4、平方根(二)
- 格式:doc
- 大小:68.00 KB
- 文档页数:4
开方的运算法则公式开方运算在数学中可是个挺重要的家伙呢!咱们先来说说啥是开方。
开方啊,简单说就是求一个数的平方根或者立方根等等。
比如说,4 的平方根是多少?咱们都知道是±2,因为2 的平方是4,-2 的平方也是 4 嘛。
这就是开方运算的一个小例子。
那开方的运算法则公式都有啥呢?咱们一个一个来看。
先说平方根的运算法则。
对于正数 a,它的平方根记作±√a。
这里要注意啦,如果 a 是正数,那就有两个平方根,一正一负;要是 a 等于 0 呢,那平方根就只有 0 啦;可要是 a 是负数,那就没有实数平方根了哦。
再来说说立方根。
正数 a 的立方根记作³√a。
不管 a 是正数、负数还是 0 ,都只有一个立方根。
比如 8 的立方根是 2,因为 2 的立方是 8;-8 的立方根就是 -2 咯。
开方运算还有一些公式,像√(ab) = √a × √b(a≥0,b≥0)。
这个公式啥意思呢?给您举个例子,比如说要算√12,咱们可以把 12 拆成4×3,那√12 就等于√4×√3,也就是2√3。
还有√(a/b) = √a / √b(a≥0,b>0)。
比如说√(18/2) ,就等于√18 / √2 ,算出来是 3。
我记得之前教过一个学生,叫小明。
这孩子啊,刚开始学开方的时候,那叫一个迷糊。
给他讲平方根和立方根的区别,他总是搞混。
有一次做作业,题目是求9 的平方根,他居然给我写了个3 就交上来了。
我把他叫到办公室,耐心地给他又讲了一遍:“小明啊,你想想,哪个数的平方是 9 呀?”他眨眨眼睛,想了一会儿说:“3 啊。
”我笑着摇摇头说:“还有 -3 呢,所以 9 的平方根是 ±3 ,记住啦!”从那以后,小明可认真了,每次遇到开方的题目都会多想一想。
在实际应用中,开方运算也特别有用。
比如说,您要计算一个正方形的边长,知道了面积,就得通过开方来求边长。
再比如,建筑工人在计算一些材料的尺寸时,也会用到开方运算。
1.了解平方根的概念、开平方的概念,进一步明确平方与开方互为逆运算.2.会求一个数的平方根,明确算术平方根与平方根的区别与联系。
1。
了解平方根、开平方的概念,会利用互逆运算关系求某些非负数的算术平上节课我们学习了算术平方根的概念、性质若一个正数x的平方等于a,即x2=a。
则x叫a的算术平方a根,记作x=,而且a也是非负数,比如正数22=4,则2叫4的算术平方根,4叫2的平方,但是(—2)2=4,则—2叫4的什么根呢?下面我们就来讨论这个问题.(1)9的算术平方根是3,也就是说,3的平方是9,还有其他的数,它的平方也是9吗?(2)平方等于4/25的数有几个?平方等于0.64的数呢?一般地,如果一个数x的平方等于a,即x2=a,那么这个x就叫a的平方根(square root),也叫二次方根,3和-3的平方都等于9,由定义可知3和—3都是9的平方根,即9的平方根有两个3和—3,9的算术平方根只有一个是3.由平方根和算术平方根的定义,大家能否找出它们有什么相同和不同之处呢?【归纳结论】联系:(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)存在条件相同:平方根和算术平方根都是只有非负数才有。
(3)0的平方根、算术平方根都是0。
区别:(1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“非负数a的非负平方根叫a的算术平方根"。
(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个。
(3)表示法不同:正数a的平方根表示为±,正数a的算术平方根表示为。
(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个。
什么叫开平方呢?我们共学了几种运算?这几种运算之间有怎样的联系?2。
平方根的性质请大家思考下面的问题:(1)一个正数有几个平方根?(2)0有几个平方根?(3)负数呢?ﻬ作业布置1.习题2.4第1、2、3、4题.2.完成本课时练习部分.板书ﻬa a。
4的平方根是2还是±2?
答案:±2
答案解析:平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。
一个正数有两个实平方根,它们互为相反数,负数没有平方根,0的平方根是0。
如果是求4的平方根,则4的平方根是±2。
知识拓展:
1.根号是一个数学符号。
根号是用来表示对一个数或一个代数式进行开方运算的符号。
若aⁿ=b,那么a是b开n次方的n次方根或a是b的1/n次方。
开n次方,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。
2.若一个非负数x的平方等于a,即x=a,则这个数x叫做a的算术平方根。
所以得出的数是始终大于0的,所以√4=2。
一个正数如果有平方根,那么必定有两个,它们互为相反数。
负数在实数系内不能开平方,只有在复数系内,负数才可以开平方。
3.开n次方的n写在符号√ ̄的左边,n=2(平方根)时n可以忽略不写,但若是立方根(三次方根)、四次方根等,是必须书写。
平方数和平方根的运算规则平方数和平方根是数学中重要的概念,它们之间有着一系列的运算规则。
本文将介绍平方数和平方根的定义,并详细解释它们之间的运算规则。
一、平方数的定义平方数是指一个数与自身相乘得到的结果。
例如,4是一个平方数,因为4乘以4等于16。
平方数的特点是它们的非负平方根是有理数。
二、平方根的定义平方根是指一个数的平方等于该数的非负数。
例如,16的平方根是4,因为4的平方等于16。
三、1. 两个平方数相乘的结果仍然是一个平方数。
例如,2乘以2得到4,两个平方数相乘得到的结果是另一个平方数。
2. 平方数的乘法有交换律。
即,a乘以b等于b乘以a。
例如,2乘以3等于3乘以2。
3. 平方数的乘法有结合律。
即,(a乘以b)乘以c等于a乘以(b乘以c)。
例如,(2乘以3)乘以4等于2乘以(3乘以4)。
4. 平方根的乘法等于平方根的积。
即,√(a乘以b)等于√a乘以√b。
例如,√(2乘以3)等于√2乘以√3。
5. 平方数的除法等于平方根的商。
即,a除以b等于√a除以√b。
例如,4除以2等于√4除以√2。
6. 平方数的乘方等于平方根的乘方。
即,(√a)的平方等于a。
例如,(√4)的平方等于4。
7. 平方根的乘方等于平方数。
即,(√a)的平方等于a。
例如,(√2)的平方等于2。
这些运算规则是数学中对平方数和平方根运算的重要准则,能够帮助我们在计算中快速而准确地处理与平方数和平方根相关的问题。
总结:平方数是一个数与自身相乘得到的结果,其非负平方根是有理数。
而平方根是一个数的平方等于该数的非负数。
平方数和平方根之间存在一系列的运算规则,包括两个平方数的乘积仍为平方数、平方数的乘法有交换律和结合律、平方根的乘法等于平方根的积、平方数的除法等于平方根的商,以及平方数和平方根的乘方规则等。
这些运算规则为我们处理平方数和平方根相关问题提供了指导。
通过学习和掌握平方数和平方根的运算规则,我们能够更加灵活地运用它们,解决数学问题和实际生活中的计算需求。
八年级上册平方根知识点在八年级的数学学习中,平方根是一个非常重要的知识点。
平方根是指一个数的平方等于原数的数值,可以用符号√表示,例如√9=3,√16=4。
在本文中,我将详细介绍八年级上册平方根的相关知识点。
一、平方根的符号及表示方法平方根用符号√来表示,如√9表示9的平方根,读作“根号9”或“9的根号”。
平方根还可以用字母表示,例如a的平方根可以表示为√a。
当a为正整数完全平方数时,√a是有理数,否则是无理数。
例如√4=2,√9=3,但√2是无理数,不是有理数。
二、简化√n的步骤当n是一个正整数时,n的因数中,相同的因子成对出现,例如16的因数为1、2、4、8、16。
而且它们都是成对出现的,其中2与8、4与4配对,所以可以得到以下简化√n的步骤:1.将n进行质因数分解,使因数中每个质数的指数都为2的倍数。
2.把每个根号内部成对的质因数提取出来,得到这个数的基本根式。
例如:√36=√(2²×3²)=√2²×√3²=2√3。
三、平方根的运算法则1.平方根的分配律:对于任意正实数a和b,有√(a×b)=√a×√b。
例如:√20=√(4×5)=√4×√5=2√5。
2.平方根的合并同类项:对于任意正实数a和b,有√a±√b=√(a±b)。
例如:√7+√5=√(7+5)=√12。
3.平方根的乘法公式:对于任意非负实数a和b,有√a×√b=√(ab)。
例如:√7×√5=√(7×5)=√35。
4.平方根的倒数法则:对于任意正实数a,有1/√a=√a/√(a×a)=√a/a。
例如:1/√5=√5/√25=√5/5。
四、平方根的应用平方根除了在数学中的运算中有着广泛的应用外,在我们的日常生活中也经常会遇到。
例如:1.计算三角形的斜边长度。
设三角形两个直角边分别为a和b,则三角形的斜边长度为√(a²+b²)。
4根号公式
四则运算是数学中最基本的运算,它由加法、减法、乘法和除法四种基本运算组成。
根号公式是指数学中的平方根公式和立方根公式。
1. 平方根公式:对于非负数a,它的平方根记作√a。
当a大于等于0时,对于任意一个非负数x,有x^2=a等价于x=±√a。
其中正数+√a称为正平方根,负数-√a称为负平方根。
2. 立方根公式:对于任意实数a,它的立方根记作³√a。
当a为任意实数时,对于任意一个实数x,有x^3=a等价于x=³√a。
一个实数a有且只有一个立方根。
需要注意的是,对于负数的平方根和立方根,需要使用虚数来表示。
例如,-4的平方根是2i和-2i,其中i为虚数单位。
实数知识点总结平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
练习⑴ 一个数的平方等于它的本身的数是 ;⑵ 平方根等于它的本身的数是⑶ 算术平方根等于它的本身的数是 ;⑷ 立方根等于它的本身的数是⑸ 大于0且小于π的整数是 ;⑹ 满足21-<x <15-的整数x 是6.到原点的距离为34的点表示的数是 ;7.若32-=x ,则x = ,8. 实数与数轴上的点9.写出之间的所有的整数为____. 10.比较大小:____三、解答题11.1.3-,0,0.3,227,1.732-π2-,3+,0.1010010001整数{} ;分数{} ;正数{} ;负数{} ;有理数{} ;无理数{}四.计算(1) (221;(3)π2练习一 平方根1.如果2a = 3,那么a = ,如果3=a ,那么=a2.若一个正方形的面积为13,则正方形的边长为3.0.04的平方是 ,0.04的算术平方根是 ,平方根是4.若12是a 的一个平方根,则a 的另一个平方根是5.若414.12=,则=200 ,02.0=6.用“>”“<”填空:⑴ ⑵ 160 13 ⑶;9.若==x x 则,4942 ,若==-x x ,则025812 ;10.⑴ =25 , ⑵ ()=-22 ,⑶ =2a ;11.下列说法中不正确的是 ( )A 、2-是2的平方根B 、2是2的平方根C 、2的平方根是2D 、2的算术平方根是2 12.41的平方根是 ( ) A 、161 B 、81 C 、21 D 、21± 13. 下列各式中无意义的是 ( ) A 、7- B 、7 C 、7- D 、()27-- 14.下列各式中,正确的个数是( )① 3.09.0= ② 34971±= ③23-的平方根是-3 ④()25-的算术平方根是-5 ⑤67±是36131 的平方根A 、1个B 、2个C 、3个D 、4个 15.“254的平方根是52±”,由数学式子可以表示为( ) A 、52254±= B 、52254±=± C 、52254= D 、52254-=-16.下列判断正确的是 ( ) A 、一个数的倒数等于它本身,这个数是1 B 、一个数的绝对值等于它本身,这个数是正数 C 、一个数的相反数等于它本身,这个数是0 D 、一个数的平方根等于它本身,这个数是1 17.若a 是()24-的平方根,b 的一个平方根是2,则代数式a +b 的值为 ( ) A 、8 B 、0 C 、8或0 D 、4或-4 18.求下列各数的平方根与算术平方根 ⑴ 169 ⑵ 0.0256 ⑶ 25242 ⑷ ()22-19.16的算术平方根是 ,()22-的平方根是 ; 20.若m 、n 满足()0312=++-n m ,则=+n m ;23. 有一个正数的两个平方根分别是32-a 与a -5,你知道a 是多少?这个正数又是多少?24. 若a 的两个平方根是方程223=+y x 的一组解,⑴ 求a 的值 ⑵ 求2a 的算术平方根。
八上数学:平方根的概念及特征一、平方根的概念:如果x的平方等于a(a≥0),那么x叫做a的平方根。
如:因为-2的平方等于4,所以-2是4的平方根;又因为2的平方也等于4,所以2也是4的平方根。
所以4有两个平方根±2。
所以一个正数a有一正一负两个平方根,这两个平方根互为相反数,其中正的平方根也叫a的算术平方根。
二、算术平方根:如果一个正数m的平方等于a,即m=a,那么这个正数m叫做a的算术平方根。
※0的算术平方根还是0。
三、算术平方根与平方根的区别:1、一个正数的算术平方根只有一个(正数),而平方根有两个(互为相反数);2、表示方式不同:算术平方根表示为√a,而平方根表示为±√a。
※①一个正数的平方根有两个,这两个平方根互为相反数;②0的平方根还是0;③负数没有平方根;④0和1的算术平方根是它本身;⑤0、1、-1的立方根是它本身;⑥当被开方数a大于0且小于1时,它的算术平方根比其本身大;当被开方数a大于1时,它的算术平方根比其本身小。
例1、下列说法中正确的是( D )。
A 、如果一个数为正数,那么这个数的平方根也一定为正数 分析:正数有一正一负两个平方根,所以本选项错误。
B 、任何数都有两个平方根分析:正数有两个平方根,0只有一个平方根,负数没有平方根,所以本选项错误。
C 、任何数的平方是非负数,所以任何数的平方根也是非负数 分析:正数有一正一负两个平方根,故本选项错误。
D 、如果一个数有两个不相等的平方根,那么这个数一定是正数 分析:本选项正确。
故本题正确的选项为D 选项。
例2、求下列各数的平方根。
①;②7.84;③13613;④(-4)2;⑤49。
解:①因为±54的平方等于2516所以2516的平方根为±54(±2516=±54); ②因为±2.8的平方为7.84,所以7.84的平方根为±2.8(±7.84=±2.8);③13613=3649,因为±67的平方等于3649 ,所以13613 的平方根为±67; ④因为(-4)2=16,又因为±4的平方等于16,所以(-4)2的平方根为±4(±24)-(=±4); ⑤因为49=7,7的平方根为±7,所以49的平方根为±7。
根号4等于±2还是2
±√4=±2,√4=2。
√4是根式。
根式的定义:
含有开方(求方根)运算的代数式,叫根式。
即含有根号的
表达式。
算术平方根定义:
如果一个非负数x的平方等于a,那么这个非负数x叫做
a的算术平方根,记作。
其中,a叫做被开方数。
例如:因为2和-2的平方都是4,且只有2是正数,所以2就是4的算术平方根。
由于正数的平方根互为相反数,因此正数的平方根可分别记作和,可合写为。
例如5的平方根可以分别记作和,可
合写为。
0的平方根仅有一个,就是0本身。
而0本身也是非负数,因此0也是0的算术平方根。
可记作
扩展资料:
平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根(arithmetic square root)。
一个正数有两个实平方根,它们互为相反数,负数有两个共轭的纯虚平方根。
如果一个非负数x的平方等于a,即,,那么这个非负数x叫做a的算术平方根。
a的算术平方根记为,读作“根号a”,a叫做被开方数(radicand)。
求一个非负数a的平方根的运算叫做开平方。
一个正数如果有平方根,那么必定有两个,它们互为相反数。
显然,如果知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。
参考资料:
百度百科-平方根。