7×103C. 1.07×105D. 0.107×1054.一个长方体和一个圆柱体按如图所示方式摆放,其主视图是()A.B.C.D.5.下列等式从左到右的变形,属于因式分解的是()A. a(x−y)=ax−ayB. x3−x=x(x+1)(x−1)C. x2−2x+1=x(x−2)+1D. (x+1)(x+2)=x2+3x+26.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是()A. B. C. D.7.一元二次方程x2=−a有实数解,则a的取值为()A. a≤0B. a≥0C. a=0D. a<08.如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED,若BC=6,BD=4,则有以下四个结论:①△BDE是等边三角形;②AE//BC;③△ADE的周长是10;④∠ADE=∠BDC.其中正确结论的序号是()A. ②③④B. ①③④C. ①②④D. ①②③9.如图▱ABCD中,E、F分别是AD、CD边上的点,连接BE、AF交于点G,延长BE交CD的延长线于H,下列结论错误的是()A. AEDE =BEEHB. EHBE=DHCDC. EGBG=AEBCD. AGFG=BGGH10.在平面直角坐标系xOy中,一次函数y1=k1x+b1与y2=k2x+b2的图象互相平行,如果这两个函数的部分自变量和对应的函数值如表所示:x m02y1−20ty21n7那么m的值是()A. −1B. 2C. 3D. 4二、填空题(本大题共4小题,共20.0分)11. 如图,已知数轴上的点A、B、O、C、D、E分别表示数−3、−2、0、1、2、3,则表示数−1+√5的点P应落在线段______ (填序号).(1)AB上(2)OC上(3)CD上(4)DE上12. 如果反比例函数y=k−2x的图象在当x>0的范围内,y随着x的增大而增大,那么k的取值范围是______.13. 若扇形的圆心角为60°,弧长为2π,则扇形的半径为.14. 如图是一个等边三角形木框,甲虫P在边框AC上爬行(A,C端点除外),设甲虫P到另外两边的距离之和为d,等边三角形ABC的高为h,则d与h的大小关系为d______ℎ.三、解答题(本大题共9小题,共90.0分)15. 先化简,再求值:(1)已知x=2°,y=3−1,求[(x−y)2+(x−y)(x+y)]÷2x的值.(2)已知a=b+2,求aba2−2ab+b2÷(a2a−b−a)的值.16. 某商店销售甲、乙两种品牌的A4多功能办公用纸,购买2包甲品牌和3包乙品牌的A4多功能办公用纸共需156元;购买3包甲品牌和1包乙品牌的A4多功能办公用共需122元.(1)求这两种品牌的A4多功能办公用纸每包的单价;(2)疫情期间,为满足师生的用纸要求,该商店对这两种A4多功能办公用纸展开了促销活动,具体办法如下:甲品牌的A4多功能办公用纸按原价的八折销售,乙品牌的A4多功能办公用纸超出5包的部分按原价的七折销售,设购买的x包甲品牌的A4多功能办公用纸需要y1元,购买x包乙品牌的A4多功能办公用纸需要y2元,分别求出y1、y2关于x的函数关系式;(3)当需要购买50包A4多功能办公用纸时,买哪种品牌的A4多功能办公用纸更合算?17. 如图,方格纸中每个小正方形的边长都是1,△ABC的三个顶点都在格点上.(1)画△ABC关于直线MN的对称图形△A1B1C1(不写画法);(2)求△ABC的面积;18. 某小区在绿化工程中有一块长为20m,宽为8m的矩形空地,计划在其中修建两块相同的矩形绿地,使它们的面积之和为102m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),求人行通道的宽度.19. 计算:√12−(4−π)0−2sin60°−√(1−tan60°)2.20. 如图,AB是⊙O的直径,CD⊥AB,交⊙O于C、D两点,交AB点E、F是弧BD上一点,过点F作一条直线,交CD的延长线于点G,交AB的延长线于点M.连结AF,交CD于点H,GF=GH.(1)求证:MG是⊙O的切线;(2)若弧AF=弧CF,求证:HC=AC;(3)在(2)的条件下,若tanG=3,AE=6,求GM的值.421. “好的环境营设好的氛围,好的氛围创造好的成绩”,经过我校老师们的精心辅导、同学们的扎实学习,初中各年级学生的综合素质逐步提升.现随机抽取了部分学生的综合成绩,按“A(优秀)、B(良好)、C(一般)、D(合格)”四个等级进行统计,并将统计结果制成如下两幅不完整统计图,请你结合图表所给信息解答下列问题:(1)此次共调查了______名初中生,其中,学生的综合成绩的中位数处于______等级;并将折线统计图补充完整(在图上完成);(2)初三(1)班的部分同学也参与了调查,其中A等级的有四人,其中两名女生;B等级的有三人,其中一名男生,若该班准备分别从这两组中随机各选出一名同学参加学校的经验交流活动,请用列表或画树状图的方法求出所选两名同学恰好是一名女生和一名男生的概率.22. 某水果店经销一批柑橘,每斤进货价是3元.试销期间发现每天的销售量y(斤)与销售単价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他各项费用800元.销售单价x(元) 3.5 5.5销售量y(斤)28001200(1)请求出y与x之间的函数表达式;(2)如果每天获得1600元的利润,销售单价为多少元?(3)当销售价定为多少元时,每天的利润最大?最大利润是多少元?23. 如图,等边△ABC中,E是AB上任意一点,以CE为边作等边△ECD,连接AD,试判断AD与BC的位置关系,并证明你的结论.【答案与解析】1.答案:C解析:利用有理数的加法法则,以及绝对值的代数意义化简即可得到结果.此题考查了有理数的加法,以及绝对值,熟练掌握运算法则是解本题的关键.解:原式=|−3|=3,故选C.2.答案:D解析:本题考查的是合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.根据合并同类项法则、同底数幂的乘、除法法则、积的乘方法则计算,判断即可.解:2y3+y3=3y3,A错误;y2⋅y3=y5,B错误;(3y2)3=27y6,C错误;y3÷y−2=y3−(−2)=y5,故选D.3.答案:A解析:解:将10700用科学记数法表示为:1.07×104.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.答案:C解析:解:从正面看下边是一个矩形,右边向上一个矩形,故选:C.根据从正面看得到的图形是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图,看不到的线用虚线.5.答案:B解析:解:A、不是因式分解,故本选项不符合题意;B、是因式分解,故本选项符合题意;C、不是因式分解,故本选项不符合题意;D、不是因式分解,故本选项不符合题意;故选:B.根据因式分解的定义逐个判断即可.本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.6.答案:C解析:试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号相同的情况,再利用概率公式即可求得答案。
安徽省合肥市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.不解方程,判别方程2x 2﹣32x=3的根的情况( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .有一个实数根D .无实数根2.如图,BC 平分∠ABE ,AB ∥CD ,E 是CD 上一点,若∠C=35°,则∠BED 的度数为( )A .70°B .65°C .62°D .60°3.下列关于统计与概率的知识说法正确的是( )A .武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B .检测100只灯泡的质量情况适宜采用抽样调查C .了解北京市人均月收入的大致情况,适宜采用全面普查D .甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数4.根据下表中的二次函数2y ax bx c =++的自变量x 与函数y 的对应值,可判断该二次函数的图象与x 轴( ).x…1-12…y…1-74-2-74-…A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点5.如图,正方形ABCD 的顶点C 在正方形AEFG 的边AE 上,AB =2,AE =42,则点G 到BE 的距离是( )A .1655B .3625C .3225D .18556.使用家用燃气灶烧开同一壶水所需的燃气量y (单位:3m )与旋钮的旋转角度x (单位:度)(090x <≤o o )近似满足函数关系y=ax 2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )A .18oB .36oC .41oD .58o7.化简221x -÷11x -的结果是( ) A .21x + B .2xC .21x - D .2(x +1)8.下列计算正确的是A .a 2·a 2=2a 4B .(-a 2)3=-a 6C .3a 2-6a 2=3a 2D .(a -2)2=a 2-4 9.2016的相反数是( ) A .12016-B .12016C .2016-D .201610.向某一容器中注水,注满为止,表示注水量与水深的函数关系的图象大致如图所示,则该容器可能是( )A .B .C .D .11.如图,某厂生产一种扇形折扇,OB=10cm ,AB=20cm ,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为10003π cm 2,则扇形圆心角的度数为( )A.120°B.140°C.150°D.160°12.若A(﹣4,y1),B(﹣3,y2),C(1,y3)为二次函数y=x2﹣4x+m的图象上的三点,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y1<y3<y2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,扇形OMN的圆心角为45°,正方形A1B1C1A2的边长为2,顶点A1,A2在线段OM上,顶点B1在弧MN上,顶点C1在线段ON上,在边A2C1上取点B2,以A2B2为边长继续作正方形A2B2C2A3,使得点C2在线段ON上,点A3在线段OM上,……,依次规律,继续作正方形,则A2018M=__________.14.如图,直线a∥b,直线c 分别于a,b 相交,∠1=50°,∠2=130°,则∠3 的度数为()A.50°B.80°C.100°D.130°15.直线AB,BC,CA的位置关系如图所示,则下列语句:①点A在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC,CA的公共点,正确的有_____(只填写序号).16.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由个组成的,依此,第n个图案是由个组成的.17.若a、b为实数,且b =22117aaa-+-++4,则a+b=_____.18.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解不等式组:,并把解集在数轴上表示出来.20.(6分)已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.求m的取值范围;如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.21.(6分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)22.(8分)已知关于x的一元二次方程22410x x k++-=有实数根.(1)求k的取值范围;(2)若k为正整数,且方程有两个非零的整数根,求k的取值.23.(8分)(1)(﹣2)2+2sin 45°﹣11()182-⨯(2)解不等式组523(1)131322x xx x+>-⎧⎪⎨-≤-⎪⎩,并将其解集在如图所示的数轴上表示出来.24.(10分)如图,已知在⊙O中,AB是⊙O的直径,AC=8,BC=1.求⊙O的面积;若D为⊙O上一点,且△ABD为等腰三角形,求CD的长.25.(10分)如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.26.(12分)已知a ,b ,c 为△ABC 的三边,且满足a 2c 2﹣b 2c 2=a 4﹣b 4,试判定△ABC 的形状. 27.(12分)如图,在自动向西的公路l 上有一检查站A ,在观测点B 的南偏西53°方向,检查站一工作人员家住在与观测点B 的距离为7132km ,位于点B 南偏西76°方向的点C 处,求工作人员家到检查站的距离AC .(参考数据:sin76°≈2425,cos76°≈625,tan 76°≈4,sin53°≈35,t an53°≈43)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】一元二次方程的根的情况与根的判别式∆有关,24b ac ∆=-2(32)42(3)=--⨯⨯-420=>,方程有两个不相等的实数根,故选B2.A 【解析】 【分析】由AB ∥CD ,根据两直线平行,内错角相等,即可求得∠ABC 的度数,又由BC 平分∠ABE ,即可求得∠ABE 的度数,继而求得答案. 【详解】∵AB ∥CD,∠C=35°, ∴∠ABC=∠C=35°, ∵BC 平分∠ABE , ∴∠ABE=2∠ABC=70°,∵AB∥CD,∴∠BED=∠ABE=70°.故选:A.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线的性质进行解答.3.B【解析】【分析】根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.【详解】解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B 符合题意;C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;故选B.【点睛】本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.4.B【解析】【分析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断. 【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与x轴有两个交点,且它们分别在y轴两侧故选B.【点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.5.A【解析】【分析】根据平行线的判定,可得AB与GE的关系,根据平行线间的距离相等,可得△BEG与△AEG的关系,根据根据勾股定理,可得AH与BE的关系,再根据勾股定理,可得BE的长,根据三角形的面积公式,可得G到BE的距离.【详解】连接GB、GE,由已知可知∠BAE=45°.又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.∵2,AB与GE间的距离相等,∴GE=8,S△BEG=S△AEG=12S AEFG=1.过点B作BH⊥AE于点H,∵AB=2,∴BH=AH2∴HE=2.∴BE=5设点G到BE的距离为h.∴S△BEG=12•BE•h=12×5h=1.∴h165即点G到BE的距离为1655.故选A.【点睛】本题主要考查了几何变换综合题.涉及正方形的性质,全等三角形的判定及性质,等积式及四点共圆周的知识,综合性强.解题的关键是运用等积式及四点共圆的判定及性质求解. 6.C 【解析】 【分析】根据已知三点和近似满足函数关系y=ax 2+bx+c(a≠0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案. 【详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41℃∴旋钮的旋转角度x 在36°和54°之间,约为41℃时,燃气灶烧开一壶水最节省燃气. 故选:C , 【点睛】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点. 7.A 【解析】 【分析】原式利用除法法则变形,约分即可得到结果. 【详解】 原式=211x x +-()()•(x ﹣1)=21x +.故选A . 【点睛】本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键.8.B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得. 【详解】A. a2·a2=a4,故A选项错误;B. (-a2)3=-a6,正确;C. 3a2-6a2=-3a2,故C选项错误;D. (a-2)2=a2-4a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.9.C【解析】根据相反数的定义“只有符号不同的两个数互为相反数”可知:2016的相反数是-2016.故选C.10.D【解析】【分析】根据函数的图象和所给出的图形分别对每一项进行判断即可.【详解】由函数图象知: 随高度h的增加, y也增加,但随h变大, 每单位高度的增加, 注水量h的增加量变小, 图象上升趋势变缓, 其原因只能是水瓶平行于底面的截面的半径由底到顶逐渐变小, 故D项正确.故选: D.【点睛】本题主要考查函数模型及其应用.11.C【解析】【分析】根据扇形的面积公式列方程即可得到结论.【详解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,设扇形圆心角的度数为α,∵纸面面积为10003π cm2,∴22301010003603603a a πππ⋅⨯⋅⨯-=,∴α=150°, 故选:C . 【点睛】本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积=2360n R π . 12.B 【解析】 【分析】根据函数解析式的特点,其对称轴为x=2,A (﹣4,y 1),B (﹣3,y 2),C (1,y 3)在对称轴左侧,图象开口向上,利用y 随x 的增大而减小,可判断y 3<y 2<y 1. 【详解】抛物线y=x 2﹣4x+m 的对称轴为x=2, 当x<2时,y 随着x 的增大而减小, 因为-4<-3<1<2, 所以y 3<y 2<y 1, 故选B. 【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的增减性是解题的关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.201512.【解析】 【分析】探究规律,利用规律即可解决问题. 【详解】 ∵∠MON=45°,∴△C 2B 2C 2为等腰直角三角形, ∴C 2B 2=B 2C 2=A 2B 2.∵正方形A 2B 2C 2A 2的边长为2,∴OA3=AA 3=A 2B 2=12A 2C 2=2.OA 2=4,OM=OB 2 同理,可得出:OA n =A n-2A n =12A n-2A n-2=312n -,。
安徽省六安市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列函数中,y 随着x 的增大而减小的是( ) A .y=3xB .y=﹣3xC .3y x=D .3y x=-2.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是( )A .最喜欢篮球的人数最多B .最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C .全班共有50名学生D .最喜欢田径的人数占总人数的10 %3.下列图形中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .4.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=6x在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD 为( )A .36B .12C .6D .35.cos30°的相反数是( ) A .33-B .12-C .3D .22-6.如图,ABC V 内接于O e ,若A 40∠=o ,则BCO (∠= )A.40o B.50o C.60o D.80o7.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种B.2种C.3种D.4种8.反比例函数y=mx的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若点A(﹣1,h),B(2,k)在图象上,则h<k;④若点P(x,y)在上,则点P′(﹣x,﹣y)也在图象.其中正确结论的个数是( )A.1 B.2 C.3 D.49.下列4个数:9,227,π,(3)0,其中无理数是()A.9B.227C.πD.(3)010.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()A.B.C.D.11.等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是()A.9 cm B.12 cm C.9 cm或12 cm D.14 cm12.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( ) A .3(2)29x x -=+ B .3(2)29x x +=- C.9232x x -+= D .9232x x +-=二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知直线23y x =+与抛物线2231y x x =-+交于A 11x y (,),B 22x y (,)两点,则121111x x +=++_______. 14.一个正n 边形的中心角等于18°,那么n =_____.15.如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使三角板的0cm 刻度线与量角器的0°线在同一直线上,且直径DC 是直角边BC 的两倍,过点A 作量角器圆弧所在圆的切线,切点为E ,则点E 在量角器上所对应的度数是____.16.计算:(﹣12)﹣2﹣2cos60°=_____. 17.对于任意实数m 、n ,定义一种运算m ※n=mn ﹣m ﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=1.请根据上述定义解决问题:若a <2※x <7,且解集中有两个整数解,则a 的取值范围是_____.18.若方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,则x 1+x 2﹣x 1x 2的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,一次函数y=kx+b 的图象分别与反比例函数y=ax的图象在第一象限交于点A (4,3),与y 轴的负半轴交于点B ,且OA=OB . (1)求函数y=kx+b 和y=ax的表达式; (2)已知点C (0,8),试在该一次函数图象上确定一点M ,使得MB=MC ,求此时点M 的坐标.20.(6分)已知:如图,在Rt △ABO 中,∠B=90°,∠OAB=10°,OA=1.以点O 为原点,斜边OA 所在直线为x 轴,建立平面直角坐标系,以点P (4,0)为圆心,PA 长为半径画圆,⊙P 与x 轴的另一交点为N ,点M 在⊙P 上,且满足∠MPN=60°.⊙P 以每秒1个单位长度的速度沿x 轴向左运动,设运动时间为ts ,解答下列问题:(发现)(1)MN n的长度为多少;(2)当t=2s 时,求扇形MPN (阴影部分)与Rt △ABO 重叠部分的面积. (探究)当⊙P 和△ABO 的边所在的直线相切时,求点P 的坐标.(拓展)当MN n与Rt △ABO 的边有两个交点时,请你直接写出t 的取值范围.21.(6分)已知,数轴上三个点A 、O 、P ,点O 是原点,固定不动,点A 和B 可以移动,点A 表示的数为a ,点B 表示的数为b .(1)若A 、B 移动到如图所示位置,计算+a b 的值.(2)在(1)的情况下,B 点不动,点A 向左移动3个单位长,写出A 点对应的数a ,并计算b a -. (3)在(1)的情况下,点A 不动,点B 向右移动15.3个单位长,此时b 比a 大多少?请列式计算.22.(8分)如图,已知正比例函数y=2x 和反比例函数的图象交于点A (m ,﹣2).求反比例函数的解析式;观察图象,直接写出正比例函数值大于反比例函数值时自变量x 的取值范围;若双曲线上点C (2,n )沿OA 5B ,判断四边形OABC 的形状并证明你的结论.23.(8分)如图,AB 是O e 的直径,AF 是O e 切线,CD 是垂直于AB 的弦,垂足为点E ,过点C 作DA 的平行线与AF 相交于点F ,已知CD 23=BE 1=.()1求AD 的长;()2求证:FC 是O e 的切线.24.(10分)如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G.(1)求四边形OEBF的面积;(2)求证:OG•BD=EF2;(3)在旋转过程中,当△BEF与△COF的面积之和最大时,求AE的长.25.(10分)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p 与x之间符合一次函数关系,部分数据如表:天数(x) 1 3 6 10每件成本p(元)7.5 8.5 10 12任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=() () 220110401015x x xx x⎧+≤<⎪⎨≤≤⎪⎩,且为整数,且为整数,设李师傅第x天创造的产品利润为W元.直接写出p与x,W与x之间的函数关系式,并注明自变量x 的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?26.(12分)我市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标.建筑面积7200平方米,为我国西北第一高阁.秦汉高台门阙的建筑风格,追求稳定之中的飞扬灵动,深厚之中的巧妙组合,使景观功能和标志功能融为一体.小亮想知道石鼓阁的高是多少,他和同学李梅对石鼓阁进行测量.测量方案如下:如图,李梅在小亮和“石鼓阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,李梅看着镜面上的标记,她来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得李梅眼睛与地面的高度ED=1.6米,CD=2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.4米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.7米,影长FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“石鼓阁”的高AB的长度.27.(12分)2018年大唐芙蓉园新春灯会以“鼓舞中华”为主题,既有新年韵味,又结合“一带一路”展示了丝绸之路上古今文化经贸繁荣的盛况。
安徽省合肥市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,平行四边形ABCD 中,点A 在反比例函数y=k x (k≠0)的图象上,点D 在y 轴上,点B 、点C 在x 轴上.若平行四边形ABCD 的面积为10,则k 的值是( )A .﹣10B .﹣5C .5D .10 2.已知a ﹣b=1,则a 3﹣a 2b+b 2﹣2ab 的值为( )A .﹣2B .﹣1C .1D .2 3.下列各式中,正确的是( )A .﹣(x ﹣y )=﹣x ﹣yB .﹣(﹣2)﹣1=12C .﹣x x y y -=-D .3882÷= 4.如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带( )A .带③去B .带②去C .带①去D .带①②去52 的相反数是( )A 2B .2C 2D .2 6.已知关于x 的方程2222x x a x x x x x +-+=--恰有一个实根,则满足条件的实数a 的值的个数为( ) A .1 B .2 C .3 D .47.下列命题是真命题的个数有( )①菱形的对角线互相垂直;②平分弦的直径垂直于弦;③若点(5,﹣5)是反比例函数y=k x图象上的一点,则k=﹣25; ④方程2x ﹣1=3x ﹣2的解,可看作直线y=2x ﹣1与直线y=3x ﹣2交点的横坐标.A .1个B .2个C .3个D .4个8.中华人民共和国国家统计局网站公布,2016年国内生产总值约为74300亿元,将74300亿用科学计数法可以表示为( )A .1074310⨯B .1174.310⨯C .107.4310⨯D .127.4310⨯ 9.方程()21k 1x 1kx+=04---有两个实数根,则k 的取值范围是( ). A .k≥1 B .k≤1C .k>1D .k<1 10.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数的图象与x 轴有两个不同交点的概率是( ).A .B .C .D .11.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°12.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为6,∠ADC=60°,则劣弧AC 的长为( )A .2πB .4πC .5πD .6π二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果x y 10+-=,那么代数式2y x y x x x ⎛⎫--÷ ⎪⎝⎭的值是______. 14.如图,在△ABC 中,CA=CB ,∠ACB=90°,AB=2,点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为__________.15.已知:正方形 ABCD .求作:正方形 ABCD 的外接圆.作法:如图,(1)分别连接 AC ,BD ,交于点 O ;(2)以点 O 为圆心,OA 长为半径作⊙O ,⊙O 即为所求作的圆.请回答:该作图的依据是__________________________________.16.计算20180(1)(32)---=_____.17.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .正多边形的一个外角是40°,则这个正多边形的边数是____________ .B .运用科学计算器比较大小: 5? 12- ________ sin37.5° . 18.因式分解23a a +=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)实践:如图△ABC 是直角三角形,∠ACB =90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)作∠BAC 的平分线,交BC 于点O.以O 为圆心,OC 为半径作圆.综合运用:在你所作的图中,AB 与⊙O 的位置关系是_____ .(直接写出答案)若AC=5,BC=12,求⊙O 的半径.20.(6分)如图,在Rt △ABC 中,90ACB ∠=︒,CD ⊥AB 于点D ,BE ⊥AB 于点B ,BE=CD ,连接CE ,DE .(1)求证:四边形CDBE 为矩形;(2)若AC=2,1tan 2ACD ∠=,求DE 的长.21.(6分)先化简,再求值:(221121a a a a a a +----+)÷1a a -,其中a=3+1. 22.(8分)先化简,再求值:(x+1y)1﹣(1y+x)(1y ﹣x)﹣1x 1,其中x =3+1,y =3﹣1.23.(8分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A ),豆沙粽子(记为B ),肉粽子(记为C ),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.24.(10分)如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=13.求点B 的坐标;若△ABC 的面积为4,求2l 的解析式.25.(10分)某公司为了扩大经营,决定购进6台机器用于生产某活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲 乙 价格(万元/台)7 5 每台日产量(个) 100 60(1)按该公司要求可以有几种购买方案?如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?26.(12分)如图,一只蚂蚁从点A 沿数轴向右直爬2个单位到达点B ,点A 表示﹣,设点B 所表示的数为m.求m的值;求|m﹣1|+(m+6)0的值.27.(12分)解方程式:1x2-- 3 =x12x--参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】作AE⊥BC于E,由四边形ABCD为平行四边形得AD∥x轴,则可判断四边形ADOE为矩形,所以S平行四边形ABCD=S矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE=|−k|,利用反比例函数图象得到.【详解】作AE⊥BC于E,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S平行四边形ABCD=S矩形ADOE,而S矩形ADOE=|−k|,∴|−k|=1,∵k<0,∴k=−1.故选A.【点睛】本题考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.2.C【解析】【分析】先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.【详解】a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.故选C.【点睛】本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.3.B【解析】【分析】A.括号前是负号去括号都变号;B负次方就是该数次方后的倒数,再根据前面两个负号为正;C. 两个负号为正;D.三次根号和二次根号的算法.【详解】A选项,﹣(x﹣y)=﹣x+y,故A错误;B选项,﹣(﹣2)﹣1=12,故B正确;C选项,﹣x xy y-=,故C错误;D=2÷2=,故D错误.【点睛】本题考查去括号法则的应用,分式的性质,二次根式的算法,熟记知识点是解题的关键.4.A【解析】【分析】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.【详解】③中含原三角形的两角及夹边,根据ASA公理,能够唯一确定三角形.其它两个不行.故选:A.【点睛】此题主要考查全等三角形的运用,熟练掌握,即可解题.5.A【解析】分析:根据相反数的定义结合实数的性质进行分析判断即可.详解:的相反数是.故选A.点睛:熟记相反数的定义:“只有符号不同的两个数(实数)互为相反数”是正确解答这类题的关键. 6.C【解析】【分析】先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一个实数根,因此,方程①的根有两种情况:(1)方程①有两个相等的实数根,此二等根使x(x-2)≠1;(2)方程①有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.针对每一种情况,分别求出a的值及对应的原方程的根.【详解】去分母,将原方程两边同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情况有两种:(1)方程①有两个相等的实数根,即△=9﹣3×2(3﹣a)=1.解得a=238.当a=238时,解方程2x2﹣3x+(﹣72+3)=1,得x1=x2=34.(2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为1或2.(i)当x=1时,代入①式得3﹣a=1,即a=3.当a=3时,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即这时方程①的另一个根是x=1.4.它不使分母为零,确是原方程的唯一根.(ii)当x=2时,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.当a=5时,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣12.x1是增根,故x=﹣12为方程的唯一实根;因此,若原分式方程只有一个实数根时,所求的a的值分别是238,3,5共3个.故选C.【点睛】考查了分式方程的解法及增根问题.由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论.理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键.7.C【解析】【分析】根据菱形的性质、垂径定理、反比例函数和一次函数进行判断即可.【详解】解:①菱形的对角线互相垂直是真命题;②平分弦(非直径)的直径垂直于弦,是假命题;③若点(5,-5)是反比例函数y=kx图象上的一点,则k=-25,是真命题;④方程2x-1=3x-2的解,可看作直线y=2x-1与直线y=3x-2交点的横坐标,是真命题;故选C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.一些命题的正确性是用推理证实的,这样的真命题叫做定理.8.D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:74300亿=7.43×1012,故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.D【解析】当k=1时,原方程不成立,故k≠1,当k≠1时,方程()21k 1x 1kx+=04---为一元二次方程. ∵此方程有两个实数根, ∴221b 4ac 1k 4k 11k k 122k 04-=---⨯-⨯=---=-≥()()(),解得:k≤1. 综上k 的取值范围是k <1.故选D .10.C【解析】 分析:本题可先列出出现的点数的情况,因为二次图象开口向上,要使图象与x 轴有两个不同的交点,则最低点要小于0,即4n-m 2<0,再把m 、n 的值一一代入检验,看是否满足.最后把满足的个数除以掷骰子可能出现的点数的总个数即可.解答:解:掷骰子有6×6=36种情况. 根据题意有:4n-m 2<0,因此满足的点有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17种,故概率为:17÷36=.故选C .点评:本题考查的是概率的公式和二次函数的图象问题.要注意画出图形再进行判断,找出满足条件的点.11.A【解析】试题分析:如图,过A 点作AB ∥a ,∴∠1=∠2,∵a ∥b ,∴AB ∥b ,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A .考点:平行线的性质.12.B【解析】【分析】连接OA 、OC ,然后根据圆周角定理求得∠AOC 的度数,最后根据弧长公式求解.【详解】连接OA 、OC ,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,则劣弧AC 的长为:=4π.故选B .【点睛】 本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式180n r l π=. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】分析:对所求代数式根据分式的混合运算顺序进行化简,再把10x y +-=变形后整体代入即可. 详解:2,y x y x x x ⎛⎫--÷ ⎪⎝⎭22,x y x y xx x ⎛⎫-=-÷ ⎪⎝⎭ ()(),x y x y x x x y+-=⋅- .x y =+。
2019年安徽省中考数学二模试卷一、选择题(本大题共10小题,每小题4分,满分40分) 1.(4分)12-的倒数是( )A .2-B .2C .12-D .122.(4分)《2019年安徽省政府工作报告》指出,2018年我省经济运行总体平稳、稳中有进.全省生产总值2.97万亿元,增长8%以上,财政收入5363亿元,增长10.4%.数据5363亿用科学记数法表示为( ) A .8536310⨯B .105.36310⨯C .115.36310⨯D .125.36310⨯3.(4分)下列运算中,计算结果正确的是( ) A .44a a a =B .632a a a ÷=C .326()a a =D .33()ab a b =4.(4分)如图所示的组合体,它的主视图是( )A .B .C .D .5.(4分)下列因式分解正确的是( ) A .212844(32)a b ac a a ab c -+=- B .241(12)(12)x x x -+=+- C .22441(21)b b b +-=-D .222()a ab b a b ++=+6.(4分)关于x 的一元二次方程2(5)210m x x -++=有实数根,则m 的取值范围是()A .6m <B .6m …C .6m <且5m ≠D .6m …且5m ≠7.(4分)某校为了解同学们课外阅读名著的情况,在某年级随机抽查了20名同学每学期的课外阅读名著的情况,调查结果如表所示:关于这20名同学课外阅读名著的情况,下列说法错误的是( ) A .中位数是10B .平均数是10.25C .众数是11D .阅读量不低于10本的同学占70%8.(4分)某工厂为了降低生产成本进行技术革新,已知2017年的生产成本为a 万元,以后每年的生产成本的平均降低率为x ,则预计2019年的生产成本为( ) A .2(1%)a x -B .2(1)a x -C .2(1)x -D .2(%)a a x -9.(4分)如图,四边形ABCD 为平行四边形,延长AD 到E ,使D E A D =,连接EB ,EC ,DB ,下列条件中,不能使四边形DBCE 成为菱形的是( )A .AB BE =B .BE DC ⊥C .90ABE ∠=︒D .BE 平分DBC ∠10.(4分)如图,在ABC ∆中,60ABC ∠=︒,45C ∠=︒,点D ,E 分别为边AB ,AC 上的点,且//DE BC ,2BD DE ==,52CE =,245BC =.动点P 从点B 出发,以每秒1个单位长度的速度沿B D E C →→→匀速运动,运动到点C 时停止.过点P 作PQ BC ⊥于点Q ,设BPQ ∆的面积为S ,点P 的运动时间为t ,则S 关于t 的函数图象大致为( )A .B .C .D .二、填空题(本大题共4小题,每小题5分,满分20分) 11.(5分)若代数式315x -的值不小于代数式156x-的值,则x 的取值范围是 . 12.(5分)如图,四边形ABCD 内接于O ,AD 、BC 的延长线相交于点E ,AB 、DC 的延长线相交于点F .若50A ∠=︒,45E ∠=︒,则F ∠= ︒.13.(5分)如图,在平面直角坐标系中,直线13y x =与双曲线(0)ky k x=≠交于点A ,过点(0,2)C 作AO 的平行线交双曲线于点B ,连接AB 并延长与y 轴交于点(0,4)D ,则k 的值为 .14.(5分)如图,ABC ∆中,AD BC ⊥,垂足为D ,4AD BD ==,5AC =,点E 从点B 出发沿B A C →→的方向移动到点C 停止,连接CE 、DE .若A D E ∆与CDE ∆的面积相等,则线段DE 的长为 .三、(本大题共2小题,每小题8分,满分16分)15.(8021(2019)4cos45()3π---︒+-.16.(8分)请欣赏下列描述《西游记》中孙悟空追妖精的数学诗:悟空顺风探妖踪,千里只行4分钟.归时四分行六百,风速多少才称雄?解释:孙悟空顺风去查妖精的行踪,4分钟就飞跃1000里,逆风返回时4分钟走了600里,问风速是多少?四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,三角形PQR 是三角形ABC 经过某种变换后得到的图形,分别观察点A 与点P ,点B 与点Q ,点C 与点R 的坐标之间的关系.(1)若三角形ABC 内任意一点M 的坐标为(,)x y ,点M 经过这种变换后得到点N ,根据你的发现,点N 的坐标为 .(2)若三角形PQR 先向上平移3个单位,再向右平移4个单位得到三角形P Q R ''',画出三角形P Q R '''并求三角形P AC '的面积. (3)直接写出AC 与y 轴交点的坐标 .18.(8分)如图是某路灯在铅垂面内是示意图,灯柱AC 的高为12米,灯杆AB 与灯柱AC 的夹角120A ∠=︒,路灯采用锥形灯罩,在地面上的照射区域DE 长为21米,从D ,E 两处测得路灯B 的仰角分别为α和β,且tan 6α=,3tan 4β=,求灯杆AB 的长度.五、(本大题共2小题,每小题10分,满分20分)19.(10分)观察下表三组数中每组数的规律后,回答下列问题.(1)请填写上表中的三处空格;(2)由表可知,随着n 的值逐渐变大,三组数中,最先超过10000的是 组(填“A ”、“ B ” 或“C ” );(3)在A组的数中,任意圈出相邻的三个数,例如,圈出5、7、9,可求出它们的和为21.问能否圈出这样的三个数,使它们的和为607?若能,请求出这三个数;若不能,请说明理由.20.(10分)如图,AB是O的直径,AC是O的切线,切点为A,BC交O于点D,点E是AC的中点.(1)试判断直线DE与O的位置关系,并说明理由.(2)若O半径为2,60∠=︒,求图中阴影部分的面积.B六、(本题满分12分)21.(12分)某校对A:《唐诗》、B:《宋词》、C:《蒙山童韵》、D:其他这四类著作开展“最受欢迎的传统文化著作”调查,随机调查了若干名学生(每名学生必选且只能选这四类著作中的一种),并利用得到的信息绘制成下面两幅不完整的统计图.(1)求一共调查了多少名学生,并将条形统计图补充完整;(2)若全校有1200名学生,请估计有多少名学生喜欢《唐诗》;(3)该校语文老师想从这四类著作中随机选取两类作为学生寒假必读书籍,清川画树状图。
安徽省十校联考中考数学二模试卷(解析版)一.选择题1.一元二次方程5x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A. 5,﹣1B. 5,4 C. 5,﹣4 D. 5x2,﹣4x2.下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.把抛物线y=﹣经()平移得到y=﹣﹣1.A. 向右平移2个单位,向上平移1个单位B. 向右平移2个单位,向下平移1个单位C. 向左平移2个单位,向上平移1个单位D. 向左平移2个单位,向下平移1个单位4.一个直角三角形的两条直角边长的和为20cm,其中一直角边长为xcm,面积为ycm2,则y与x的函数的关系式是()A. y=10x﹣x2 B. y=10xC. y= ﹣xD. y=x(10﹣x)5.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A. 6B. 5C. 4D. 36.近几年,我国经济高速发展,但退休人员待遇持续偏低,为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2012年月退休金为1500元,2014年达到2160元.设李师傅的月退休金从2012年到2014年年平均增长率为x,则可列方程为()A. 1500(1+x)2=2160 B. 1 500(1+x)2=2060C. 1500+1500(1+x)+1500(1+x)2=2160D. 1500(1+x)=21607.学校早上8时上第一节课,45分钟后下课,这节课中分针转动的角度为()A.45°B.90°C.180°D.270°8.如图,在⊙O中,半径OC⊥弦AB于P,且P为OC的中点,则∠BAC的度数是()A. 45°B. 6 0°C. 25°D. 30°9.二次函数y=ax2+bx+c的图象如图所示,关于此二次函数有以下四个结论:①a<0;②c>0;③b2﹣4ac>0;④ab>0,其中正确的有()个.A. 1B. 2C. 3D. 410.如图,边长为2a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A. aB. aC.D.二.填空题11.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是________.12.关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是________.13.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=6cm,则⊙O的半径为________ cm.14.如图,抛物线y1=(x﹣2)2﹣1与直线y2=x﹣1交于A、B两点,则当y2≥y1时,x的取值范围为________.三.解答题15.解方程:4x2﹣12x+5=0.16.已知二次函数图象经过点A(﹣3,0)、B(1,0)、C(0,﹣3),求此二次函数的解析式.四.解答题17.如图,已知△ABC的顶点A,B,C的坐标分别是A(﹣1,﹣1),B(﹣4,﹣3),C(﹣4,﹣1).①作出△ABC关于原点O中心对称的图形;②将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.18.已知函数y=x2﹣mx+m﹣2.求证:不论m为何实数,此二次函数的图象与x轴都有两个不同交点.五.解答题19.已知抛物线y=﹣x2+2x+2(1)求该抛物线的对称轴、顶点坐标以及y随x变化情况;(2)在如图的直角坐标系内画出该抛物线的图象.20.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.六.解答题21.在如图中,每个正方形由边长为1的小正方形组成:(1)观察图形,请填写下列表格:正方形边长 1 3 5 7 …n(奇数)黑色小正方形个数________ ________ ________ ________ ________正方形边长 2 4 6 8 …n(偶数)黑色小正方形个数________ ________ ________ ________ ________P2,问是否存1在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.七.解答题22.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?八.解答题23.如图,已知四边形ABCD是正方形,△AEF是等边三角形,E,F分别位于DC边和BC边上.(1)求∠DAE的度数;(2)若正方形ABCD的边长为1,求等边三角形AEF的面积;(3)将△AEF绕着点E逆时针旋转m(0<m<180)度,使得点A落在正方形ABCD的边上,求m的值.答案解析部分一.<b >选择题</b>1.【答案】C【考点】一元二次方程的定义【解析】【解答】∵5x2﹣4x﹣1=0,∴二次项系数为:5,一次项系数分别为:﹣4,故答案为:C【分析】根据一元二次方程ax2+bx+c=0(a≠0),由此即可得出答案.2.【答案】D【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】A、是轴对称图形,不是中心对称图形,故此选项错误;A不符合题意;B、不是轴对称图形,也不是中心对称图形,故此选项错误;B不符合题意;C、是轴对称图形,不是中心对称图形,故此选项错误;C不符合题意;D、是轴对称图形,也是中心对称图形,故此选项正确.D符合题意;故答案为:D.【分析】轴对称图形:在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合;由此即可得出答案.3.【答案】B【考点】二次函数图象与几何变换【解析】【解答】∵抛物线y=﹣的顶点坐标是(0,0),抛物线y=﹣﹣1的顶点坐标是(2,﹣1),∴由点(0,0)向右平移2个单位,向下平移1个单位得到点(2,﹣1),∴把抛物线y=﹣经向右平移2个单位,向下平移1个单位得到y=﹣﹣1.故答案为:B.【分析】根据平移的性质:左+右-,上+下-,由此即可得出答案.4.【答案】A【考点】函数关系式,三角形的面积【解析】【解答】∵一个直角三角形的两条直角边长的和为20cm,其中一直角边长为xcm,∴另一边长为:(20﹣x)cm,则y= x(20﹣x)=10x﹣x2.故答案为:A.【分析】由一个直角三角形的两条直角边长的和为20cm,其中一直角边长为xcm,则另一边长为:(20﹣x)cm,由三角形面积公式即可得出答案.5.【答案】B【考点】勾股定理,垂径定理【解析】【解答】过O作OC⊥AB于C,∴AC=BC= AB=12,在Rt△AOC中,∴OC= =5.故答案为:B.【分析】过O作OC⊥AB于C,由垂径定理得AC=BC=AB=12,在Rt△AOC中,由勾股定理得出OC=5.6.【答案】A【考点】一元二次方程的应用【解析】【解答】设李师傅的月退休金从2012年到2014年年平均增长率为x,依题可得:1500(1+x)2=2160.故答案为:A.【分析】设李师傅的月退休金从2012年到2014年年平均增长率为x,由企业退休职工李师傅2012年月退休金为1500元,2014年达到2160元列出一元二次方程即可得出答案.7.【答案】D【考点】生活中的旋转现象【解析】【解答】∵早上8时分针指向数字12,45分钟后分针指向数字9,∴这节课中分针转动的角度为270°.故答案为:D.【分析】由早上8时分针指向数字12,45分钟后分针指向数字9,根据钟面角的问题即可得出答案.8.【答案】D【考点】含30度角的直角三角形,垂径定理,圆周角定理【解析】【解答】连接OB,∵OC⊥AB,P为OC的中点,∴OP= OB,∴∠OBP=30°,∴∠BOP=90°﹣30°=60°,∴∠BAC= ∠BOP=30°.故答案为:D.【分析】连接OB,由已知条件得出OP= OB,在直角三角形中,根据30°所对的直角边等于斜边的一半得出∠OBP=30°,再由三角形内角和定理得∠BOP=90°﹣30°=60°,由同弧所对的圆周角等于圆心角的一半即可得出∠BAC= ∠BOP=30°.9.【答案】B【考点】二次函数图象与系数的关系【解析】【解答】∵图象开口向下,∴a<0,故①正确;∵图象与y轴的交点坐标在x轴的下方,∴c<0,故②不正确;∵抛物线与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,故③正确;∵图象对称轴在y轴的右侧,∴﹣>0,∴ab<0,故④不正确;∴正确的有两个,故答案为:B.【分析】①由图象开口向下得a<0,故①正确;②由图象与y轴的交点坐标在x轴的下方得c<0,故②不正确;③由抛物线与x轴有两个交点得b2﹣4ac>0,故③正确;由图象对称轴在y轴的右侧,即﹣>0得ab<0,故④不正确;由此即可得出答案.10.【答案】D【考点】全等三角形的判定与性质,等边三角形的性质,含30度角的直角三角形,旋转的性质【解析】【解答】解:如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB= AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,MG⊥CH时,MG最短,即HN最短,此时∵∠BCH= ×60°=30°,CG= AB= ×2a=a,∴MG= CG= ×a= ,∴HN= ,故答案为:D.【分析】取BC的中点G,连接MG,依题可得∠MBH+∠HBN=60°,由等边三角形的性质得∠MBH+∠MBC=∠ABC=60°,等量代换得∠HBN=∠GBM,由等边三角形的性质和旋转的性质可知HB=BG,BM=BN,利用全等三角形的判定得△MBG≌△NBH(SAS),再由全等三角形的性质得MG=NH;根据垂线段最短得当MG⊥CH时,MG最短,即HN最短;在直角三角形中,30°所对的直角边等于斜边的一半即可得HN的值.二.<b >填空题</b>11.【答案】(3,﹣2)【考点】关于原点对称的点的坐标【解析】【解答】∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为:(3,﹣2).【分析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,由此即可得出答案.12.【答案】﹣1【考点】一元二次方程的解【解析】【解答】∵关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,∴a2﹣1=0,且a﹣1≠0.∴a=﹣1.故答案是:﹣1.【分析】将x=0代入一元二次方程,得a2﹣1=0,且a﹣1≠0,由此即可得出答案.13.【答案】3【考点】三角形的外角性质,等腰三角形的性质,勾股定理,垂径定理,等腰直角三角形【解析】【解答】连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE= CD=3cm,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴OC= CE=3 cm,故答案为:3 .【分析】连接OC,根据垂径定理得出CE=DE=CD=3cm,由等腰三角形的性质得∠A=∠OCA=22.5°,根据三角形外角的性质得∠COE=45°,从而得△COE为等腰直角三角形,根据勾股定理得OC= CE=3 cm.14.【答案】1≤x≤4【考点】二次函数与不等式(组)【解析】【解答】联立,解得,,∴A(1,0),B(4,3),∴当y2≥y1时,x的取值范围为:1≤x≤4.故答案为:1≤x≤4.【分析】将抛物线和直线解析式联立求出A和B坐标,再结合图像得出答案.三.<b >解答题</b>15.【答案】解:(2x﹣5)(2x﹣1)=0,∴2x﹣5=0或2x﹣1=0,∴x1= ,x2= .【考点】解一元二次方程-因式分解法【解析】【分析】先将一元二次方程因式分解——十字相乘法,再解之即可得出答案.16.【答案】解:依题可设抛物线解析式为y=a(x+3)(x﹣1),∵C(0,﹣3)在抛物线上,∴a×3×(﹣1)=﹣3,∴a=1,∴抛物线解析式为:y=(x+3)(x﹣1),即y=x2+2x﹣3.【考点】待定系数法求二次函数解析式【解析】【分析】依题可设抛物线解析式为y=a(x+3)(x﹣1),将C点坐标代入抛物线解析式即可得出a的值,从而求出抛物线解析式.四.<b >解答题</b>17.【答案】解:如图所示:A1(﹣1,1).【考点】中心对称及中心对称图形,坐标与图形变化-旋转【解析】【分析】①根据中心对称的特点分别求出A,B,C点相对应的坐标,连线即可得出△ABC关于原点O中心对称的图形△A′B′C′.②根据旋转的性质得△A1B1C1的图形,由图即可得出A1坐标.18.【答案】证明:y=x2﹣mx+m﹣2,∴△=(﹣m)2﹣4(m﹣2)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,∴不论m为何实数,此二次函数的图象与x轴都有两个不同交点.【考点】抛物线与x轴的交点【解析】【分析】根据题意得出△=m2﹣4m+8==(m﹣2)2+4>0,从而得出不论m为何实数,此二次函数的图象与x轴都有两个不同交点.五.<b >解答题</b>19.【答案】(1)解:∵y=﹣x2+2x+2,∴对称轴为:x=﹣,顶点坐标为:(﹣,),∴对称轴为:x=1,顶点坐标为:(1,3).∵a=﹣1<0,开口向下,∴当x<1时,y随x的增大而增大;x>1时,y随x的增大而减小.(2)解:列表如下:x …﹣1 0 1 2 3 …y …﹣1 2 3 2 ﹣1 …【考点】二次函数的图象,二次函数的性质【解析】【分析】(1)根据抛物线解析式即可得出对称轴和顶点坐标,又因为抛物线开口向下,由二次函数的性质得出答案.(2)先列表、描点、连线即可得出二次函数解析式.20.【答案】(1)解:∵BC=DC,∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,∴∠BAD=∠BAC+∠CAD=39°+39°=78°.(2)证明:∵EC=BC,∴∠CEB=∠CBE,又∵∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠BDC=∠CBD,∴∠1=∠2.【考点】等腰三角形的性质,圆周角定理【解析】【分析】(1)由等腰三角形的性质得∠CBD=∠CDB=39°,再根据同弧所对的圆心角相等得∠BAC=∠CDB=∠CAD=∠CBD=39°,从而求出∠BAD值.(2)由等腰三角形的性质得∠CEB=∠CBE,又由∠CEB=∠2+∠BAE=∠CBE=∠1+∠CBD,由等量代换及等式额性质得∠1=∠2.六.<b >解答题</b>21.【答案】(1)1;5;9;13;2n﹣1;4;8;12;16;2n(2)解:由(1)可知n为偶数时P1=2n,白色与黑色的总数为n2,∴P2=n2﹣2n,根据题意假设存在,则n2﹣2n=5×2n,n2﹣12n=0,解得n=12,n=0(不合题意舍去).存在偶数n=12使得P2=5P1.【考点】解一元二次方程-因式分解法,探索图形规律【解析】【解答】解:(1)(2)由(1)可知n为偶数时P1=2n,白色与黑色的总数为n2,从而得P2=n2﹣2n,根据题意假设存在,即n2﹣2n=5×2n,解之即可得出答案.七.<b >解答题</b>22.【答案】(1)解:设y与x之间的函数关系式y=kx+b,把(10,40),(18,24)代入得:,解得,∴y与x之间的函数关系式y=﹣2x+60(10≤x≤18);(2)解:W=(x﹣10)(﹣2x+60)=﹣2x2+80x﹣600=﹣2(x﹣20)2+200,对称轴x=20,在对称轴的左侧y随着x的增大而增大,∵10≤x≤18,∴当x=18时,W最大,最大为192.即当销售价为18元时,每天的销售利润最大,最大利润是192元.(3)解:由150=﹣2x2+80x﹣600,解得x1=15,x2=25(不合题意,舍去)答:该经销商想要每天获得150元的销售利润,销售价应定为15元.【考点】待定系数法求一次函数解析式,二次函数的最值,二次函数的应用【解析】【分析】(1)设y与x之间的函数关系式y=kx+b,把(10,40),(18,24)代入得到一个二元一次方程组,解之即可得出一次函数解析式.(2)根据题意得W=(x﹣10)(﹣2x+60)=﹣2x2+80x﹣600(10≤x≤18),再由二次函数的性质得当x=18时,W max=192.(3)又(2)得到的﹣2x2+80x﹣600=150(10≤x≤18),解之即可得出销售价格.八.<b >解答题</b>23.【答案】(1)解:∵四边形ABCD是正方形,∴AB=AD,AF=AE,∠B=∠D=90°,在Rt△ABF与Rt△ADE,,∴Rt△ABF≌Rt△ADE,∴∠DAE=∠BAF又∠DAE+∠BAF=∠BAD﹣∠EAF=90°﹣60°=30°∴∠DAE=15°;(2)解:设BF=x,由(1)可知DE=BF=x,则CF=CE=1﹣x∴AB2+BF2=AF2, CF2+CE2=EF2, AF=EF,即:12+x2=2(1﹣x)2∴x1=2+ ,x2=2 ,∵0<x<1,∴x1=2+ (舍去),x=2 ,∴S△AEF=S四边形ABCD﹣2S△ABF﹣S△EFC=12﹣2× 1×(2﹣)﹣(﹣1)2=2 ﹣3;(3)解:依题意,点A可落在AB边上或BC边上.①当点A落在AB边上时,设此时点A的对应点为M,则EA=EM,∵∠EAB=75°,∴∠AME=75°,∴m=∠AEM=180°﹣75°﹣75°=30°,②当点A落在边BC上时,∵EA=EF,点A旋转后与点F重合,∴m=∠AEF=60°,综上,m=30°或m=60°.【考点】三角形的面积,全等三角形的判定与性质,等边三角形的性质,正方形的性质,旋转的性质【解析】【分析】(1)由正方形性质得AB=AD,AF=AE,∠B=∠D=90°,再根据直角三角形的判定得Rt△ABF≌Rt△ADE(HL),由全等三角形的性质得∠DAE=∠BAF,由等边三角形和正方形的性质得∠DAE的度数. (2)设BF=x,由(1)知DE=BF=x,则CF=CE=1﹣x,由勾股定理得AB2+BF2=AF2, CF2+CE2=EF2, AF=EF,即12+x2=2(1﹣x)2(0<x<1),求出x=2 ,再由S△AEF=S四边形ABCD﹣2S△ABF﹣S△EFC求出即可.(3)依题分两种情况来分析:①当点A落在AB边上时,设此时点A的对应点为M,则EA=EM;②当点A落在边BC上时;根据旋转的性质和三角形内角和定理即可求出答案.。