北师版九上数学2 平行线分线段成比例
- 格式:ppt
- 大小:2.45 MB
- 文档页数:18
第三章圖形的相似2.平行線分線段成比例一、學生知識狀況分析學生在本章前兩課時的學習中,通過對相似圖形的直觀感知,體會到可以用對應線段長度的比來描述兩個形狀相同的平面圖形的大小關係。
從而認識了線段的比,成比例線段。
通過對方格紙中成比例線段的探究,瞭解了合比性質與等比性質,並在探究活動中積累了一定的合作交流的經驗,培養了提出問題與解決問題的能力。
同時學生通過對合比性質與等比性質的演繹證明,也進一步發展了邏輯推理能力。
二、教學任務分析本節課依舊採用前兩節在方格紙中探究的方式,引導學生得出平行線分線段成比例及其推論。
平行線分線段成比例定理是研究相似形的最重要和最基本的理論,是《課程標準》圖形的性質及其證明中列出的九個基本事實之一。
在知識技能方面,要求學生理解並掌握平行線分線段成比例定理及其推論,並會靈活應用。
學生經歷運用平行線分線段成比例及其推論解決問題的過程,在觀察、計算、討論、推理等活動獲取知識。
讓學生經歷“觀察—猜想—歸納—驗證”的數學思想,並體會數形結合和特殊到一般的思想方法。
進一步發展學生的說理和簡單推理的意識及能力;進一步體會數學與現實生活的緊密聯繫。
教學目標:(一)知識目標理解並掌握平行線分線段成比例的基本事實及其推論,並會靈活應用。
(二)能力目標通過應用,培養識圖能力和推理論證能力。
(三)情感與價值觀目標(1)、培養學生積極的思考、動手、觀察的能力,使學生感悟幾何知識在生活中的價值。
(2)、在進行探索的活動過程中發展學生的探索發現歸納意識並養成合作交流的習慣。
教學重點:平行線分線段成比例定理和推論及其應用。
教學難點:平行線分線段成比例定理及推論的靈活應用,平行線分線段成比例定理的變式。
三、教學過程分析本節課設計了五個教學環節:第一環節:複習設疑,引入新課;第二環節:探索發現平行線分線段成比例定理及其推論;第三環節:平行線分線段成比例定理及其推論的簡單應用;第四環節:課堂小結;第五環節:佈置作業.第一環節:複習設疑,引入新課內容:教師提問:(1)什麼是成比例線段?(2)你能不通過測量快速將一根繩子分成兩部分,使得這兩部分的比是2:3?目的:(1)複習成比例線段的內容,回顧上節課通過方格紙探究成比例線段性質的過程。
4.2平行线分线段成比例定理【教学目标】知识与技能1.使学生在理解的基础上掌握平行线分线段成比例定理及其推论,并会灵活应用.使学生掌握三角形一边平行线的判定定理. 过程与方法通过应用,培养识图能力和推理论证能力. 情感、态度与价值观通过定理的教学,进一步培养学生类比的数学思想. 【教学重难点】教学重点:是平行线分线段成比例定理和推论及其应用.教学难点:是平行线分线段成比例定理的正确性的说明及推论应用. 【导学过程】【创设情景,引入新课】 1. 什么是平行线等分线段定理?2.如图(1)中,AD∥BE∥CF,且AB=BC,则的比值是多少?【自主探究】三条距离不相等的平行线截两条直线会有什么结果??那么32若==EF DE ,,BC AB ?那么43若==EF DE ,,BC AB 你能否利用所学过的相关知识进行说明?【课堂探究】由上面例题我们可以得到: 1.平行线分线段成比例定理 :两条直线被一组平行线所截,所得的对应线段成比例 说明:(1)画出定理的各种基本图形,对照图形写出相应的结论。
(2)写出其它的对应线段成比例的情况。
对应线段成比例可用下面的语言形象表示:右全左全右上左上全上全上下上下上===,,等等。
(3)由下面的定理的基本图形(1)和(2)得出推论2.推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例 定理的基本图形和结论:3.例例:如图:在△ABC 中E,F 分别是AB 和CD 上的两点且EF//BC, (1)如果AE=7,EB=5,FC=4那么AF 的长是多少? (2)如果AB=10,AE=6,AF=5那么BE 的长是多少?【当堂训练】(1)已知线段PQ ,在PQ 上求一点D ,使PD :PQ=4:1; (2)已知线段PQ ,在PQ 上求一点D ,使PQ :DQ=4:11.1 菱形的性质与判定 第1课时 菱形的性质【学习目标】A 型基本图形X 型基本图形(1) (4)(2) (3)1.理解菱形的概念,掌握菱形的性质.2.培养学生主动探究的习惯、严密的思维意识和审美意识.3.经历探索菱形的性质和基本概念的过程,在操作、观察、分析过程中发展学生思维意识,体会几何说理的基本方法.【学习重点】理解并掌握菱形的性质.【学习难点】形成推理的能力.情景导入生成问题1.平行四边形的一组对边平行且相等.2.平行四边形的对角相等.3.平行四边形的对角线互相平分.自学互研生成能力知识模块一探索菱形的性质先阅读教材P2-3页的内容,然后完成下面的问题:1.菱形的定义是什么?答:菱形定义:有一组邻边相等的平行四边形叫做菱形.2.菱形具有平行四边形的所有性质吗?答:菱形是特殊的平行四边形,它具有一般平行四边形的所有性质.1.教师拿出平行四边形木框(可活动的),操作给学生看,让学生体会到:平移平行四边形的一条边,使它与相邻的一条边相等,可以得到一个菱形,说明菱形也是特殊的平行四边形,因此,菱形也具有平行四边形的所有性质.2.如图:将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,再打开.思考:(1)这是一个什么样的图形呢?(2)有几条对称轴?(3)对称轴之间有什么位置关系?(4)菱形中有哪些相等的线段?师生结论:(1)菱形;(2)菱形是轴对称图形,有两条对称轴,是菱形对角线所在的直线;(3)两条对称轴互相垂直;(4)菱形的四条边相等.3.归纳结论:菱形具有平行四边形的一切性质,另外,菱形的四条边相等、对角线互相垂直.知识模块二菱形性质的应用解答下列各题:1.已知菱形ABCD 的边长为3cm ,则该菱形的周长为__12__cm .2.如图,已知菱形ABCD 的周长为20cm ,∠A =60°,则对角线BD =__5__cm .典例讲解:如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,∠BAD =60°,BD =6,求菱形的边长AB 和对角线AC 的长.解:∵四边形ABCD 是菱形,∴AB =AD(菱形的四条边都相等),AC ⊥BD(菱形的对角线互相垂直),OB =OD =12BD =12×6=3(菱形的对角线互相平分).在等腰三角形ABC 中,∵∠BAD =60°,∴△ABD 是等边三角形,∴AB =BD =6.在Rt △AOB 中,由勾股定理得OA 2+OB 2=AB 2,∴OA =AB 2-OB 2=62-32=33,∴AC =2OA =6 3.对应练习:如图,在菱形ABCD 中,对角线AC 与BD 相交于点O.已知AB =5cm ,AO =4cm .求BD 的长.解:∵四边形ABCD 是菱形,∴AC ⊥BD(菱形的对角线互相垂直).在Rt △AOB 中,由勾股定理,得AO 2+BO 2=AB 2,∴BO =AB 2-AO 2=52-42=3.∵四边形ABCD 是菱形,∴BD =2BO =2×3=6(菱形的对角线互相平分).交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 探索菱形的性质 知识模块二 菱形性质的应用检测反馈 达成目标1.已知菱形ABCD的周长为8cm,则菱形的边长为__2__cm.2.已知菱形ABCD的两条对角线AC=10cm,BD=24cm,则菱形ABCD的周长为__52__cm.3.菱形具有而平行四边形不一定具有的性质是(B)A.内角和为360°B.对角线互相垂直C.对边平行D.对角线互相平行4.已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为(B)A.45°,135°B.60°,120°C.90°,90°D.30°,150°课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。